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ABSTRACT

W e show that themm alnoncom m utative eld theories adm it a version of ‘channel duality’
rem Iniscent of open/closed string duality, w here non-planar thermm al loops can be replaced
by an in nite tow er of tree-Jevel exchanges of e ective elds. Thesee ective eldsresamble

closed strings in three aspects: theirm ass gpectrum is that of closed—string w inding m odes,
their interaction vertices contain extra m oduli, and they can be regarded as propagating in
a higherdin ensional bulk’ spacetin e. In noncom m utative m odels that can be em bedded
in a D brane, we show the precise relation between the e ective w inding elds’ and closed

strings propagating o the D brane. The w inding elds represent the coherent coupling of
the In nite tow er of closed-string oscillator states. W ederive a sum rule that expresses this
e ective coupling in term s of the elem entary couplings of closed strings to the D “brane.
W e furthem ore clarify the relation between the e ective propagating din ension of the

winding elds and the true codin ension of the D Jrane.

A pril 2000



1. Introduction

Tt has been realized that noncom m utative eld theories (NCFT ) em erge as e ective
eld theories of string/M -theory com pacti cations in the presence of constant antisym —
m etric tensor eds [JIPIF]. This result has triggered a renewed interest in the study of
both perturbative BI{I1H] and nonperturbative []] aspects of noncomm utative eld the-
ories. T he stringy connection of NCFT opens up the interesting possibility of trying to
understand som e of their physical features by em bedding them in string theory. In partic—
ular a num ber of NCFT have been obtained as a low -energy lim it of open-string theories
in B - eld backgrounds BIHILJILIIEAILT]. A s a m atter of exam ple, one can try to un-
derstand the nonlocality inherent in these quantum eld theories in term s of string theory
after an appropriate low -energy lim it is taken [{].

Am ong the m ost Intriguing features of NCFT is a peculiar m ixing between infrared
and ultraviolet scales [§1]. On physical grounds it can be understood as the result of
the uncertainty principle between two noncom m uting spatial dim ensions, since probing
ultraviolet physics in one direction leads to infrared e ects in the other. A tam ore technical
level, thism ixing re ects itself in the appearances of extra polesat zerom om entum in som e
am plitudes in the 1im it w here the ultraviolet cuto is sent to in nity. T he authors of R efs.
31101 interpreted these poles as resulting from the interchange ofa new eld w ith kinetic
kemel @ @ @ (%) @ . It would be very interesting to see if there is a stringy
Interpretation for these particles.

O ne of the obvious ways of spotting stringy behavior in NCFT would be to look at
situationsw here the presence of extended ob fcts ism adem anifest, as for exam ple studying
these theories in spaces w ith nontrivial topology or at nite tem perature [[41f[3]f4]. In
Refs. []IL]] it was pointed out that the two loop themn al partition function of som e
NCFT can be cast In a way that indicates the presence of states whose energy scales w ith
the Inverse tem perature as 7 J, with ‘ som e integer num ber. This would suggest that
NCFT contains certain extended degrees of freedom that are able to wrap around the
euclidean tim e.

In this paper we will try to understand whether som e kind of w inding m odes can
be denti ed in noncom m utative them al perturbation theory, extending on the work of
]. A ctually, we shall see that the w inding m odes form ally identi ed in therm odynam ical
quantities can be associated to e ective elds w ith special propagators, m uch in the sam e
fashion asthe - edsofRefs. [{I@]. In fact, theUV /IR interpretation of these propagators
is the sam e once we realize that the tem perature acts as an ultraviolet cuto in the eld

theory.

T herefore, this raises the question of w hether the w inding elds’ could be interpreted



as ‘o brane’ closed-string m odes that survive the Seiberg{W itten (SW ) decoupling lim it.
W e nd that this expectation is not fiil lled, at least in a literal sense. In particular,
any closed-string picture am ounts to the exchange of the in nite tower of closed-string
excitations in the bul, and therefore it is not a very transparent way of describing the
dynam ics. Instead, each w inding eld describes a sort of coherent exchange of an in nite
num ber of closed-string m odes. O ne of our results is the derivation of a sum rule for
the e ective coupling of the w inding elds, In term s of the elem entary couplings of closed
strings to a D brane. In fact, the Interactions of these w nding eldsarenotspeci ed solely
In temn s of standard interaction vertices, except in very gpecial kinem atical situations.
G enerically, the vertices contain additionalm odular param eters that m ust be integrated

over.

T he paper is organized as follow s. In Secs. 2 and 3 we extend the analysis of R efs.
L7129 ]1to m ore generaldiagram s in NCFT at nite tem perature and try to cast the loop
am plitudes In a dual channel’ picture, in term s of tree-level exchanges. In Sec. 4 we will
obtain these am plitudes by studying the low energy SW lim it from string theory in order
to dentify the low -energy w inding m odes w ith undecoupled w inding strings. Finally in

Sec. 5 we w ill sum m arize our conclisions.

2. W inding m odes in noncom m utative quantum eld theory: an elem entary

exam ple

T he sim plest situation where one can form ally identify 4 inding m odes’ is that of the
tw o-Joop contribution to the free energy ina * theory. T he planardiagram is independent
of the deform ation param eter ,but a nontrivialphase (p;q)= p g enters in the
loop integral in the nonplanar caseﬂ

Z 7 :
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Fyp= g

w here we have usad the notation

Z
., , 47n? P 1X dp
p_p+ 2 ’ - 7(2)d1.
P n2z

T he ultraviolet divergences of this integral can be appropriately elin inated by renom al-
ization of the T = 0 lim it, as usual in them al eld theory [@]. In fact, the ultraviolet
structure of thisdiagram ism ilder than that of the planar counterpart, because the diver—
gence contributed by one of the loops is e ectively cuto by the noncom m utative phase

2w e w ill assum e throughout that °* = 0.
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Fig. 1: Channelduality’ in the nonplanar selfenergy diagram in * theory.

provided ( pf ( p )? is non-vanishing. This is an exam ple of the UV /IR m ixing of
31, nam ely this divergence w i1l reappear disyuised as an infrared e ectas p! 0.

In Ref. [[7]it was pointed out that one could “ntegrate out’ one of the loops and re-
place it by a statistical sum over ob fcts living a the form ally T dual tem perature 1=( T),
thus representing analogues of w inding m odes. T he essential phenom enon can be under-

stood by sim ply looking at the one-loop selfenergy tadpole diagram (Fig. 1A )

2PZ e (PA)

( /Plvp = 9 Wi (2:2)
q
Introducing a Schw ingerfparam eter representation of the propagator,
Z 1 PZ ( )
2 2 : P g
(jplwp= g dt e T T (2:3)
0 q

we can perform the gaussian integral over g. A fter a further Poisson resumm ation in the
them al frequency running in the loop we obtain
Z 1
X L2
( iPlnp = gg dss 7 e oL RIS (2:4)
2
27

w here w e have changed variables to the dual’ Schw inger param eter s = 1=4t. This form is
very convenient to perform the subtraction of the T = 0 selfenergy, since we sim ply have
to restrict the integer sum to ‘6 0.

Ford < 4, the explicit power of s 7 i the proper tin e integral can be ‘integrated
in’ into the exponent by introducing 4 d extra gaussian variables z, and we can w rite
the full non-planar loop In the follow ing suggestive form
Z . .

¥ (ipize )T

; = dz, : 25

T hat is, we have w ritten the original loop diagram in a dualchannel’ in term sofan in nite
num ber of tree—level exchanges of particles . withmomenta p,m assproportionalto j *j



and extra mom entum variables in d° = 4 d transverse dinensions (Fig. 1B). This

com plete expression renom alizes the m ass of the particle running in the second ]oopE .

Themassofthe .- elds, scaling as integerm ultiples of the them al length, is charac—
teristic of w inding m odes of closed strings. T he e ective coupling squared of these particles
to the elds in extermal legs is given by

>J>|H

4
T (‘ipize )T = 49—22 dse ® BM LT CET, (26)
0
T hus, if the original eld was m assive, the coupling to the .- eld is suppressed at high
valies of m om entum and w inding num ber /, ie. only elds w ith w inding num bers jj<
( M ) ! contribute signi cantly to the treeJevel exchange. The m ost interesting case is
that of a m assless eld theory. In this case the e ective coupling is constant and weights
all w inding num bers dem ocratically, w ith the coupling strength g = g=(2 ). Finally, if
the “- el is tachyonic, the whole expression ism eaningless, since it diverges at the s = 0
end. For thism atter this ‘channel duality’ in NCFT is raem iniscent of open/closed-string
channelduality in string theory. Sihce NCFT can be obtained in m any cases as low -energy
Iin its of open-string theories, we nd it natural that the dualchannel’, obtained through
a m odular transform ation t = 1=4s, exhibits the open-string tachyon as an ultraviolet
divergence.

Tt is m ost interesting to com pare the w inding .- elds we have de ned with the -
particles of [§1]. T he structure of the propagator show s that these elds are form ally
sim ilar

1
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242 4 p)2+z? (2:7)

h( p; z;) (piz; )i=

nam ely, they have a ‘static’ kinetic term with thekemel @ @ = ( pj fora ed non-
canonical din ension. Furthem ore, at least as long asd 4, the non-standard power of
the propagator can be understood in tem s of a free propagation in a 4 d din ensional
“ransversebulk’. The e ectivem ass j ‘Jjplaysalso the role of the inverse ultraviolet cuto

1 in the treatm ent of E ]Jand, in the absence of the explicit ultraviolet cuto , the original
ultraviolet divergence is back as an infrared divergence at p ! 0. In our expression, this
show s up as a pole in the zero-w inding sector. It is precisely this contribution that is
subtracted when renomm alizing the selfenergy by the zero-tem perature oneE . T herefore,

3 One could proceed in the standard way and perform a resum m ation of ring diagram s.

4 N otice that this procedure isdi erent from the one followed in [] w here the authors worked
w ith the tw o-loop free energy for Y NCFT bebre subtracting the zero tem perature countertem s.
In that case the ultraviolet divergence in one of the original loops partially transform s into an
infrared one after Poisson resum m ation and integration over the loop m om enta. This is just a

consequence of UV /IR m ixing.



we con m that j ‘jplays the role of a requlator.

O ne im portantdi erence betw een our treelevel exchange interactionsand the - elds
of §1@]is that our ultraviolet cuto , T , hasa physical Interpretation, and we are free from
the arbitrariness of the choice of W ilsonian cuto s. In particular we can integrate out the
com plete nonplanar loop in tem s of the in nite tower of tree exchanges of . particles.
Them anipulation is not a priori restricted to the extrem e ultraviolet part.

O ne Interesting aspect of the tree-exchange dual’ representation () is that it adm its
an iInterpretation for the planardiagram too. The only di erence in the planar case com es
from setting p = 0. T herefore, the planar themm al loop can be replaced in this case by

Z
X : Lo ().
:g ( P = OIZ? )j?
( /Plp 1 p)p= dz, 22 > :
‘60 + Z?

(28)

Now wemust work w ith the fully renom alized quantity (‘€ 0 in the w inding sum ) and
the propagator of the . particles is inserted form ally at zero noncom m utativem om entum ,
ie. wehave a sum over zero-m om entum tadpoles of the .— elds. This is also rem iniscent
of the closed—string interpretation, because closad strings have tree-devel tadpoles on D —
branes. Now we would be inclined to interpret the residue of the propagator poles as the
product of the couplings g Jvac Fig. 2).

Fig. 2: Dual channel interpretation of the therm al loop in the planar con—
tribution to the two-point finction in * noncommutative eld theory.

3. Integrating out a general loop

In the above exam ple we have seen how the e ect of a themm al tadpole loop in a
noncomm utative * theory adm its a ‘dual channel’ interpretation in tem s of a the tree-
level interchange of som e % inding’ .- eld with inverse propagator 2 + ( p¥ which
m ixes w ith the fundam ental -gquantum . Tt would be interesting to decide to what extent
this duality between them al loops and treeldevel .-exchanges is a general feature of
noncom m utative eld theory at nite tem perature, or jist a property of a particular class
of diagram s and theories.



3.1. G eneric one—lbop diagram in noncomm utative " theory

The rst case we can consider is the generalization of the exam ple studied in the
previous section, a generic oneJoop diagram with N = N, + N vertices In the non-
com m utative version of " eld theory in d din ensions (Fig. 3), where we w ill take N
vertices as “w isted’, so the am plitude w ill be nonplanar whenever N & N . Thus, the
fully am putated am plitude can be w ritten as

pZ ¥ oo % apa (@ Qa)
2 2
qa=l(q+Qa) +M

©On s

P
where Q 4 = ‘; ,piand 5 = 1 depending on whether the insertion is tw isted or not;
P2 Indicates the totalm om entum entering in the loop through the a-th insertion. U sing
Feynm an and Schw inger param eters we can w rite

P Z L2 P
AEjiipa)=g N (N 1)le 7 . =P Qe det! te W dxle & %%
) p %z °p

2
R A K da _ eaezg

2 ¢!

a XaQa)ej.pnp q;

(3:1)

[olx ] Xy 1 dxa

and p,p denotes the totalnonp]an%r Spatialm om entum entering in the loop through the

. . . N
N  “wisted’ insertions, pnp % a=1 aPa-

By integrating the loop spatialm om entum and perform ing a Poisson resum m ation
the total am plitude can be recast in temm s of the dual Schw inger param eter s = 1=(4t) in
the form

(N 1)!
Aty )= g W e
22N >
Z 1 d 2N ZX 2 42 2 (3:2)
dSS e S[ +( pnp) }FI(S, ’pl’....;pN )’
0 27

where W y¢ is the overall noncom m utative phase of the diagram

iPN
Wyec=1e 2 a-1 2P @ (3:3)



and the function F.(s; ;py) is expressed in tem s of an integral over the x* as

Z 4 P P 2 P P

SM2 dx ke 41—5 L XaQg ( aXaQa) eil axa(Q2)2ei L %¥aQa (pp):

0

.b|'__

Fi(s; )= e
(3:4)

A s in the sin pler case of the tadpole of the * theory, wheneverd < 2N + 2 we can
replace the factor sd22$2 by an integralover 2+ 2N  d extra variables, so we can nally
write the diagram in the form of a treelevel exchange of e ective elds propagating in
d? = 2N + 2 d additional bulk’din ensions,

x 2 .
f(*ipaize)
Aprisispn )= dze -7 3 (35)
, + | pnp) + z7
27 ?
w here the function f (ps;’) is given by
I 2
f(“;pa522 )= g ™Dy dsF °
iPa 722 g 22N % NC o 2 2 4 ( pnp)2+ Z% r B

(A (B)

n

Fig. 3: Channelduality for a nonplanar them al loop in noncom m utative

eld theory.

In the sam e spirit of the * tadpole one would lke to interpret the am plitude B3 asa
‘dual channel’ representation of the original loop diagram in term s of a tree-level exchange
of .-particlesw ith propagators (£.]), so the finction f (“;p. ;z. ) would be interpreted as
the product of the couplings in Fig. 3B

gy nv.y g vy £(*paize ): (36)

However, such an identi cation is rather problem atic. Unlke the case of the ¢ tadpole,
there seem s to be no unambiguous way to de ne the individual couplings g »»., and
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g, »v , , sihce their product (39) is expressed in term s of a function which does not
factorize into the contributions of the two vertices. M oreover, because of the integration
over the Feynm an param eters in Eq. (B.4), the interaction on the two vertices cannot be
disentangled, even for m assless elds. Tt is only in the tadpole case (N = 1) that the
Integration over Feynm an param eters disappears and the whole loop can be understood
as resulting from them ixing of the eld with an e ective - eld, thus generalizing the

result of the previous section to "

T herefore, even if we can form ally replace the generic themm al loop by the exchange
of an e ective .—particle, we cannot assign ordinary Feynm an rules to this eld, since
the total am plitude is expressed as a convolution of the two interaction vertices, and not
Just a product as it is the case of ordinary (and noncom m utative) quantum eld theory.
W e sum m arize this state of a airs by saying that the vertices of the .- elds have relative
m oduli that m ust be integrated over.

In principle, the .- elds introduced here could becom elona de elds,w ith standard
Feynm an rules, when considering only the behaviour of the diagram at singularities of the
Integral over Feynm an param eters. W e sugpect that this is the precise link between the

.— eldsde ned here and the - eldsof ref. [f]If].

T he appearance of m oduli in the ‘dual channel vertices’ will nd a string-theory ex—
planation in the next section. First, we shall discuss som e special instances in which the
form alism sim pli es.

3.2. Som e special cases at two loops

T he previous exam ple seam s to indicate that, although in general we can replace

nonplanar loops In NCFEFT by treedevel exchanges of an In nite tower of som e e ective

.— elds, In a generic situation the nonlocal character of this eld m akes the e ective

description not very trangparent. Here we w ill further comm ent on two exam ples w here
this e ective description is useful.

Let us rst consider noncom m utative super Yang{M ills (NCSYM ) theories at nite

tem perature. The two loop free energy density can be written for U (N ) NCSYM 4 as [14]

(g
2
d n n
F(; )=F(; =0)+GogN e : b(p)+ £ (@)
2 n 's 's .
v4 Z (3:7)
dp dg np(P) ne@E) np@) ne @) 5 opa)
+ + e
(2 N A R 's g g

where Cq. = 16;4;1 for theories with 16, 8 and 4 supercharges respectively Rq], v = D]
and nys) ()= (¢ PI 1) ! are the Bose{E instein and Ferm i{D irac distrdoution finctions.
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Tt is Interesting to notice how , for NC SYM theories, the nonplanar’ part of the tw o—-loop
free energy [the last term in (37])] factorizes into the product of two independent loop
contributions only linked through the noncom m utative phase, m uch in the sam e fashion
of * NCFT.Following Ref. [[]]we can now integrate one of these loops to try to spot
w inding states (Fig. 4). W hen d < 4 again we can Introduce 4 d extra variables z, to
w rite
Z

X z ‘+1
dg Np(@)  ne @) 5 pa 1 1+ (1)
+ e = dz»
2 @t 1y Ly (2 P T2 24 (pPH oz
25 ' (38)
1 X 1 ’
= dz.,
22'22 T2+ 12 2+ (pP+ 2z
X
— 2

Fig. 4: Dual channel description of the nonplanar therm al loop in " -like
tw o-loop nonplanar vacuum diagram .

That is,we nd a standard tower of . particles, restricted to odd w inding num bers.
From thisexpression we leam that, in general, the ferm ion loopsw illgive rise to -+ particles
w ith negative nomm foreven ‘. For the supersym m etric case, there isa cancellation w ith the
tow er com ing from thebosonic loop and we nd the progction onto odd w inding num bers.
W e shall give a string theory explanation of this phenom enon in the next section.

N otice that the factorization of the two-loop free energy into contribution of two
Independent loops is not a general property of any quantum eld theory. In particular,
or 3 NCFT the integrand of F ( ; ) does not have this property even in the m assless
case. W hat is special about NCSYM is the fact that m any of the individual diagram s
contributing to (3.]) have loops w ith two extemal nsertions, so one would need at least
one Feynm an param eter in order to form ally “integrate out’ the loop, along the lines of
the general discussion above. Yet, the com plete two—-oop diagram show s factorized form
and one can introduce e ective . particlesw ith standard Feynm an rules (apart from the
negativenom feature in the ferm ionic case).

T he reason behind this sin pli cation is two-fold. First, gauge sym m etry relates the
3 Jike diagram s to the “*-like diagram s. Second, the theory ism assless, so that the e ec—
tive coupling (2.4) is a m om entum —independent pure num ber, and thus both “-like loops

10



are com pletely disentangled from the kinem atical point of view . T herefore, this factoriza—
tion is, In principle, speci ¢ of two—loop diagram s in m assless theories whose sym m etries
can relate alldiagram s, contributing to a given physicalquantity, to *-like ones. A nother
exam ple, considered in [L7], is the m assless W ess{Zum ino m odel, where supersym m etry
plays the relevant role. In the m assless lim it the W ess{Zum ino m odel reduces itself to a
supersym m etric version of ¢ NCFT . Thus the factorization of the two-Joop free energy
ollow s from the factorization of the corresponding diagram in ¢ theory under the substi-
tution np(E) ! npE)+ ne(P). In the NCSYM case it is not supersym m etry, but rather
gauge sym m etry, the one playing the sim plifying role, because the two-loop factorization
is true already for nonsupersym m etric noncom m utative Yang{M ills theories 1.

4. W indings and closed strings
4.1. Heuristic considerations

G ven thatm any NCFT derive from open-string theory in background B — elds in the
SW I it, it is natural to associate the w inding m odes of the previous representations
to closed strings In intermm ediate states. Nam ely, the structure of (£.3) is rem iniscent of
a closed-string tree-level propagator between boundary states of a Dy 1 brane (Fig. 5).
H euristically, we expect
x B (“;piz2 )

1
; = dz, Jm D Vo — D RY ; 4:1
( iP)ne * 2. ( pRa z% I a 1:/Vp - a 1/Vp (4:1)

w hereas the planar diagram would be a low -energy Iim it of Dy 1;Vp;V o] Cllj:)d . ,for
suitably de ned boundary states.

SW Xi
5 | s, .

closed .
strings -

Fig. 5: Seberg{W itten 1l it of the nonplanar two-point function in the
closed-string channel.

T here are various pieces of the previous tentative equation that t nicely. First, the
closed-string inverse propagator is




where g is the closed—string or sigm a-m odel m etric, to be distinguished from G or
open-string m etric. T he precise relation isde ned In [FI:

(4:3)

where by the subscripts S and A we indicate the sym m etric and antisym m etric part re-
Spectively. W e can takeg = In com m utative directions, including thed, = D d
D irichlet{D irichlet directions transverse to the Dy 1 brane. On the other hand, in the
noncom m utative directions the SW scaling assigns

g ! 7za¢) (4:4)
as %! 0,withGg = and xed. T herefore, the Inverse propagator scales
1
1= 224 (pf+ TpZa+ BM 3 (4:5)

and we see that our fam iliar com bihation 24

+ ( pY scales together and dom inates over
the other term s in the SW 1 it, sihce ®M c21 N s ! 0. Thisisthem ain evidence for
the stringy origin of the w inding m odes. Indeed, we have N eum ann boundary conditions in
the themm al circle, and therefore the closed-string cylinder can w ind in this direction. On
the other hand, there cannot be m om entum ow through the N eum ann directions unless
it is explicitly inserted via the open-string vertices into the boundary states, but there is
an arbitrary ow ofm om entum in D irichlet{D irichlet directions. In the noncom m utative
directions, having a nonzero B — eld, one could have m om entum ow induced just by the
B - eld. The boundary conditions set to zero only a linear com bination of m om entum

and w iInding num bers. H owever, since we are assum ing a noncom pact D brane in spatial
directions, there are no w inding m odes in spatial directions and thus no extra m om entum

ow induced by the B — eld.

If we are w illing to naively neglect the nom inally subleading tem s in @.3) we can
aln ost get (@) with the coupling of the .- eldsde ned through the ‘sum rule’ over all
closed—string elds j i (the oscillator excitations)

X
Y f! M4 1iVpiih D 4 1iVpd (46)
in the SW 1im it, perhaps w ith appropriate powers of °in front. A ccording to this picture,
the low energy — elds are not som e low -lying closed-string m odes that fail to decouple.

In fact, thewhole in nite tow er of closed-string m odes fails to decouple, but the interaction
w ith the boundary states de nes an e ective coupling for the .- eld, which represents

12



the coherent exchange of an in nite num ber of closed—string excitations. Form ally, the SW
Iin it sgqueezes the com plete tow er of string excited states Into an approxin ately continuous
band, as com pared to the gap of the w inding m odes

O scillator G ap
W inding G ap

0
— oo (4:7)

T his is an interesting com prom ise between the general lore that the closed-string channel
should be intractable whenever the open-string channel is sin ple [[1]], and the factual
existence of the dual channel representation in termm s of the .— elds.

A ctually, the sum rule ({.§) istoonaive. The rst indication that som ething ism issing
in (4.4) is the fact that a naive attem pt to associate the z, degrees of freedom with
D irichlet{D irichlet m om enta p, in the D Jorane codin ension fails quantitatively, because
in generald, 6 d° = 2+ 2N dforaDy ; brane. The resolution of the puzzle am ounts
to recognize that one cannot sim ply neglect *M 2 in the closed-string propagator, as
com pared to 2, even i the low-energy SW lin it, because there are an in nite num ber
of states contributing to the sum . In other words, the truncated sum rule @) is not

convergent in general.

T he second reason for concem lies in the de nition of the low -energy e ective cou—
pling g as a proper e ective vertex. In the full string theory diagram , the boundary
states w ith open-string insertions have m oduli (the K oba{N ielsen param eters) that m ust
be integrated over. T herefore, the stringy diagram does not have in general the structure
of an ordinary treedevel exchange, since both vertices are convoluted in an integral over
K oba{N ielsen param eters. O nly at the boundaries of the m oduli space, when the string
diagram degenerates into proper eld theory diagram s, one nds standard Feynm an rules.
This m eans that the correct sum rule replacing (¢.4) must hold for the integrand over
m oduli space (including the K oba{N ielsen m oduli).

4.2. O pen-string channel

In the rem ainder of this section we obtain the correct sum rule by carefulconsideration
of the general one-loop open-string diagram . T his is a weighted sum over spin structures
f g, each one given by a path integral on the annulus w ith arbitrary vertex operator

Insertions on both the iInner ( ) and outer (+ ) boundaries
* +
X X 214 2 Y
A = C A = C — dy 1] vV e iy )
o 2 o . 48)
0\N N*ZX ‘o d ’ .
=(")°Gg~ C z () Ay 1V® iy 7 )i

0 2 0
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w here is the m odulus of the annulus, y are the Koba{N ielsen param eters in each
boundary,V (p ;v ; )isthenom alized correlator of vertex operators in the spin structure
,and Z () is the nomn alization, ie. the path integral w ithout vertex insertions. T he
power of G5 com es from the nomm alization of the vertex operators w ith the open-string

coupling de ned in [{]
detG 2 (=

Gg = = :
5= & det(g+ 2 ) 2 p 3

(49)

The com plete am plitude has an appropriate power of the Regge slope N, so that the
SW Im it with xed gyy leads to the eld-theoretical expression of the am plitude. This

depends on the overall din ension of the am plitude and the num ber of insertions.

Thefunction V(p ;y ; ) isapolynom ialin extemmal eld polarizations, the ferm ionic

G reen function Gy and derivatives of the bosonic G reen fiinction Gy on the annulus w ith

appropriate B -dependent boundary conditions, tin es the contraction of the tachyonic part
of the vertices

Vi ;y i )=P( jp iGr;@Cs)& ¢ & (4:10)

This G reen function can be param etrized com pletely by the open-string m etric G and
noncom m utativity param eters , except for a single constant term from the purely
bosonic com ponent [2]], which contributes to nonplanar diagram s and depends explic-
itly on the sigma modelmetric g . Ifwe separate this contribution from (4.I0) we can

w rite
0 2

Vi ;v 7 )=V iy i )exp g ©EP eyl (4:11)

P P
where p.y1 = p = p is the total m om entum circulating in the closed-string

channel. W e recognize this term as the standard kinetic tetmm In 1 (B3Q).

If we assum e, for sin plicity, that the extemal insertions are spacetin e bosons w ith
no them al frequency, i.e. we have a purely static bosonic correlator, then the world-sheet
partition sum can be w ritten directly in operator form as

1

Z( ) = Vol Tropen S e ’ (4:12)

where S isa piece of the G SO pro fctor, % or % ( 1)F depending on the spin structure,

is the open-string world-sheet ham iltonian, and we have nom alized by the volum e in
the open-string metric G . T he tem perature-dependent part of (§.14) is una ected by
the B - eld, as long aswe keep B o; = 0. T herefore, it has the form

4 2.2
() = "@y= S (413)




with n Integer in those spin structures running space-tin e bosons in the loop, and half-

Integer In those running spacetin e ferm ons. From here we can read o the relation

between the annulus m odular param eter and the low -energy Schw inger param eter of the
eld theory expressions in eg. (B.]) of the previous section; it is

t= 0 (4:14)

For the com parison w ith the low -energy expression, it is usefill to work w ith K oba({
N jelsen param eters nom alized to unity,y = x,so that a further factorof ¥ = (&= 9V
appears for a totalof N insertions. C onsistency of the SW low -energy lim it requires that,
for an appropriate choice of N ¢, the eld-theoretical am plitude is obtained as

7 . < Z .

. 14 t
Aycrr = %Jquﬂ (Ot TN g\?M att’ ! C dx T -5 V p ;x ;
0 0

t
0
(4:15)
T he precise details of this lim it In various exam ples of the bosonic theory at zero tem per-
ature can be found in recent papers [§IFI1EJIEL]ILFILI]. The in portant feature is that
the SW 1 it isdom inated by m assless open strings (in the bosonic exam ples one is forced
to discard the open-string tachyon by hand). T hus, in com paring with (8.]), we m ust set
M = 0 and interpret the nom alized K oba{N ielsen parameters x = y = as Feynm an
param eters of the eld theory diagram .

O n generalgrounds, them assless open-string dom inance m eans that we do not expect
the closed—string channel expression to be sin ple, in the sense of being saturated by a nite
num ber of closed-string elds.

4 .3. The closed-string channel sum rule

deally, we would like to specify explicitly, in the closed-string Fock space, the bound-
ary states appearing in eg. (). This is a very com plicated task In general, and can be
carried out In detail only for the “acuum ' boundary states P4 11 without open-string
vertex insertions. On the other hand, we can obtain explicitly the overlap in (.), by
direct m odular transform ation of the open-string channel expression f.9).

In order to keep track of the right nom alization of w inding m odes, we perform a
Poisson resum m ation of the discrete frequency sum s

1X X 2,2 ,
= e (=g 0 y*t= e 70 ( 1)F (4:16)

n ‘27

where F  is the space—tim e ferm on num ber in the open-string channel. Tt is correlated
w ith the closed-string sector in the cylinder channel in such a way that F = 0 corresponds
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to the NS{N S sector of the D p-brane boundary state, whereas F = 1 leads to the R {
R exchange [23]. Therefore, we have found that the w inding m odes of closed strings in
the R {R sector are weighted by the socalled A tick {W itten phase ( 1) @], the extra
m inus sign com ing from the G SO pro gction, orm ore elam entarily, from the overallm inus
sign of ferm ion loops in spacetin e. W e recognize in the phase ( 1) ! the e ect pointed
out in eg. (3§). Nam ely, ferm ionic Joops in the ‘open-string channel’ lead to phases in
w inding m odes in the ‘closed-string channel’. In particular, in the supersym m etric casewe
also nd a projction onto odd w inding num bers in the full string theory expression. T he
closed—string interpretation also explains the ‘negative nom ’of the tower ofeven ,.— elds
com ing from a fermm ion loop; it is jist an e ect of the D Jbrane carrying ‘axionic’ charge
w ith regpect to these elds.

In view of the closed-string propagator in (@.3), the appropriate m odular transform a—
tion to cbtain exp( , 1) is » = 2 ?= . The non-trivial piece of the overlp [4]) is
that of the oscillator degrees of freedom . W e de ne

22 °F _ 2 2 , 42+n D E

z — V x ;p i— = — Dy 1V sx" € 2 ¢ Dy 1;Vp ;x
2 2
(4:17)

w here 0

e S
N um erical constants have been absorbed in the de nition of the boundary states. The
m odular anom aly, depending on the totaldimn ension where the string oscillates (D = 10
for superstrings), is captured by looking at the case w ithout insertions, where an explicit
construction of the boundary states exists. Taking into account the factor of :Tl from
the integral over world-volum e m om enta in the evaluation of 2 ( ) , we nd the total
m oduli-space m easure to be

d, , ¥ P dx & (4:18)

The factor of , 4= an be ‘integrated in’ by introducing explicitly the integral over the
(D d)-din ensional transverse m om enta p; , which replacesM 2 ! M %+ p2 and then
we have a standard m easure or a propagator, as in (€.J]). N otice that the power of § in
(.17) is crucial in obtaining (@.19), so that the only ,-dependence of the overlap is in the
world-sheet evolution operator. W e see explicitly how the proper counting of transverse
din ensions, as read-0 from the powers of Schw inger param eters, is working ne thanks
to themodular anomaly In #.17).

Collecting all term s, we can write a closed-string channel expression for the total
am plitude in the SW 1Iim it. Th order to m ake contact w ith the expressions in section 3,we

de ne a dual Schw inger param eter w ith m ass squared din ension

2

ST g2 0
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In temm s ofwhich, we have
2 Z

4d =
Aycpr = Im gy, ( ONer = N dss =%  [dx ]
SW 0 0
X X D

22y + 2 M )2
C e sl (p)Z]U/; Dq 1iVy ix" e °f DDy 15V, x

‘27

E

(4:19)
with U., istheAtick{W itten phase. W e can recast this expression in the form ofeg. (3.3)

’

4 X L A
Aygcpr = Hn Wye 9y dss V' 77 e sSLP7H 0PIl gy JF.(s;p x )
sw 0 0
27
(4:220)
where W y¢ is the global noncom m utative phase of the diagram given by Eq. 83), up to
num erical constants. T his expression In plies a ‘sum rule’ for the function F. (s;p;x):

4 d 2 D
WycFi(sip 5x )=1m (" =¥ sz " ¢ U
SW

X D E D E D E
Dg 1/Vp- ;x’ e Dg 1/Vp X

(421)
w here the sum over closed-string states j i runs over all oscillator degrees of freedom of
the closed strings in the buk. In com paring (£2]) w ith the eld-theoretical expression in
B4), we must take into account thatM = 0 and (34) was derived for a purely bosonic
loop, hence there is no non—trivial A tick (W itten phase in (3.4). Furthem ore, (¢.21) was
derived under the assum ption that extemal states were bosonic and static, ie. exter-
nalm omPenta have vanishing tin e com ponents. That explains the absence of the phase
expli * _x.Q2)7%1in @2]).

W e conclude this subsection w ith som e observations on the interpretation of (@):

i) In temm s of the dim ensionless closed-string m odulus, the SW 1im it in ) takes

5 ! 0. In this region of m oduli space, the in nite tow er of closed—string elds contributes

to the sum rule, which is by no m eans saturated by a few closed-string elds. Thiswas

already obvious from the fact that the open-string channel expression was saturated by
m assless open strings.

ii) The sum rule (421)) replaces the naive one in (4.4). O ne of the defects of #.4),
the m iam atch between the powers of the Schw inger param eter and the true num ber of
transverse din ensions of the brane, is resolved by noticing that the sum rule includes a
non-trivial pow er of s , together w ith an explicit exponential kemel, w hich gives back
the eld-theoreticalm easure in () in the SW lin it, and ensures the convergence of the
sum over closed-string states. In fact, since this lim it takes s 1 0, the way to
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evaluate the In nite sum over states in (4 .21]) is to perform a m odular transform ation back
to the open-string variables. In thisprocessw e get the appropriate pow ers of the Schw inger
param eter from the m odular anom aly of the oscillator traces (Jacobi’s theta fiinctions).

T hisdiscussion m akes also m anifest the form alcharacter of the extra bulk din ensions’
d® = 2N + 2 dofthewinding elds ., som ething already clear from the fact that d°
depends on the num ber of insertions in the loop. W e see that, iIn those m odels with a
string-theory em bedding, there isa buk’ codin ension d, = D  d, but its relation w ith
d’? is rather indirect.

ii1) A nother de ciency of ({.4), the absence of K oba{N ielsen param eters, is rem edied
in @B.21). The Interpretation of the full diagram in the NCFT as a treelevel exchange
of .—elds was all right provided we m ake a further convolution of the vertices w ith
Feynm an param eters. W e now understand this feature as a residue of the full string
picture, since K ocba{N ielsen param eters m ap consistently to Feynm an param eters in the
SW Im it. T herefore, the .- el picture of the NCFT m in ics closely the structure of the
closed—string channel in the full string theory.

iv) The sum rule (4.21) holds for the integrand of them oduli-gpace integral. T herefore,
it holds independently of the possible occurrence of open-— or closed-channel tachyons in
the full string theory. This is in contrast w ith (£4), which would be invalidated by open—
string tachyons, and perhaps also by closed-string tachyons. Tt would be very interesting
to study particular exam ples in detail to see the interplay betw een the various open/closed
tachyons that could appear, including the nite tem perature H agedom tachyon.

v) O ur discussion is tailored to the case of themm al am plitudes. H owever, it is clear
that the general features generalize to other toroidalcom pacti cationsw ith variousdegrees

of supersym m etry.

4.4. An illustrative exam ple

Unlke Eq. (44), the sum rule @21) is valid point by point in the (s;x ) moduli
Space. As a consequence, it is well de ned even for tachyonic theories for which the
Integrated expressions would diverge due to the contrbution com ing from the m oduli
gpace boundaries. T his being so, we can illustrate our sum rule {@.21) by considering the
sim plest possible exam ple and take the twopoint function of open-string tachyons on a
Dg4 1 brane of the D = 26 critical bosonic string theory. In order to avoid unneccesary
com plications we w ill consider the static am plitude where incom ing states do not carry
tin e-com ponents of the m om enta. T hus, the am plitude in the open-string channel can be
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written as [QIL01EL3]

Z 24
d a4 i X 2 2 0 2
A (p; p)tachyon =Gs — (4 0 ) 2 — e 10 e p (g G p
0o 2 2
27
Z q i ixgy 4 2
2 dx 2 e 3 x7, 2 22
0 0o 1
0 1 >
where we have de ned x;, x' x . Comparing this expression w ith Egs. (4.§) and

#I0) we can read both Z ( P and V (p;x ; ), In tem s of which the overlap [417) is

expressed, »

Z( ==

N||—n-

ixqo i

_ 1.2 2
Vi jx ; )=€ % P 2 ez 2 2
1 0 -

Sw itching from to the closed-string m odular param eter , = 2 = and perform ing the
inversion on the m odular functions we nd for the partition function of the oscillators

\ 24
5 12 i,
A— = = — ;

1,
1 4 Xi12]—
. . _ G
v piX ;— — e2 2P P2 ﬁ
2 ; 0 ==

Using Eq. (@.I7]) we can now obtain the expression for the overlap, nam ely

. 18 . 2
D + 5 osc E 1 2 1 2 1 2
Da 1/Vp jx° e et Dg 1;Vp jx = e? — 4 Xi2 — ;

w here we have used the on-shell condition for the extemal tachyons,p G p = 1= and
also the relation 2(0j ) = 2 °( ). Actually, the m odular finctions can be rew ritten
using their product representations. Expanding the resulting in nite products in power

series of e ¢ ? we nally arrive at

D E
Dg 1iVpe ;X" e 2 ¢ Dg 1V, ;x
¥ . . 4
(4:22)
k=1
x + o+ 1 0,m?2
= pMm)C, x")e = 7= C, (x )
n=0
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where M f = 2 (n 1) is them ass of the leveln oscillator states, and p (n) is the level-
density of those statesw ith non-vanishing coupling to theD 4 ; brane. N otice that,because
of the structure of the product representation for the m odular functions, the coe cient of

e 2(n 1)

2 in the series alw ays factorizes into contributions from the two di erent bound-
aries, C, (x ), welghted by the leveldensity, p (n). Com paring this expression w ith the
sum rule @B .21l) weread-o the couplings ofa leveln closed-string state j , 1 to the bound-
ary state w ith an extermal open-string tachyon insertion
D E
Da 17Vp ix n =C,(x ) (4:23)

n

In this exam ple we explicitely see how the coupling between j , 1 and the boundary state
w ith a tachyon insertion is in general nonvanishing for all values of n and thus all closed-
string oscillator levels run in the cylinder. A s a consequence, the e ective .— elds cannot
be seen as som e undecoupled w inding string state in the SW 1lim it, but rather as a su-
perposition of allm assive closed-string m odes w ith coherent couplings to the elem entary
quanta ofthe NCFT .

5. Concluding rem arks

In the present paper we have tried to identify the stringy connection of the recently
con Bctured w inding m odes em erging in NCFT [L]]. W e have seen how a them al loop
In NCFT can be represented in a ‘dual channel’ picture as an in nite tower of treelevel
exchanges of som e e ective elds . with m asses proportionalto j “j (‘2 Z) and kinetic
term @ @ in the e ective action. T he scaling of them asses of these elds w ith the length
of the euclidean tim e suggests a w inding m ode interpretation for them .

In m any respects these elds are sin ilar to the - eds Introduced in Refs. [fIR]. It
is iIn portant to notice how ever that there are a num ber of di erences. First of all, in the
themm al case we have not just one, but an in nite tower of e ective elds replacing the
thermm al loop in nonplanar am plitudes. A s a consequence, one is able to replace the wholk
therm al loop by a treelevel exchange of these elds and not just the high energy part as
in [{). M ost In portantly, the .- elds have nonstandard Feynm an rules. If the nonlocality
In NCFT is jast encoded in a nonpolynom ialdependence of the interaction vertices on the
incom ing m om enta, in the perturbation theory for the e ective .— elds the interaction
vertices are convoluted in nite dim ensional integrals over the Feynm an param eters of the
origihaldiagram .

A ctually, both features, w inding-likke m asses and integration over the relative m oduli
of the interaction vertices, strongly suggest a stringy interpretation. W e have found that
such Interpretation exists in those m odels which can be obtained from a D -brane theory
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In the presence of a constant B — eld in the SW lim JIE In this case, we found that the
scaling of the m asses of the .- elds w ith the length of the them al circle is a residue of
w inding closed-string states, w hereas the convolution over the vertex m odulidescend from
the Integration over the K oba{N ielsen m oduli of the D -brane boundary states.

Tt is how ever im portant to notice that the % inding states’ identi ed in [[[7]] have no
sim ple interpretation in term s of individual string states that fail to decouple in the SW
Iim it. On the contrary, the .— elds have to be considered form al devices to represent a
coherent coupling of an in nite num ber of closed-string states. These elds have e ective
couplings to the ordinary eldsthat can be derived from the elem entary coupling of closed
strings to D ‘brane boundaries via ‘sum rules’ involving the full tower of closed-string
oscillator m odes in the bulk. T his is a rather unusual picture, and essentially is telling us
that the SW Iim it is not an ordinary low -energy lim it in the closed-string channel since
allm assive states are squeezed below the gap of the w inding m odes. A s a consequence,
the resulting NCFT present a degenerate version of the open/closed string duality of the
originalstring theory : the ordinary ‘open’representation ofthe Feynm an diagram in NCFEFT
and the losed’ dual channel in temm s of the w inding .- elds.
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> The phenom enon of UV /IR m ixing is also present in nonrelativistic noncom m utative eld

theories for which no obvious em bedding into a string theory seem s to exist ].
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