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1. Introduction

It has been realized that non-commutative field theories (NCFTs) emerge as effec-

tive field theories of string/M-theory compactifications in the presence of constant

antisymmetric tensor fields [1, 2, 3]. This result has triggered a renewed interest

in the study of both perturbative [4, 5, 6] and non-perturbative [7] aspects of non-

commutative field theories. The stringy connection of NCFTs opens up the interest-

ing possibility of trying to understand some of their physical features by embedding

them in string theory. In particular a number of NCFTs have been obtained as a

low-energy limit of open-string theories in B-field backgrounds [8]–[13]. As a matter

of example, one can try to understand the nonlocality inherent in these quantum field

theories in terms of string theory after an appropriate low-energy limit is taken [3].
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Among the most intriguing features of NCFT is a peculiar mixing between in-

frared and ultraviolet scales [5, 6]. On physical grounds it can be understood as

the result of the uncertainty principle between two non-commuting spatial dimen-

sions, since probing ultraviolet physics in one direction leads to infrared effects in the

other. At a more technical level, this mixing reflects itself in the appearance of extra

poles at zero momentum in some amplitudes, in the limit where the ultraviolet cut-

off is sent to infinity. The authors of refs. [5, 6] interpreted these poles as resulting

from the interchange of a new field ψ with kinetic kernel −∂ ◦ ∂ ≡ ∂µ(θ
2)µν∂ν .

It would be very interesting to see if there is a stringy interpretation for these

particles.

One of the obvious ways of spotting a stringy behaviour in NCFT would be

to look at situations where the presence of extended objects is made manifest, as

for example studying these theories in spaces with non-trivial topology or at finite

temperature [14, 15, 16]. In refs. [17, 18] it was pointed out that the two-loop thermal

partition function of some NCFTs can be cast in a way that indicates the presence

of states whose energy scales with the inverse temperature as |`β|, with ` some
integer number. This would suggest that NCFTs contain certain extended degrees

of freedom that are able to wrap around the euclidean time.

In this paper we will try to understand whether some kind of winding modes

can be identified in non-commutative thermal perturbation theory, extending on the

work of [17]. Actually, we shall see that the winding modes formally identified in

thermodynamical quantities can be associated to effective fields with special propa-

gators, in much the same fashion as the ψ-fields of refs. [5, 6]. In fact, the UV/IR

interpretation of these propagators is the same once we realize that the temperature

acts as an ultraviolet cutoff in the field theory.

Therefore, this raises the question of whether the “winding fields” could be in-

terpreted as “off-brane” closed-string modes that survive the Seiberg-Witten (SW)

decoupling limit. We find that this expectation is not fulfilled, at least in a lit-

eral sense. In particular, any closed-string picture amounts to the exchange of

the infinite tower of closed-string excitations in the bulk, and therefore it is not

a very transparent way of describing the dynamics. Instead, each winding field de-

scribes a sort of coherent exchange of an infinite number of closed-string modes.

One of our results is the derivation of a sum rule for the effective coupling of

the winding fields, in terms of the elementary couplings of closed strings to a D-

brane. In fact, the interactions of these winding fields are not specified solely in

terms of standard interaction vertices, except in very special kinematical situations.

Generically, the vertices contain additional modular parameters that must be inte-

grated over.

The paper is organized as follows. In sections 2 and 3 we extend the analysis of

refs. [17, 18] to more general diagrams in NCFT at finite temperature and try to cast

the loop amplitudes in a “dual channel” picture, in terms of tree-level exchanges. In
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Figure 1: “Channel duality” in the non-planar self-energy diagram in φ4 theory.

section 4 we will obtain these amplitudes by studying the low energy SW limit from

string theory in order to identify the low-energy winding modes with undecoupled

winding strings. Finally in section 5 we will summarize our conclusions.

2. Winding modes in non-commutative quantum field theory:

an elementary example

The simplest situation where one can formally identify “winding modes” is that of

the two-loop contribution to the free energy in a φ4 theory. The planar diagram

is independent of the deformation parameter θµν , but a non-trivial phase θ(p, q) =

pµθ
µνqν enters the loop integral in the non-planar case

1

FNP = −g2
∑∫
p

∑∫
q

eiθ(p,q)

(p2 +M2)(q2 +M2)
, (2.1)

where we have used the notation

p2 = p2 +
4π2n2

β2
,

∑∫
p

≡ 1
β

∑
n∈Z

∫
dp

(2π)d−1
.

The ultraviolet divergences of this integral can be appropriately eliminated by renor-

malization of the T = 0 limit, as usual in thermal field theory [19]. In fact, the

ultraviolet structure of this diagram is milder than that of the planar counterpart,

because the divergence contributed by one of the loops is effectively cut off by the

non-commutative phase provided (θp)2 ≡ (θµνpν)2 is non vanishing. This is an ex-
ample of the UV/IR mixing of [5], namely this divergence will reappear, disguised

as an infrared effect, as θp→ 0.
In ref. [17] it was pointed out that one could “integrate out” one of the loops and

replace it by a statistical sum over objects living at the formally T-dual temperature

1/(θT ), thus representing analogues of winding modes. The essential phenomenon

can be understood by simply looking at the one-loop self-energy tadpole diagram

(figure 1a):

Π(β,p)NP = −g2
∑∫
q

eiθ(p,q)

q2 +M2
. (2.2)

1We will assume throughout that θ0i = 0.
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Introducing a Schwinger-parameter representation of the propagator,

Π(β,p)NP = −g2
∫ ∞
0

dt
∑∫
q

e−t(q
2+M2−iθ(p,q)/t) , (2.3)

we can perform the gaussian integral over q. After a further Poisson resummation

in the thermal frequency running in the loop we obtain

Π(β,p)NP = − g2

4πd/2

∫ ∞
0

ds s
d−4
2

∑
`∈Z

e−s[β
2`2+(θp)2]−M2/4s , (2.4)

where we have changed variables to the “dual” Schwinger parameter s = 1/4t. This

form is very convenient to perform the subtraction of the T = 0 self-energy, since we

simply have to restrict the integer sum to ` 6= 0.
For d < 4, the explicit power of s

d−4
2 in the proper time integral can be “inte-

grated in” into the exponent by introducing 4− d extra gaussian variables z⊥, and
we can write the full non-planar loop in the following suggestive form:

Π(β,p)NP = −
∑
`∈Z

∫
dz⊥

|gφχ(`,p, z⊥)|2
β2`2 + (θp)2 + z2⊥

. (2.5)

In other words, we have written the original loop diagram in a “dual channel” in

terms of an infinite number of tree-level exchanges of particles χ` with momenta θp,

mass proportional to |β`| and extra momentum variables in d⊥χ = 4−d transverse di-
mensions (figure 1b). This complete expression renormalizes the mass of the particle

running in the second loop.2

The mass of the χ`-fields, scaling as integer multiples of the thermal length, is

characteristic of winding modes of closed strings. The effective coupling squared of

these particles to the fields in external legs is given by

|gχφ(`,p, z⊥)|2 = g2

4π2

∫ ∞
0

ds e−s−
1
4s
M2[β2`2+(θp)2+z2⊥] . (2.6)

Thus, if the original field was massive, the coupling to the χ`-field is suppressed

at high values of momentum and winding number `, i.e. only fields with winding

numbers |`| < (βM)−1 contribute significantly to the tree-level exchange. The most
interesting case is that of a massless field theory. In this case the effective coupling is

constant and weights all winding numbers democratically, with the coupling strength

gφχ = g/(2π). Finally, if the φ
4-field is tachyonic, the whole expression is meaningless,

since it diverges at the s = 0 end. For this matter this “channel duality” in NCFT

is reminiscent of open/closed-string channel duality in string theory. Since NCFTs

2One could proceed in the standard way and perform a resummation of ring diagrams.
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can be obtained in many cases as low-energy limits of open-string theories, we find

it natural that the “dual channel”, obtained through a modular transformation t =

1/4s, exhibits the open-string tachyon as an ultraviolet divergence.

It is most interesting to compare the winding χ`-fields we have defined with the

ψ-particles of [5, 6]. The structure of the propagator shows that these fields are

formally similar

〈χ`(−p,−z⊥) χ`(p, z⊥)〉 = 1

β2`2 + (θp)2 + z2⊥
, (2.7)

namely, they have a “static” kinetic term with the kernel −∂ ◦ ∂ = (θp)2 for a
field of non-canonical dimension. Furthermore, at least as long as d ≤ 4, the non-
standard power of the propagator can be understood in terms of a free propagation

in a 4− d dimensional “transverse bulk”. The effective mass |β`| plays also the role
of the inverse ultraviolet cutoff Λ−1 in the treatment of [5] and, in the absence of the
explicit ultraviolet cutoff, the original ultraviolet divergence is back as an infrared

divergence at θp→ 0. In our expression, this shows up as a pole in the zero-winding
sector. It is precisely this contribution that is subtracted when renormalizing the

self-energy by the zero-temperature one.3 Therefore, we confirm that |β`| plays the
role of a regulator.

One important difference between our tree-level exchange interactions and the

ψ-fields of [5, 6] is that our ultraviolet cutoff T has a physical interpretation, and we

are free from the arbitrariness of the choice of Wilsonian cutoffs. In particular we

can integrate out the complete non-planar loop in terms of the infinite tower of tree

exchanges of χ` particles. The manipulation is not a priori restricted to the extreme

ultraviolet part.

One interesting aspect of the tree-exchange “dual” representation (2.5) is that

it admits an interpretation for the planar diagram too. The only difference in the

planar case comes from setting θp = 0. Therefore, the planar thermal loop can be

replaced in this case by

Π(β,p)P − Π(∞,p)P = −
∑
` 6=0

∫
dz⊥
|gχφ(`,p = 0, z⊥)|2

β2`2 + z2⊥
. (2.8)

Now we must work with the fully renormalized quantity (` 6= 0 in the winding sum)
and the propagator of the χ` particles is inserted formally at zero non-commutative

momentum, i.e. we have a sum over zero-momentum tadpoles of the χ`-fields. This

3Notice that this procedure is different from the one followed in [17] where the authors worked

with the two-loop free energy for φ4 NCFT before subtracting the zero-temperature counterterms.

In that case the ultraviolet divergence in one of the original loops partially transforms into an

infrared one after Poisson resummation and integration over the loop momenta. This is just a

consequence of UV/IR mixing.

5
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Figure 2: Dual-channel interpretation of the thermal loop in the planar contribution to

the two-point function in φ4 non-commutative field theory.

is also reminiscent of the closed-string interpretation, because closed strings have

tree-level tadpoles on D-branes. Now we would be inclined to interpret the residue

of the propagator poles as the product of the couplings gχφφ · gχ-vac (figure 2).

3. Integrating out a general loop

In the above example we have seen how the effect of a thermal tadpole loop in a

non-commutative φ4 theory admits a “dual channel” interpretation in terms of a

tree-level exchange of some “winding” χ`-field with inverse propagator β
2`2 + (θp)2

which mixes with the fundamental φ-quantum. It would be interesting to decide

to what extent this duality between thermal loops and tree-level χ`-exchanges is a

general feature of NCFT at finite temperature, or just a property of a particular

class of diagrams and theories.

3.1 Generic one-loop diagram in non-commutative φn theory

The first case we can consider is the generalization of the example studied in the

previous section, a generic one-loop diagram with N = N++N− vertices in the non-
commutative version of φn field theory in d dimensions (figure 3), where we will take

N− vertices as “twisted”, so the amplitude will be non planar whenever N± 6= N .

Thus, the fully amputated amplitude can be written as

A(p1, . . . , pN) = g2NWNC
∑∫
q

N∏
a=1

e−
i
2
ξapaθ q

(q +Qa)2 +M2
δ(QN ) ,

where Qa =
∑a
i=1 pi and ξa = ∓1 depending on whether the insertion is twisted or

not; pa indicates the total momentum entering the loop through the a-th insertion

and WNC stands for the global non-commutative phase of the diagram, depending
only on the external momenta. For the sake of simplicity we will consider here

“global” twists where all the n− 2 external legs entering the loop through the same
insertion have the same twist ξa. The generalization to include different twist in the

same insertion is straightforward and does not affect the conclusions of our analysis.

6
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Using Feynman and Schwinger parameters we can write

A(p1, . . . , pa) = g2N(N − 1)!WNC
∫ ∞
0

dt tN−1 e−tM
2

∫ 1
0

[dx] e−t
∑
a xaQ

2
a × (3.1)

× 1
β

∑
n∈Z

e
−t
(
4π2n2

β2
+ 4πn

β

∑
a xaQ

0
a

) ∫
dq

(2π)d−1
e−t(q

2+2q·∑a xaQa)eipnpθq ,

the integration measure [dx] over the Feynman parameters xa (a = 1, . . . , N) is

given by

[dx] ≡ δ

(
N∑
a=1

xa − 1
)
N∏
a=1

dxa

and pnp denotes the total non-planar spatial momentum entering the loop through

the N− “twisted” insertions, pnp ≡ −12
∑N
a=1 ξapa.

By integrating the loop spatial momentum and performing a Poisson resumma-

tion the total amplitude can be recast in terms of the dual Schwinger parameter

s = 1/(4t) in the form

A(p1, . . . , pN) = g2N
(N − 1)!
22Nπ

d
2

WNC ×

×
∫ ∞
0

ds s
d−2N−2

2

∑
`∈Z

e−s[β
2`2+(θpnp)2]F`(s; β, p1, . . . , pN) , (3.2)

where the function F`(s; β, pa) is expressed in terms of an integral over the x
a as

F`(s; β, pa) = e−
1
4s
M2
∫ 1
0

[dx]e
− 1
4s

[∑
a xaQ

2
a−(
∑
a xaQa)

2
]
×

× eiβ`
∑
a xa(Q

0
a)
2

ei
∑
a xaQa·(θpnp) . (3.3)

As in the simpler case of the tadpole of the φ4 theory, whenever d < 2N + 2 we

can replace the factor s
d−2N−2

2 by an integral over 2 + 2N − d extra variables, so we
can finally write the diagram in the form of a tree-level exchange of effective fields

propagating in d⊥χ = 2N + 2− d additional “bulk” dimensions:

A(p1, . . . , pN) =
∑
`∈Z

∫
dz⊥

f(`, pa, z⊥)
`2β2 + (θpnp)2 + z2⊥

, (3.4)

where the function f(pa, `) is given by

f(`, pa, z⊥) = g2N
(N − 1)!
22Nπd/2

WNC
∫ ∞
0

ds F`

[
s

`2β2 + (θpnp)2 + z2⊥
; β, pa

]
.

7
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Figure 3: Channel duality for a non-planar thermal loop in φn non-commutative

field theory.

In the same spirit as for the φ4 tadpole one would like to interpret the ampli-

tude (3.4) as a “dual channel” representation of the original loop diagram in terms of a

tree-level exchange of χ`-particles with propagators (2.7), so the function f(`, pa, z⊥)
would be interpreted as the product of the couplings in figure 3b

g(φnN+ )χ g(φnN− )χ ∼ f(`, pa, z⊥) . (3.5)

However, such an identification is rather problematic. Unlike the case of the φ4

tadpole, there seems to be no unambiguous way to define the individual couplings

g(φnN+ )χ and g(φnN− )χ, since their product (3.5) is expressed in terms of a function

that does not factorize into the contributions of the two vertices. Moreover, because

of the integration over the Feynman parameters in eq. (3.3), the interaction on the

two vertices cannot be disentangled, even for massless fields. It is only in the tadpole

case (N = 1) that the integration over Feynman parameters disappears; the whole

loop can then be understood as resulting from the mixing of the field φ with an

effective χ-field, thus generalizing the result of the previous section to φn.

Therefore, even if we can formally replace the generic thermal loop by the

exchange of an effective χ`-particle, we cannot assign ordinary Feynman rules to

this field, since the total amplitude is expressed as a convolution of the two in-

teraction vertices, and not just as a product, as it is the case of ordinary (and

non-commutative) quantum field theory. We summarize this state of affairs by

saying that the vertices of the χ`-fields have relative moduli that must be inte-

grated over.

In principle, the χ`-fields introduced here could become bona fide fields, with

standard Feynman rules, when considering only the behaviour of the diagram at

singularities of the integral over Feynman parameters. We suspect that this is the

precise link between the χ`-fields defined here and the ψ-fields of refs. [5, 6].

The appearance of moduli in the “dual-channel vertices” will find a string-theory

explanation in the next section. First, we shall discuss some special instances in which

the formalism simplifies.
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3.2 Some special cases at two loops

The previous example seems to indicate that, although in general we can replace non-

planar loops in NCFT by tree-level exchanges of an infinite tower of some effective

χ`-fields, in a generic situation the non-local character of this field makes the effective

description not very transparent. Here we will further comment on two examples

where this effective description is useful.

Let us first consider non-commutative super Yang-Mills (NCSYM) theories at

finite temperature. The two-loop free energy density can be written for U(N)

NCSYMd as [16]

F(β, θ) = F(β, θ = 0) + Csc g2N
{∫

dp

(2π)d−1

[
nb(p)

ωp
+
nf (p)

ωp

]2
− (3.6)

−
∫

dp

(2π)d−1

∫
dq

(2π)d−1

[
nb(p)

ωp
+
nf(p)

ωp

]
×

×
[
nb(q)

ωq
+
nf (q)

ωq

]
eiθ(p,q)

}
,

where Csc = 16, 4, 1 for theories with 16, 8 and 4 supercharges, respectively [20], ωp =
|p| and nb(f)(p) = (eβ|p| ∓ 1)−1 are the Bose-Einstein and Fermi-Dirac distribution
functions. It is interesting to notice how, for NCSYM theories, the “non-planar”

part of the two-loop free energy [the last term in (3.6)] factorizes into the product of

two independent loop contributions only linked through the non-commutative phase,

in much the same fashion as φ4 NCFT. Following ref. [17] we can now integrate one

of these loops to try to spot winding states (figure 4). When d < 4 again we can

introduce 4− d extra variables z⊥ to write∫
dq

(2π)d−1

[
nb(q)

ωq
+
nf (q)

ωq

]
eiθ(p,q) =

1

(2π)2

∑
`∈Z

∫
dz⊥

1 + (−1)`+1
`2β2 + (θp)2 + z2⊥

(3.7)

=
1

2π2

∑
`∈Z

∫
dz⊥

1

(2`+ 1)2β2 + (θp)2 + z2⊥
.

That is, we find a standard tower of χ` particles, restricted to odd winding

numbers. From this expression we learn that, in general, the fermion loops will give

rise to χ` particles with negative norm for even `. For the supersymmetric case,

there is a cancellation with the tower coming from the bosonic loop and we find the

projection onto odd winding numbers. We shall give a string theory explanation of

this phenomenon in the next section.

Notice that the factorization of the two-loop free energy into a contribution of

two independent loops is not a general property of any quantum field theory. In

particular, for φ3 NCFT the integrand of F(β, θ) does not have this property even
in the massless case. What is special about NCSYM is the fact that many of the

9
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Figure 4: Dual-channel description of the non-planar thermal loop in φ4-like two-loop

non-planar vacuum diagram.

individual diagrams contributing to (3.6) have loops with two external insertions, so

that at least one Feynman parameter would be needed in order to formally “integrate

out” the loop, along the lines of the general discussion above. Yet, the complete two-

loop diagram shows factorized form and one can introduce effective χ` particles with

standard Feynman rules (apart from the negative-norm feature in the fermionic case).

The reason behind this simplification is two fold. First, gauge symmetry relates

the φ3-like diagrams to the φ4-like diagrams. Second, the theory is massless, so

that the effective coupling (2.6) is a momentum-independent pure number, and thus

both φ4-like loops are completely disentangled from the kinematical point of view.

Therefore, this factorization is, in principle, specific of two-loop diagrams in massless

theories whose symmetries can relate all diagrams that contribute to a given physical

quantity to φ4-like ones. Another example, considered in [17], is the massless Wess-

Zumino model, where supersymmetry plays the relevant role. In the massless limit

the Wess-Zumino model reduces itself to a supersymmetric version of φ4 NCFT.

Thus the factorization of the two-loop free energy follows from the factorization of

the corresponding diagram in φ4 theory under the substitution nb(p) → nb(p) +

nf (p). In the NCSYM case it is not supersymmetry, but rather gauge symmetry

that plays the simplifying role, because the two-loop factorization is true already for

non-supersymmetric non-commutative Yang-Mills theories [16].

4. Windings and closed strings

4.1 Heuristic considerations

Given that many NCFTs derive from open-string theory in background B-fields in the

SW limit, it is natural to associate the winding modes of the previous representations

to closed strings in intermediate states. Namely, the structure of (2.5) is reminiscent

of a closed-string tree-level propagator between the boundary states of a Dd−1 brane

10
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Figure 5: Seiberg-Witten limit of the non-planar two-point function in the closed-

string channel.

(figure 5). Heuristically, we expect

Π(β, p)NP = −
∑
`

∫
dz⊥

|gχ(`, p, z⊥)|2
β2`2 + (θp)2 + z2⊥

∼ lim
SW

〈
Dd−1;Vp

∣∣∣ 1
∆cl

∣∣∣ Dd−1;Vp
〉
, (4.1)

whereas the planar diagram would be a low-energy limit of
〈
Dd−1;Vp, V−p|∆−1cl |Dd−1

〉
,

for suitably defined boundary states.

There are various pieces of the previous tentative equation that fit nicely. First ,

the closed-string inverse propagator is

∆cl =
α′

2

(
gµνpµpν +

β2`2

4π2α′2
+M2

cl

)
, (4.2)

where gµν is the closed-string or sigma-model metric, to be distinguished from Gµν
or open-string metric. The precise relation is defined in [3]:

Gµν =

(
1

g + 2πα′B

)µν
S

, θµν = 2πα′
(

1

g + 2πα′B

)µν
A

, (4.3)

where we indicate by the subscripts S and A the symmetric and antisymmetric

part, respectively. We can take gµν = δµν in commutative directions, including the

d⊥ = D−d Dirichlet–Dirichlet directions transverse to the Dd−1 brane. On the other
hand, in the non-commutative directions, the SW scaling assigns

gµν −→ − 1

4π2α′2
(θ2)µν (4.4)

as α′ → 0, with Gµν = δµν and θµν fixed. Therefore, the inverse propagator scales like

∆cl =
1

8π2α′
[
β2`2 + (θp)2 + (2πα′)2

(
p2⊥ +M

2
cl

)]
(4.5)

and we see that our familiar combination β2`2+(θp)2 scales together and dominates

over the other terms in the SW limit, since α′2M2
cl ∼ α′Nosc → 0. This is the main

evidence for the stringy origin of the winding modes. Indeed, we have Neumann

boundary conditions in the thermal circle, and therefore the closed-string cylinder

can wind in this direction. On the other hand, there can be no momentum flow
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through the Neumann directions, unless it is explicitly inserted via the open-string

vertices into the boundary states, but there is an arbitrary flow of momentum in

Dirichlet-Dirichlet directions. In the non-commutative directions, having a non-zero

B-field, there could be a momentum flow induced just by the B-field. The boundary

conditions set to zero only a linear combination of momentum and winding num-

bers. However, since we are assuming a non-compact D-brane in spatial directions,

there are no winding modes in these and thus no extra momentum flow induced by

the B-field.

If we are willing to naively neglect the nominally subleading terms in (4.5) we

can almost get (4.1) with the coupling of the χ`-fields defined through the “sum rule”

over all closed-string fields |Ψ〉 (the oscillator excitations)

|gχφ|2 −→
∑
Ψ

〈Dd−1;Vp|Ψ〉 〈Ψ|Dd−1;Vp〉 (4.6)

in the SW limit, perhaps with appropriate powers of α′ in front. According to this
picture, the low-energy χ`-fields are not some low-lying closed-string modes that

fail to decouple. In fact, the whole infinite tower of closed-string modes fails to

decouple, but the interaction with the boundary states defines an effective coupling

for the χ`-field, which represents the coherent exchange of an infinite number of

closed-string excitations. Formally, the SW limit squeezes the complete tower of

string excited states into an approximately continuous band with respect to the gap

of the winding modes
Oscillator gap

Winding gap
∼ α′

β2
−→ 0 . (4.7)

This is an interesting compromise between the general lore that the closed-string

channel should be intractable whenever the open-string channel is simple [11], and

the factual existence of the dual-channel representation in terms of the χ`-fields.

Actually, the sum rule (4.6) is too naive. The first indication that something is

missing in (4.6) is the fact that a naive attempt to associate the z⊥ degrees of freedom
with Dirichlet-Dirichlet momenta p⊥ in the D-brane codimension fails quantitatively,
because in general d⊥ 6= d⊥χ = 2 + 2N − d for a Dd−1 brane. The resolution of this
puzzle amounts to recognizing that one cannot simply neglect α′2M2

cl in the closed-

string propagator, as compared with β2`2, even in the low-energy SW limit, because

there are an infinite number of states contributing to the sum. In other words, the

truncated sum rule (4.6) is not convergent in general.

The second reason for concern lies in the definition of the low-energy effective

coupling gχφ as a proper effective vertex. In the full string-theory diagram, the

boundary states with open-string insertions have moduli (the Koba-Nielsen param-

eters) that must be integrated over. Therefore, the stringy diagram does not have

in general the structure of an ordinary tree-level exchange, since both vertices are

convoluted in an integral over Koba-Nielsen parameters. Only at the boundaries
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of the moduli space, when the string diagram degenerates into proper field-theory

diagrams, does one find standard Feynman rules. This means that the correct sum

rule replacing (4.6) must hold for the integrand over moduli space (including the

Koba-Nielsen moduli).

4.2 Open-string channel

In the remainder of this section we obtain the correct sum rule by careful consid-

eration of the general one-loop open-string diagram. This is a weighted sum over

spin structures {σ}, each one given by a path integral on the annulus, with arbitrary
vertex operator insertions on both the inner (−) and outer (+) boundaries:

A =
∑
σ

CσAσ =
∑
σ

Cσ

∫ ∞
0

dτ

2τ

∫ τ
0

[dy±]

〈∏
y±
Vφ(p

±, y±)

〉
σ

= (α′)N0 GN/2s
∑
σ

Cσ

∫ ∞
0

dτ

2τ
Z(τ)σ

∫ τ
0

[dy±] V(p±, y±, τ)σ , (4.8)

where τ is the modulus of the annulus, y± are the Koba-Nielsen parameters in each
boundary, V(p±, y±, τ) is the normalized correlator of vertex operators in the spin
structure σ, and Z(τ)σ is the normalization, i.e. the path integral without vertex

insertions. The power of Gs comes from the normalization of the vertex operators

with the open-string coupling defined in [3]

Gs = gs

[
detG

det (g + 2πα′B)

]1/2
=
(α′)

4−d
2

(2π)d−3
g2YM . (4.9)

The complete amplitude has an appropriate power of the Regge slope N0, such that
the SW limit with fixed gYM leads to the field-theoretical expression of the amplitude.

This depends on the overall dimension of the amplitude and the number of insertions.

The function V(p±, y±, τ) is a polynomial in external field polarizations, the
fermionic Green function GF and derivatives of the bosonic Green function GB on the
annulus with appropriate B-dependent boundary conditions, times the contraction

of the tachyonic part of the vertices

V(p±, y±, τ) = P(φ, p±,GF, ∂GB) ep·GB·p . (4.10)

This Green function can be parametrized completely by the open-string metric Gµν

and noncommutativity parameters θµν , except for a single constant term from the

purely bosonic component [21], which contributes to non-planar diagrams and de-

pends explicitly on the sigma model metric gµν . If we separate this contribution

from (4.10) we can write

V(p±, y±, τ) = V(p±, y±, τ) exp
[
−α

′π2

τ
gµν(pµpν)cyl

]
, (4.11)

where pcyl =
∑
p+ = −∑ p− is the total momentum circulating in the closed-string

channel. We recognize this term as the standard kinetic term in ∆cl (4.2).
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If we assume, for simplicity, that the external insertions are space-time bosons

with no thermal frequency, i.e. we have a purely static bosonic correlator, then the

world-sheet partition sum can be written directly in operator form as

Z(τ)σ =
1

VolG
Tropen Sσ e−τ ∆σ , (4.12)

where Sσ is a piece of the GSO projector, ±12 or ±12(−1)F depending on the spin
structure, ∆σ is the open-string world-sheet hamiltonian, and we have normalized by

the volume in the open-string metric Gµν . The temperature-dependent part of (4.12)

is unaffected by the B-field, as long as we keep B0i = 0. Therefore, it has the form

∆(β)σ = α
′ (p0)2 = α′4π2n2σ

β2
, (4.13)

with nσ integer in those spin structures running space-time bosons in the loop, and

half-integer in those running space-time fermions. From here we can read off the

relation between the annulus modular parameter and the low-energy Schwinger pa-

rameter of the field theory expressions in eq. (3.1) of the previous section; it is

t = α′ τ . (4.14)

For the comparison with the low-energy expression, it is useful to work with

Koba-Nielsen parameters normalized to unity, y = τ x, so that a further factor of

τN = (t/α′)N appears for a total of N insertions. Consistency of the SW low-energy
limit requires that, for an appropriate choice of N0, the field-theoretical amplitude
is obtained as

ANCFT = lim
SW
(α′)N0+

4−d
4
N gNYM ×

×
∫ ∞
0

dt tN−1
∑
σ

Cσ

∫ 1
0

[dx±]Z
(
t

α′

)
σ

V
(
p±, x±,

t

α′

)
σ

. (4.15)

The precise details of this limit in various examples of the bosonic theory at zero

temperature can be found in recent papers [8]–[11], [13]. The important feature is

that the SW limit is dominated by massless open strings (in the bosonic examples one

is forced to discard the open-string tachyon by hand). Thus, in comparing with (3.1),

we must setM = 0 and interpret the normalized Koba-Nielsen parameters x± = y±/τ
as Feynman parameters of the field-theory diagram.

On general grounds, the massless open-string dominance means that we do not

expect the closed-string channel expression to be simple, in the sense of being satu-

rated by a finite number of closed-string fields.
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4.3 The closed-string channel sum rule

Ideally, we would like to specify explicitly, in the closed-string Fock space, the bound-

ary states that appear in eq. (4.1). This is a very complicated task in general, and

can be carried out in detail only for the “vacuum” boundary states |Dd−1〉 without
open-string vertex insertions. On the other hand, we can obtain explicitly the overlap

in (4.1), by direct modular transformation of the open-string channel expression (4.8).

In order to keep track of the right normalization of winding modes, we perform

a Poisson resummation of the discrete frequency sums:

1

β

∑
nσ

e−τ∆(β) = (4πα′τ)−1/2
∑
`∈Z

e−
β2`2

4α′τ (−1)`Fσ , (4.16)

where Fσ is the space-time fermion number in the open-string channel. It is corre-

lated with the closed-string sector in the cylinder channel in such a way that F = 0

corresponds to the NS-NS sector of the Dp-brane boundary state, whereas F = 1

leads to the R-R exchange [22]. Therefore, we have found that the winding modes

of closed strings in the R-R sector are weighted by the so-called Atick-Witten phase

−(−1)` [23], the extra minus sign coming from the GSO projection, or more ele-
mentarily, from the overall minus sign of fermion loops in space-time. We recognize

in the phase (−1)`+1 the effect pointed out in eq. (3.7). Namely, fermionic loops
in the “open-string channel” lead to phases in winding modes in the “closed-string

channel”. In particular, in the supersymmetric case we also find a projection onto

odd winding numbers in the full string theory expression. The closed-string inter-

pretation also explains the “negative norm” of the tower of even χ2`-fields coming

from a fermion loop; it is just an effect of the D-brane carrying “axionic” charge with

respect to these fields.

In view of the closed-string propagator in (4.2), the appropriate modular trans-

formation to obtain exp(−τ2∆cl) is τ2 = 2π2/τ . The non-trivial piece of the over-
lap (4.1) is that of the oscillator degrees of freedom. We define

Z

(
2π2

τ2

)osc
σ

V
(
x±, p±,

2π2

τ2

)
σ

=
(τ2
π

) 2−D
2
+N

× (4.17)

×
〈
Dd−1;Vp+, x+

∣∣∣e−τ2∆osccl ∣∣∣Dd−1;Vp−, x−〉
σ
,

where

∆osccl =
α′

2
M2
cl .

Numerical constants have been absorbed in the definition of the boundary states.

The modular anomaly, depending on the total dimension where the string oscillates

(D = 10 for superstrings), is captured by looking at the case without insertions,

where there exists an explicit construction of the boundary states. Taking into
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account the factor of τ
d−1
2
2 from the integral over world-volume momenta in the

evaluation of Z(τ)σ, we find the total moduli-space measure to be

dτ2 τ
−d⊥/2
2 [dx±] . (4.18)

The factor of τ
−d⊥/2
2 can be “integrated in” by introducing explicitly the integral over

the (D − d)-dimensional transverse momenta p⊥, which replaces M2
cl → M2

cl + p
2
⊥

and then we have a standard measure for a propagator, as in (4.1). Notice that the

power of τN2 in (4.17) is crucial in obtaining (4.18), so that the only τ2-dependence

of the overlap is in the world-sheet evolution operator. We see explicitly how the

proper counting of transverse dimensions, as read-off from the powers of Schwinger

parameters, is working fine, thanks to the modular anomaly in (4.17).

Collecting all terms, we can write a closed-string channel expression for the total

amplitude in the SW limit. In order to make contact with the expressions in section 3,

we define a dual Schwinger parameter with mass squared dimension

s =
τ2

8π2α′
,

in terms of which we have

ANCFT = lim
SW

gNYM (α
′)N0+

4−d
4
N ×

×
∫ ∞
0

ds s−d⊥/2
∫ 1
0

[dx±]
∑
σ

Cσ
∑
`∈Z

e−s[β
2`2+(θp)2] U`,σ ×

×
〈
Dd−1;Vp+, x+

∣∣∣e−s(2πα′Mcl)2∣∣∣Dd−1;Vp−, x−〉
σ
(4.19)

with U`,σ the Atick-Witten phase. We can recast this expression in the form of

eq. (3.2)

ANCFT = lim
SW
WNC gNYM

∫ ∞
0

ds s−N+
d−2
2 ×

×
∑
`∈Z

e−s[β
2`2+(θp)2]

∫ 1
0

[dx±] F`(s, p±, x±) , (4.20)

up to numerical constants. This expression implies a “sum rule” for the function

F`(s, p, x):

WNCF`
(
s, p±, x±

)
= lim
SW
(α′)N0+

4−d
4
N s

2−D
2
+N ×

×
∑
σ

Cσ U`,σ
∑
Ψ

〈
Dd−1;Vp+, x+

∣∣∣Ψ〉
σ

〈
Ψ
∣∣∣e−s(2πα′MΨ)2∣∣∣Ψ〉

σ
×

×
〈
Ψ
∣∣∣Dd−1;Vp−, x−〉

σ
, (4.21)

where the sum over closed-string states |Ψ〉 runs over all oscillator degrees of freedom
of the closed strings in the bulk. In comparing (4.21) with the field-theoretical
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expression in (3.3), we must take into account the fact thatM = 0 and that (3.3) was

derived for a purely bosonic loop, hence there is no non-trivial Atick-Witten phase

in (3.3). Furthermore, (4.21) was derived under the assumption that external states

were bosonic and static, i.e. external momenta have vanishing time components.

That explains the absence of the phase exp[iβ`
∑
a xa(Q

0
a)
2] in (4.21).

We conclude this subsection with some observations on the interpretation

of (4.21):

(i) In terms of the dimensionless closed-string modulus, the SW limit in (4.21)

takes τ2 → 0. In this region of moduli space, the infinite tower of closed-string
fields contributes to the sum rule, which is by no means saturated by a few

closed-string fields. This was already obvious from the fact that the open-string

channel expression was saturated by massless open strings.

(ii) The sum rule (4.21) replaces the naive one in (4.6). One of the defects of (4.6),

the mismatch between the powers of the Schwinger parameter and the true

number of transverse dimensions of the brane, is resolved by noticing that

the sum rule includes a non-trivial power of s
D−2
2 , together with an explicit

exponential kernel, which gives back the field-theoretical measure of (3.2) in

the SW limit, and ensures the convergence of the sum over closed-string states.

In fact, since this limit takes τ2 ∼ α′s→ 0, the way to evaluate the infinite sum
over states in (4.21) is to perform a modular transformation back to the open-

string variables. In this process we get the appropriate powers of the Schwinger

parameter from the modular anomaly of the oscillator traces (Jacobi’s theta

functions).

This discussion makes also manifest the formal character of the extra “bulk

dimensions” d⊥χ = 2N +2−d of the winding fields χ`, something already made
clear by the fact that d⊥χ depends on the number of insertions in the loop. We
see that, in those models with a string-theory embedding, there is a “bulk”

codimension d⊥ = D − d, but its relation with d⊥χ is rather indirect.
(iii) Another deficiency of (4.6), the absence of Koba-Nielsen parameters, is reme-

died in (4.21). The interpretation of the full diagram in the NCFT, as a tree-

level exchange of χ`-fields, was correct provided we make a further convolution

of the vertices with Feynman parameters. We now understand this feature as

a residue of the full string picture, since Koba-Nielsen parameters map consis-

tently to Feynman parameters in the SW limit. Therefore, the χ`-field picture

of the NCFT mimics closely the structure of the closed-string channel in the

full string theory.

(iv) The sum rule (4.21) holds for the integrand of the moduli-space integral.

Therefore, it holds independently of the possible occurrence of open- or closed-
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channel tachyons in the full string theory. This is in contrast with (4.6), which

would be invalidated by open-string tachyons, and perhaps also by closed-string

tachyons. It would be very interesting to study in detail particular examples,

so as to see the interplay between the various open/closed tachyons that could

appear, including the finite-temperature Hagedorn tachyon.

(v) Our discussion is tailored to the case of thermal amplitudes. However, it is

clear that the broad features generalize to other toroidal compactifications with

various degrees of supersymmetry, and also to orbifold models, such as those

considered in ref. [12]. In particular, it would be interesting to find the general

BPS conditions for the sum rule to be saturated by a finite number of closed-

string fields.

4.4 An illustrative example

Unlike eq. (4.6), the sum rule (4.21) is valid point by point in the (s, x±) moduli
space. As a consequence, it is well defined even for tachyonic theories for which

the integrated expressions would diverge because of the contribution coming from

the moduli space boundaries. This being so, we can illustrate our sum rule (4.21)

by considering the simplest possible example and take the two-point function of

open-string tachyons on a Dd−1 brane of the D = 26 critical bosonic string theory.
In order to avoid unnecessary complications, we will consider the static amplitude

where incoming states do not carry time-components of the momenta. Thus, the

amplitude in the open-string channel can be written as [9, 10, 13]

A(p,−p)tachyon = Gs

∫ ∞
0

dτ

2τ
(4πα′τ)−d/2

[
η

(
iτ

2π

)]−24
×

×
∑
`∈Z

e−
`2β2

4α′τ e−
α′π2
τ
pµ(gµν−Gµν)pντ 2 ×

×
∫ 1
0

dx±
∣∣∣∣∣2πe−x

2
12
2τ
θ2
(
ix12τ
2π

∣∣ iτ
2π

)
θ′1
(
0
∣∣ iτ
2π

)
∣∣∣∣∣
−2

,

where we have defined x12 ≡ x+ − x−. Comparing this expression with eqs. (4.8)
and (4.10), we can read both Z(τ)osc and V(p, x±, τ), in terms of which the over-
lap (4.17) is expressed:

Z(τ)osc =

[
η

(
iτ

2π

)]−24
,

V(p±, x±, τ) = e
α′π2
τ
pµGµνpν

∣∣∣∣∣2πe−x
2
12
2τ
θ2
(
ix12τ
2π

∣∣ iτ
2π

)
θ′1
(
0
∣∣ iτ
2π

)
∣∣∣∣∣
−2

.

Switching from τ to the closed-string modular parameter τ2 = 2π
2/τ , and perform-

ing the inversion on the modular functions, we find for the partition function of
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the oscillators

Z

(
2π2

τ2

)osc
=
(τ2
π

)−12 [
η

(
iτ2

π

)]−24
,

whereas the function V(p±, x±, τ) is written

V
(
p, x±,

2π2

τ2

)
=
(τ2
π

)2
e
1
2
α′τ2pµGµνpν

∣∣∣∣∣2πθ4
(
x12| iτ2π

)
θ′1
(
0
∣∣ iτ2
π

)
∣∣∣∣∣
−2

.

Using eq. (4.17) we can now obtain the expression for the overlap, namely

〈
Dd−1;Vp+, x+

∣∣e−τ2∆osccl ∣∣Dd−1;Vp−, x−〉 = e 12 τ2
[
η

(
iτ2
π

)]−18 [
θ4

(
x12

∣∣∣∣iτ2π
)]−2

,

where we have used the on-shell condition for the external tachyons, pµG
µνpν =

1/α′ and also the relation θ′1(0|τ) = 2πη3(τ). Actually, the modular functions can
be rewritten using their product representations. Expanding the resulting infinite

products in power series of e−2τ2 , we finally arrive at

〈
Dd−1;Vp+, x+

∣∣e−τ2∆osccl ∣∣Dd−1;Vp−, x−〉 =
= e2τ2

∞∏
k=1

(
1− e−2kτ2)−20 ∣∣∣1− e−(2k−1)τ2e2πix+e−2πix−∣∣∣−4

=

∞∑
n=0

ρD(n)C
+
n (x

+) e−
1
2
α′τ2M2n C−n (x

−)∗ , (4.22)

whereM2
n =

4
α′ (n−1) is the mass of the level-n oscillator states, and ρD(n) is the level-

density of those states with non-vanishing coupling to the Dd−1 brane. Notice that,
because of the structure of the product representation for the modular functions, the

coefficient of e−2(n−1)τ2 in the series always factorizes into contributions from the two
different boundaries, C±n (x

±), weighted by the level-density, ρD(n). Comparing this
expression with the sum rule (4.21) we read-off the couplings of a level-n closed-string

state |Ψn〉 to the boundary state with an external open-string tachyon insertion〈
Dd−1;Vp+, x±

∣∣∣Ψn〉 = C±n (x±) . (4.23)

In this example we explicitly see how the coupling between |Ψn〉 and the boundary
state with a tachyon insertion is in general non vanishing for all values of n and

thus all closed-string oscillator levels run in the cylinder. As a consequence, the

effective χ`-fields cannot be seen as some undecoupled winding string state in the

SW limit, but rather as a superposition of all massive closed-string modes with

coherent couplings to the elementary quanta of the NCFT.
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5. Concluding remarks

In the present paper we have tried to identify the stringy connection of the recently

conjectured winding modes emerging in NCFTs [17]. We have seen how a thermal

loop in NCFT can be represented in a “dual-channel” picture as an infinite tower

of tree-level exchanges of some effective fields χ` with masses proportional to |β`|
(` ∈ Z) and kinetic term ∂ ◦ ∂ in the effective action. The scaling of the masses of
these fields with the length of the euclidean time suggests a winding-mode interpre-

tation for them.

In many respects these fields are similar to the ψ-fields introduced in refs. [5, 6].

It is important to notice, however, that there are a number of differences. First

of all, in the thermal case we have not just one, but an infinite tower of effective

fields replacing the thermal loop in non-planar amplitudes. As a consequence, one

is able to replace the whole thermal loop by a tree-level exchange of these fields

and not just the high energy part as in [5]. Most importantly, the χ`-fields have

non-standard Feynman rules. If the nonlocality in NCFT is just encoded in a non-

polynomial dependence of the interaction vertices on the incoming momenta, in

the perturbation theory for the effective χ`-fields the interaction vertices are con-

voluted in finite-dimensional integrals over the Feynman parameters of the original

diagram.

Actually, both features, winding-like masses and integration over the relative

moduli of the interaction vertices, strongly suggest a stringy interpretation. We have

found that such an interpretation exists in those models that can be obtained from

a D-brane theory in the presence of a constant B-field in the SW limit.4 In this

case, we found that the scaling of the masses of the χ`-fields with the length of the

thermal circle is a residue of winding closed-string states, whereas the convolution

over the vertex moduli descends from the integration over the Koba-Nielsen moduli

of the D-brane boundary states.

It is however important to notice that the “winding states” identified in [17]

have no simple interpretation in terms of individual string states that fail to de-

couple in the SW limit. On the contrary, the χ`-fields have to be considered for-

mal devices to represent a coherent coupling of an infinite number of closed-string

states. These fields have effective couplings to the ordinary fields that can be de-

rived from the elementary coupling of closed strings to D-brane boundaries via

“sum rules” involving the full tower of closed-string oscillator modes in the bulk.

This is a rather unusual picture, and it is essentially telling us that the SW limit

is not an ordinary low-energy limit in the closed-string channel, since all mas-

sive states are squeezed below the gap of the winding modes. As a consequence,

the resulting NCFTs present a degenerate version of the open/closed string dual-

4The phenomenon of UV/IR mixing is also present in non-relativistic NCFTs, for which no

obvious embedding into a string theory seems to exist [24].
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ity of the original string theory: the ordinary “open” representation of the Feyn-

man diagram in NCFT and the “closed” dual channel in terms of the winding χ`-

fields.

Acknowledgments

It is a pleasure to thank Luis Alvarez-Gaumé, Jan de Boer, Karl Landsteiner, Esper-
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