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ABSTRACT

We show that thermal noncommutative field theories admit a version of ‘channel duality’
reminiscent of open/closed string duality, where non-planar thermal loops can be replaced
by an infinite tower of tree-level exchanges of effective fields. These effective fields resemble
closed strings in three aspects: their mass spectrum is that of closed-string winding modes,
their interaction vertices contain extra moduli, and they can be regarded as propagating in
a higher-dimensional ‘bulk’ space-time. In noncommutative models that can be embedded
in a D-brane, we show the precise relation between the effective ‘winding fields’ and closed
strings propagating off the D-brane. The winding fields represent the coherent coupling of
the infinite tower of closed-string oscillator states. We derive a sum rule that expresses this
effective coupling in terms of the elementary couplings of closed strings to the D-brane.
We furthermore clarify the relation between the effective propagating dimension of the
winding fields and the true codimension of the D-brane.

April 2000
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1. Introduction

It has been realized that noncommutative field theories (NCFT) emerge as effective
field theories of string/M-theory compactifications in the presence of constant antisym-
metric tensor fields [1][2][3]. This result has triggered a renewed interest in the study of
both perturbative [4][5][6] and nonperturbative [7] aspects of noncommutative field the-
ories. The stringy connection of NCFT opens up the interesting possibility of trying to
understand some of their physical features by embedding them in string theory. In partic-
ular a number of NCFT have been obtained as a low-energy limit of open-string theories
in B-field backgrounds [8][9][10][11][12][13]. As a matter of example, one can try to un-
derstand the nonlocality inherent in these quantum field theories in terms of string theory
after an appropriate low-energy limit is taken [3].

Among the most intriguing features of NCFT is a peculiar mixing between infrared
and ultraviolet scales [5][6]. On physical grounds it can be understood as the result of
the uncertainty principle between two noncommuting spatial dimensions, since probing
ultraviolet physics in one direction leads to infrared effects in the other. At a more technical
level, this mixing reflects itself in the appearances of extra poles at zero momentum in some
amplitudes in the limit where the ultraviolet cutoff is sent to infinity. The authors of Refs.
[5][6] interpreted these poles as resulting from the interchange of a new field ψ with kinetic
kernel −∂ ◦ ∂ ≡ ∂µ(θ2)µν∂ν . It would be very interesting to see if there is a stringy
interpretation for these particles.

One of the obvious ways of spotting stringy behavior in NCFT would be to look at
situations where the presence of extended objects is made manifest, as for example studying
these theories in spaces with nontrivial topology or at finite temperature [14][15][16]. In
Refs. [17][18] it was pointed out that the two loop thermal partition function of some
NCFT can be cast in a way that indicates the presence of states whose energy scales with
the inverse temperature as |`β|, with ` some integer number. This would suggest that
NCFT contains certain extended degrees of freedom that are able to wrap around the
euclidean time.

In this paper we will try to understand whether some kind of winding modes can
be identified in noncommutative thermal perturbation theory, extending on the work of
[17]. Actually, we shall see that the winding modes formally identified in thermodynamical
quantities can be associated to effective fields with special propagators, much in the same
fashion as the ψ-fields of Refs. [5][6]. In fact, the UV/IR interpretation of these propagators
is the same once we realize that the temperature acts as an ultraviolet cutoff in the field
theory.

Therefore, this raises the question of whether the ‘winding fields’ could be interpreted
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as ‘off-brane’ closed-string modes that survive the Seiberg–Witten (SW) decoupling limit.
We find that this expectation is not fulfilled, at least in a literal sense. In particular,
any closed-string picture amounts to the exchange of the infinite tower of closed-string
excitations in the bulk, and therefore it is not a very transparent way of describing the
dynamics. Instead, each winding field describes a sort of coherent exchange of an infinite
number of closed-string modes. One of our results is the derivation of a sum rule for
the effective coupling of the winding fields, in terms of the elementary couplings of closed
strings to a D-brane. In fact, the interactions of these winding fields are not specified solely
in terms of standard interaction vertices, except in very special kinematical situations.
Generically, the vertices contain additional modular parameters that must be integrated
over.

The paper is organized as follows. In Secs. 2 and 3 we extend the analysis of Refs.
[17][18] to more general diagrams in NCFT at finite temperature and try to cast the loop
amplitudes in a ‘dual channel’ picture, in terms of tree-level exchanges. In Sec. 4 we will
obtain these amplitudes by studying the low energy SW limit from string theory in order
to identify the low-energy winding modes with undecoupled winding strings. Finally in
Sec. 5 we will summarize our conclusions.

2. Winding modes in noncommutative quantum field theory: an elementary
example

The simplest situation where one can formally identify ‘winding modes’ is that of the
two-loop contribution to the free energy in a φ4 theory. The planar diagram is independent
of the deformation parameter θµν , but a non-trivial phase θ(p, q) = pµθ

µνqν enters in the
loop integral in the non-planar case2

FNP = −g2∑∫
p

∑∫
q

eiθ(p,q)

(p2 +M2)(q2 +M2)
, (2.1)

where we have used the notation

p2 = p2 +
4π2n2

β2
,

∑∫
p

≡ 1
β

∑
n∈Z

∫
dp

(2π)d−1
.

The ultraviolet divergences of this integral can be appropriately eliminated by renormal-
ization of the T = 0 limit, as usual in thermal field theory [19]. In fact, the ultraviolet
structure of this diagram is milder than that of the planar counterpart, because the diver-
gence contributed by one of the loops is effectively cut-off by the noncommutative phase

2 We will assume throughout that θ0i = 0.
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Fig. 1: ’Channel duality’ in the nonplanar self-energy diagram in φ4 theory.

provided (θp)2 ≡ (θµνpν)2 is non-vanishing. This is an example of the UV/IR mixing of
[5], namely this divergence will reappear disguised as an infrared effect as θp→ 0.

In Ref. [17] it was pointed out that one could ‘integrate out’ one of the loops and re-
place it by a statistical sum over objects living a the formally T-dual temperature 1/(θT ),
thus representing analogues of winding modes. The essential phenomenon can be under-
stood by simply looking at the one-loop self-energy tadpole diagram (Fig. 1A)

Π(β,p)NP = −g2∑∫
q

eiθ(p,q)

q2 +M2
. (2.2)

Introducing a Schwinger-parameter representation of the propagator,

Π(β,p)NP = −g2

∫ ∞

0

dt
∑∫

q

e
−t
(

q2+M2−i
θ(p,q)

t

)
(2.3)

we can perform the gaussian integral over q. After a further Poisson resummation in the
thermal frequency running in the loop we obtain

Π(β,p)NP = − g2

4π
d
2

∫ ∞

0

ds s
d−4
2

∑
`∈Z

e−s[β2`2+(θp)2]−M2
4s , (2.4)

where we have changed variables to the ‘dual’ Schwinger parameter s = 1/4t. This form is
very convenient to perform the subtraction of the T = 0 self-energy, since we simply have
to restrict the integer sum to ` 6= 0.

For d < 4, the explicit power of s
d−4
2 in the proper time integral can be ‘integrated

in’ into the exponent by introducing 4 − d extra gaussian variables z⊥ and we can write
the full non-planar loop in the following suggestive form

Π(β,p)NP = −
∑
`∈Z

∫
dz⊥

|gφχ(`,p, z⊥)|2
β2`2 + (θp)2 + z2

⊥
. (2.5)

That is, we have written the original loop diagram in a ‘dual channel’ in terms of an infinite
number of tree-level exchanges of particles χ` with momenta θp, mass proportional to |β`|

5



and extra momentum variables in d⊥χ = 4 − d transverse dimensions (Fig. 1B). This
complete expression renormalizes the mass of the particle running in the second loop3.

The mass of the χ`-fields, scaling as integer multiples of the thermal length, is charac-
teristic of winding modes of closed strings. The effective coupling squared of these particles
to the fields in external legs is given by

|gχφ(`,p, z⊥)|2 =
g2

4π2

∫ ∞

0

ds e−s− 1
4s M2[β2`2+(θp)2+z2

⊥]. (2.6)

Thus, if the original field was massive, the coupling to the χ`-field is suppressed at high
values of momentum and winding number `, i.e. only fields with winding numbers |`| <
(βM)−1 contribute significantly to the tree-level exchange. The most interesting case is
that of a massless field theory. In this case the effective coupling is constant and weights
all winding numbers democratically, with the coupling strength gφχ = g/(2π). Finally, if
the φ4-field is tachyonic, the whole expression is meaningless, since it diverges at the s = 0
end. For this matter this ‘channel duality’ in NCFT is reminiscent of open/closed-string
channel duality in string theory. Since NCFT can be obtained in many cases as low-energy
limits of open-string theories, we find it natural that the ‘dual channel’, obtained through
a modular transformation t = 1/4s, exhibits the open-string tachyon as an ultraviolet
divergence.

It is most interesting to compare the winding χ`-fields we have defined with the ψ-
particles of [5][6]. The structure of the propagator shows that these fields are formally
similar

〈χ`(−p,−z⊥) χ`(p, z⊥)〉 =
1

β2`2 + (θp)2 + z2
⊥
, (2.7)

namely, they have a ‘static’ kinetic term with the kernel −∂ ◦ ∂ = (θp)2 for a field non-
canonical dimension. Furthermore, at least as long as d ≤ 4, the non-standard power of
the propagator can be understood in terms of a free propagation in a 4 − d dimensional
‘transverse bulk’. The effective mass |β`| plays also the role of the inverse ultraviolet cutoff
Λ−1 in the treatment of [5] and, in the absence of the explicit ultraviolet cutoff, the original
ultraviolet divergence is back as an infrared divergence at θp → 0. In our expression, this
shows up as a pole in the zero-winding sector. It is precisely this contribution that is
subtracted when renormalizing the self-energy by the zero-temperature one4. Therefore,

3 One could proceed in the standard way and perform a resummation of ring diagrams.
4 Notice that this procedure is different from the one followed in [17] where the authors worked

with the two-loop free energy for φ4 NCFT before subtracting the zero temperature counterterms.

In that case the ultraviolet divergence in one of the original loops partially transforms into an

infrared one after Poisson resummation and integration over the loop momenta. This is just a

consequence of UV/IR mixing.
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we confirm that |β`| plays the role of a regulator.

One important difference between our tree-level exchange interactions and the ψ-fields
of [5][6] is that our ultraviolet cutoff, T , has a physical interpretation, and we are free from
the arbitrariness of the choice of Wilsonian cutoffs. In particular we can integrate out the
complete non-planar loop in terms of the infinite tower of tree exchanges of χ` particles.
The manipulation is not a priori restricted to the extreme ultraviolet part.

One interesting aspect of the tree-exchange ‘dual’ representation (2.5) is that it admits
an interpretation for the planar diagram too. The only difference in the planar case comes
from setting θp = 0. Therefore, the planar thermal loop can be replaced in this case by

Π(β,p)P − Π(∞,p)P = −
∑
6̀=0

∫
dz⊥

|gχφ(`,p = 0, z⊥)|2
β2`2 + z2

⊥
. (2.8)

Now we must work with the fully renormalized quantity (` 6= 0 in the winding sum) and
the propagator of the χ` particles is inserted formally at zero noncommutative momentum,
i.e. we have a sum over zero-momentum tadpoles of the χ`-fields. This is also reminiscent
of the closed-string interpretation, because closed strings have tree-level tadpoles on D-
branes. Now we would be inclined to interpret the residue of the propagator poles as the
product of the couplings gχφφ · gχ-vac (Fig. 2).

χ

Σ
l

l

Fig. 2: Dual channel interpretation of the thermal loop in the planar con-
tribution to the two-point function in φ4 noncommutative field theory.

3. Integrating out a general loop

In the above example we have seen how the effect of a thermal tadpole loop in a
noncommutative φ4 theory admits a ‘dual channel’ interpretation in terms of a the tree-
level interchange of some ‘winding’ χ`-field with inverse propagator β2`2 + (θp)2 which
mixes with the fundamental φ-quantum. It would be interesting to decide to what extent
this duality between thermal loops and tree-level χ`-exchanges is a general feature of
noncommutative field theory at finite temperature, or just a property of a particular class
of diagrams and theories.
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3.1. Generic one-loop diagram in noncommutative φn theory

The first case we can consider is the generalization of the example studied in the
previous section, a generic one-loop diagram with N = N+ + N− vertices in the non-
commutative version of φn field theory in d dimensions (Fig. 3), where we will take N−
vertices as ‘twisted’, so the amplitude will be nonplanar whenever N± 6= N . Thus, the
fully amputated amplitude can be written as

A(p1, . . . , pN ) = g2N∑∫
q

N∏
a=1

e−
i
2 ξapaθ(q+Qa)

(q +Qa)2 +M2
δ(QN ),

where Qa =
∑a

i=1 pi and ξa = ∓1 depending on whether the insertion is twisted or not;
pa indicates the total momentum entering in the loop through the a-th insertion. Using
Feynman and Schwinger parameters we can write

A(p1, . . . , pa) = g2N(N − 1)! e−
i
2

∑
a

ξapaθQa

∫ ∞

0

dt tN−1 e−tM2
∫ 1

0

[dx] e−t
∑

a
xaQ2

a

× 1
β

∑
n∈Z

e
−t
(

4π2n2

β2 + 4πn
β

∑
a

xaQ0
a

) ∫
dq

(2π)d−1
e−t(q2+2q·

∑
a

xaQa)eipnpθq,

(3.1)
the integration measure [dx] over the Feynman parameters xa (a = 1, . . . , N) is given by

[dx] ≡ δ

(
N∑

a=1

xa − 1

)
N∏

a=1

dxa

and pnp denotes the total nonplanar spatial momentum entering in the loop through the
N− ‘twisted’ insertions, pnp ≡ −1

2

∑N
a=1 ξapa.

By integrating the loop spatial momentum and performing a Poisson resummation
the total amplitude can be recast in terms of the dual Schwinger parameter s = 1/(4t) in
the form

A(p1, . . . , pN ) = g2N (N − 1)!

22Nπ
d
2

WNC

×
∫ ∞

0

ds s
d−2N−2

2

∑
`∈Z

e−s[β2`2+(θpnp)2]F`(s; β, p1, . . . , pN ),
(3.2)

where WNC is the overall noncommutative phase of the diagram

WNC = e−
i
2

∑N

a=1
ξapa·θQa (3.3)
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and the function F`(s; β, pa) is expressed in terms of an integral over the xa as

F`(s; β, pa) = e−
1
4s M2

∫ 1

0

[dx]e−
1
4s

[∑
a

xaQ2
a−(
∑

a
xaQa)2]

eiβ`
∑

a
xa(Q0

a)2ei
∑

a
xaQa·(θpnp).

(3.4)

As in the simpler case of the tadpole of the φ4 theory, whenever d < 2N + 2 we can
replace the factor s

d−2N−2
2 by an integral over 2+2N −d extra variables, so we can finally

write the diagram in the form of a tree-level exchange of effective fields propagating in
d⊥χ = 2N + 2 − d additional ‘bulk’ dimensions,

A(p1, . . . , pN ) =
∑
`∈Z

∫
dz⊥

f(`, pa, z⊥)
`2β2 + (θpnp)2 + z2

⊥
(3.5)

where the function f(pa, `) is given by

f(`, pa, z⊥) = g2N (N − 1)!

22Nπ
d
2

WNC

∫ ∞

0

ds F`

[
s

`2β2 + (θpnp)2 + z2
⊥

; β, pa

]
.

(Β)

p
N

p
1

p
2

p
3

p
5

p
4

(Α)

Σ
l

χ l

Fig. 3: Channel duality for a nonplanar thermal loop in φn noncommutative
field theory.

In the same spirit of the φ4 tadpole one would like to interpret the amplitude (3.5) as a
‘dual channel’ representation of the original loop diagram in terms of a tree-level exchange
of χ`-particles with propagators (2.7), so the function f(`, pa, z⊥) would be interpreted as
the product of the couplings in Fig. 3B

g(φnN+)χ g(φnN−)χ ∼ f(`, pa, z⊥). (3.6)

However, such an identification is rather problematic. Unlike the case of the φ4 tadpole,
there seems to be no unambiguous way to define the individual couplings g(φnN+)χ and
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g(φnN−)χ, since their product (3.6) is expressed in terms of a function which does not
factorize into the contributions of the two vertices. Moreover, because of the integration
over the Feynman parameters in Eq. (3.4), the interaction on the two vertices cannot be
disentangled, even for massless fields. It is only in the tadpole case (N = 1) that the
integration over Feynman parameters disappears and the whole loop can be understood
as resulting from the mixing of the field φ with an effective χ-field, thus generalizing the
result of the previous section to φn.

Therefore, even if we can formally replace the generic thermal loop by the exchange
of an effective χ`-particle, we cannot assign ordinary Feynman rules to this field, since
the total amplitude is expressed as a convolution of the two interaction vertices, and not
just a product as it is the case of ordinary (and noncommutative) quantum field theory.
We summarize this state of affairs by saying that the vertices of the χ`-fields have relative
moduli that must be integrated over.

In principle, the χ`-fields introduced here could become bona fide fields, with standard
Feynman rules, when considering only the behaviour of the diagram at singularities of the
integral over Feynman parameters. We suspect that this is the precise link between the
χ`-fields defined here and the ψ-fields of ref. [5][6].

The appearance of moduli in the ‘dual channel vertices’ will find a string-theory ex-
planation in the next section. First, we shall discuss some special instances in which the
formalism simplifies.

3.2. Some special cases at two loops

The previous example seems to indicate that, although in general we can replace
nonplanar loops in NCFT by tree-level exchanges of an infinite tower of some effective
χ`-fields, in a generic situation the nonlocal character of this field makes the effective
description not very transparent. Here we will further comment on two examples where
this effective description is useful.

Let us first consider noncommutative super Yang–Mills (NCSYM) theories at finite
temperature. The two loop free energy density can be written for U(N) NCSYMd as [16]

F(β, θ) =F(β, θ = 0) + Csc g
2N

{∫
dp

(2π)d−1

[
nb(p)
ωp

+
nf (p)
ωp

]2

−
∫

dp
(2π)d−1

∫
dq

(2π)d−1

[
nb(p)
ωp

+
nf (p)
ωp

] [
nb(q)
ωq

+
nf (q)
ωq

]
eiθ(p,q)

}
,

(3.7)

where Csc = 16, 4, 1 for theories with 16, 8 and 4 supercharges respectively [20], ωp = |p|
and nb(f)(p) = (eβ|p|∓1)−1 are the Bose–Einstein and Fermi–Dirac distribution functions.
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It is interesting to notice how, for NCSYM theories, the ‘nonplanar’ part of the two-loop
free energy [the last term in (3.7)] factorizes into the product of two independent loop
contributions only linked through the noncommutative phase, much in the same fashion
of φ4 NCFT. Following Ref. [17] we can now integrate one of these loops to try to spot
winding states (Fig. 4). When d < 4 again we can introduce 4 − d extra variables z⊥ to
write∫

dq
(2π)d−1

[
nb(q)
ωq

+
nf (q)
ωq

]
eiθ(p,q) =

1
(2π)2

∑
`∈Z

∫
dz⊥

1 + (−1)`+1

`2β2 + (θp)2 + z2
⊥

=
1

2π2

∑
`∈Z

∫
dz⊥

1
(2`+ 1)2β2 + (θp)2 + z2

⊥

(3.8)

χ l

l
Σ

Fig. 4: Dual channel description of the nonplanar thermal loop in φn-like
two-loop nonplanar vacuum diagram.

That is, we find a standard tower of χ` particles, restricted to odd winding numbers.
From this expression we learn that, in general, the fermion loops will give rise to χ` particles
with negative norm for even `. For the supersymmetric case, there is a cancellation with the
tower coming from the bosonic loop and we find the projection onto odd winding numbers.
We shall give a string theory explanation of this phenomenon in the next section.

Notice that the factorization of the two-loop free energy into contribution of two
independent loops is not a general property of any quantum field theory. In particular,
for φ3 NCFT the integrand of F(β, θ) does not have this property even in the massless
case. What is special about NCSYM is the fact that many of the individual diagrams
contributing to (3.7) have loops with two external insertions, so one would need at least
one Feynman parameter in order to formally ‘integrate out’ the loop, along the lines of
the general discussion above. Yet, the complete two-loop diagram shows factorized form
and one can introduce effective χ` particles with standard Feynman rules (apart from the
negative-norm feature in the fermionic case).

The reason behind this simplification is two-fold. First, gauge symmetry relates the
φ3-like diagrams to the φ4-like diagrams. Second, the theory is massless, so that the effec-
tive coupling (2.6) is a momentum-independent pure number, and thus both φ4-like loops
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are completely disentangled from the kinematical point of view. Therefore, this factoriza-
tion is, in principle, specific of two-loop diagrams in massless theories whose symmetries
can relate all diagrams, contributing to a given physical quantity, to φ4-like ones. Another
example, considered in [17], is the massless Wess–Zumino model, where supersymmetry
plays the relevant role. In the massless limit the Wess–Zumino model reduces itself to a
supersymmetric version of φ4 NCFT. Thus the factorization of the two-loop free energy
follows from the factorization of the corresponding diagram in φ4 theory under the substi-
tution nb(p) → nb(p) + nf (p). In the NCSYM case it is not supersymmetry, but rather
gauge symmetry, the one playing the simplifying role, because the two-loop factorization
is true already for nonsupersymmetric noncommutative Yang–Mills theories [16].

4. Windings and closed strings

4.1. Heuristic considerations

Given that many NCFT derive from open-string theory in background B-fields in the
SW limit, it is natural to associate the winding modes of the previous representations
to closed strings in intermediate states. Namely, the structure of (2.5) is reminiscent of
a closed-string tree-level propagator between boundary states of a Dd−1 brane (Fig. 5).
Heuristically, we expect

Π(β, p)NP = −
∑

`

∫
dz⊥

|gχ(`, p, z⊥)|2
β2`2 + (θp)2 + z2

⊥
∼ lim

SW

〈
Dd−1;Vp

∣∣∣ 1
∆cl

∣∣∣ Dd−1;Vp

〉
, (4.1)

whereas the planar diagram would be a low-energy limit of
〈
Dd−1;Vp, V−p|∆−1

cl |Dd−1

〉
, for

suitably defined boundary states.

SWΣ
closed
strings

χ l

Σ
l

Fig. 5: Seiberg–Witten limit of the nonplanar two-point function in the
closed-string channel.

There are various pieces of the previous tentative equation that fit nicely. First, the
closed-string inverse propagator is

∆cl =
α′

2

(
gµνpµpν +

β2`2

4π2α′2 +M2
cl

)
(4.2)
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where gµν is the closed-string or sigma-model metric, to be distinguished from Gµν or
open-string metric. The precise relation is defined in [3]:

Gµν =
(

1
g + 2πα′B

)µν

S

, θµν = 2πα′
(

1
g + 2πα′B

)µν

A

(4.3)

where by the subscripts S and A we indicate the symmetric and antisymmetric part re-
spectively. We can take gµν = δµν in commutative directions, including the d⊥ = D − d

Dirichlet–Dirichlet directions transverse to the Dd−1 brane. On the other hand, in the
noncommutative directions the SW scaling assigns

gµν → − 1
4π2α′2 (θ2)µν (4.4)

as α′ → 0, with Gµν = δµν and θµν fixed. Therefore, the inverse propagator scales

∆cl =
1

8π2α′
[
β2`2 + (θp)2 + α′2p2

⊥ + α′2M2
cl

]
(4.5)

and we see that our familiar combination β2`2 + (θp)2 scales together and dominates over
the other terms in the SW limit, since α′2M2

cl ∼ α′Nosc → 0. This is the main evidence for
the stringy origin of the winding modes. Indeed, we have Neumann boundary conditions in
the thermal circle, and therefore the closed-string cylinder can wind in this direction. On
the other hand, there cannot be momentum flow through the Neumann directions unless
it is explicitly inserted via the open-string vertices into the boundary states, but there is
an arbitrary flow of momentum in Dirichlet–Dirichlet directions. In the noncommutative
directions, having a nonzero B-field, one could have momentum flow induced just by the
B-field. The boundary conditions set to zero only a linear combination of momentum
and winding numbers. However, since we are assuming a noncompact D-brane in spatial
directions, there are no winding modes in spatial directions and thus no extra momentum
flow induced by the B-field.

If we are willing to naively neglect the nominally subleading terms in (4.5) we can
almost get (4.1) with the coupling of the χ`-fields defined through the ‘sum rule’ over all
closed-string fields |Ψ〉 (the oscillator excitations)

|gχφ|2 →
∑
Ψ

〈Dd−1;Vp|Ψ〉 〈Ψ|Dd−1;Vp〉 (4.6)

in the SW limit, perhaps with appropriate powers of α′ in front. According to this picture,
the low-energy χ`-fields are not some low-lying closed-string modes that fail to decouple.
In fact, the whole infinite tower of closed-string modes fails to decouple, but the interaction
with the boundary states defines an effective coupling for the χ`-field, which represents

13



the coherent exchange of an infinite number of closed-string excitations. Formally, the SW
limit squeezes the complete tower of string excited states into an approximately continuous
band, as compared to the gap of the winding modes

Oscillator Gap
Winding Gap

∼ α′

β2
→ 0. (4.7)

This is an interesting compromise between the general lore that the closed-string channel
should be intractable whenever the open-string channel is simple [11], and the factual
existence of the dual channel representation in terms of the χ`-fields.

Actually, the sum rule (4.6) is too naive. The first indication that something is missing
in (4.6) is the fact that a naive attempt to associate the z⊥ degrees of freedom with
Dirichlet–Dirichlet momenta p⊥ in the D-brane codimension fails quantitatively, because
in general d⊥ 6= d⊥χ = 2 + 2N − d for a Dd−1 brane. The resolution of the puzzle amounts
to recognize that one cannot simply neglect α′2M2

cl in the closed-string propagator, as
compared to β2`2, even in the low-energy SW limit, because there are an infinite number
of states contributing to the sum. In other words, the truncated sum rule (4.6) is not
convergent in general.

The second reason for concern lies in the definition of the low-energy effective cou-
pling gχφ as a proper effective vertex. In the full string theory diagram, the boundary
states with open-string insertions have moduli (the Koba–Nielsen parameters) that must
be integrated over. Therefore, the stringy diagram does not have in general the structure
of an ordinary tree-level exchange, since both vertices are convoluted in an integral over
Koba–Nielsen parameters. Only at the boundaries of the moduli space, when the string
diagram degenerates into proper field theory diagrams, one finds standard Feynman rules.
This means that the correct sum rule replacing (4.6) must hold for the integrand over
moduli space (including the Koba–Nielsen moduli).

4.2. Open-string channel

In the remainder of this section we obtain the correct sum rule by careful consideration
of the general one-loop open-string diagram. This is a weighted sum over spin structures
{σ}, each one given by a path integral on the annulus with arbitrary vertex operator
insertions on both the inner (−) and outer (+) boundaries

A =
∑

σ

CσAσ =
∑

σ

Cσ

∫ ∞

0

dτ

2τ

∫ τ

0

[dy±]

〈∏
y±

Vφ(p±, y±)

〉
σ

=(α′)N0 GN/2
s

∑
σ

Cσ

∫ ∞

0

dτ

2τ
Z(τ)σ

∫ τ

0

[dy±] V(p±, y±, τ)σ,

(4.8)
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where τ is the modulus of the annulus, y± are the Koba–Nielsen parameters in each
boundary, V(p±, y±, τ) is the normalized correlator of vertex operators in the spin structure
σ, and Z(τ)σ is the normalization, i.e. the path integral without vertex insertions. The
power of Gs comes from the normalization of the vertex operators with the open-string
coupling defined in [3]

Gs = gs

[
detG

det (g + 2πα′B)

] 1
2

=
(α′)

4−d
2

(2π)d−3
g2
YM. (4.9)

The complete amplitude has an appropriate power of the Regge slope N0 so that the
SW limit with fixed gYM leads to the field-theoretical expression of the amplitude. This
depends on the overall dimension of the amplitude and the number of insertions.

The function V(p±, y±, τ) is a polynomial in external field polarizations, the fermionic
Green function GF and derivatives of the bosonic Green function GB on the annulus with
appropriate B-dependent boundary conditions, times the contraction of the tachyonic part
of the vertices

V(p±, y±, τ) = P(φ, p±,GF, ∂GB) ep·GB·p. (4.10)

This Green function can be parametrized completely by the open-string metric Gµν and
noncommutativity parameters θµν , except for a single constant term from the purely
bosonic component [21], which contributes to nonplanar diagrams and depends explic-
itly on the sigma model metric gµν . If we separate this contribution from (4.10) we can
write

V(p±, y±, τ) = V(p±, y±, τ) exp
[
−α

′π2

τ
gµν(pµpν)cyl

]
(4.11)

where pcyl =
∑
p+ = −∑ p− is the total momentum circulating in the closed-string

channel. We recognize this term as the standard kinetic term in ∆cl (4.2).

If we assume, for simplicity, that the external insertions are space-time bosons with
no thermal frequency, i.e. we have a purely static bosonic correlator, then the world-sheet
partition sum can be written directly in operator form as

Z(τ)σ =
1

VolG
Tropen Sσ e

−τ ∆σ , (4.12)

where Sσ is a piece of the GSO projector, ±1
2 or ±1

2(−1)F depending on the spin structure,
∆σ is the open-string world-sheet hamiltonian, and we have normalized by the volume in
the open-string metric Gµν . The temperature-dependent part of (4.12) is unaffected by
the B-field, as long as we keep B0i = 0. Therefore, it has the form

∆(β)σ = α′ (p0)2 = α′ 4π
2n2

σ

β2
, (4.13)
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with nσ integer in those spin structures running space-time bosons in the loop, and half-
integer in those running space-time fermions. From here we can read off the relation
between the annulus modular parameter and the low-energy Schwinger parameter of the
field theory expressions in eq. (3.1) of the previous section; it is

t = α′ τ. (4.14)

For the comparison with the low-energy expression, it is useful to work with Koba–
Nielsen parameters normalized to unity, y = τ x, so that a further factor of τN = (t/α′)N

appears for a total of N insertions. Consistency of the SW low-energy limit requires that,
for an appropriate choice of N0, the field-theoretical amplitude is obtained as

ANCFT = lim
SW

(α′)N0+
4−d
4 N gN

YM

∫ ∞

0

dt tN−1
∑

σ

Cσ

∫ 1

0

[dx±]Z
(
t

α′

)
σ

V
(
p±, x±,

t

α′

)
σ

.

(4.15)
The precise details of this limit in various examples of the bosonic theory at zero temper-
ature can be found in recent papers [8][9][10][11][12][13]. The important feature is that
the SW limit is dominated by massless open strings (in the bosonic examples one is forced
to discard the open-string tachyon by hand). Thus, in comparing with (3.1), we must set
M = 0 and interpret the normalized Koba–Nielsen parameters x± = y±/τ as Feynman
parameters of the field theory diagram.

On general grounds, the massless open-string dominance means that we do not expect
the closed-string channel expression to be simple, in the sense of being saturated by a finite
number of closed-string fields.

4.3. The closed-string channel sum rule

Ideally, we would like to specify explicitly, in the closed-string Fock space, the bound-
ary states appearing in eq. (4.1). This is a very complicated task in general, and can be
carried out in detail only for the ‘vacuum’ boundary states |Dd−1〉 without open-string
vertex insertions. On the other hand, we can obtain explicitly the overlap in (4.1), by
direct modular transformation of the open-string channel expression (4.8).

In order to keep track of the right normalization of winding modes, we perform a
Poisson resummation of the discrete frequency sums

1
β

∑
nσ

e−τ∆(β) = (4πα′τ)−1/2
∑
`∈Z

e−
β2`2

4α′τ (−1)`Fσ (4.16)

where Fσ is the space-time fermion number in the open-string channel. It is correlated
with the closed-string sector in the cylinder channel in such a way that F = 0 corresponds
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to the NS–NS sector of the Dp-brane boundary state, whereas F = 1 leads to the R–
R exchange [22]. Therefore, we have found that the winding modes of closed strings in
the R–R sector are weighted by the so-called Atick–Witten phase −(−1)` [23], the extra
minus sign coming from the GSO projection, or more elementarily, from the overall minus
sign of fermion loops in space-time. We recognize in the phase (−1)`+1 the effect pointed
out in eq. (3.8). Namely, fermionic loops in the ‘open-string channel’ lead to phases in
winding modes in the ‘closed-string channel’. In particular, in the supersymmetric case we
also find a projection onto odd winding numbers in the full string theory expression. The
closed-string interpretation also explains the ‘negative norm’ of the tower of even χ2`-fields
coming from a fermion loop; it is just an effect of the D-brane carrying ‘axionic’ charge
with respect to these fields.

In view of the closed-string propagator in (4.2), the appropriate modular transforma-
tion to obtain exp(−τ2 ∆cl) is τ2 = 2π2/τ . The non-trivial piece of the overlap (4.1) is
that of the oscillator degrees of freedom. We define

Z

(
2π2

τ2

)osc

σ

V
(
x±, p±,

2π2

τ2

)
σ

=
(τ2
π

) 2−D
2 +N 〈

Dd−1;Vp+ , x+
∣∣∣e−τ2∆

osc
cl

∣∣∣Dd−1;Vp− , x−
〉

σ

(4.17)
where

∆osc
cl =

α′

2
M2

cl.

Numerical constants have been absorbed in the definition of the boundary states. The
modular anomaly, depending on the total dimension where the string oscillates (D = 10
for superstrings), is captured by looking at the case without insertions, where an explicit

construction of the boundary states exists. Taking into account the factor of τ
d−1
2

2 from
the integral over world-volume momenta in the evaluation of Z(τ)σ, we find the total
moduli-space measure to be

dτ2 τ
−d⊥/2
2 [dx±]. (4.18)

The factor of τ−d⊥/2
2 can be ‘integrated in’ by introducing explicitly the integral over the

(D − d)-dimensional transverse momenta p⊥, which replaces M2
cl → M2

cl + p2
⊥ and then

we have a standard measure for a propagator, as in (4.1). Notice that the power of τN
2 in

(4.17) is crucial in obtaining (4.18), so that the only τ2-dependence of the overlap is in the
world-sheet evolution operator. We see explicitly how the proper counting of transverse
dimensions, as read-off from the powers of Schwinger parameters, is working fine thanks
to the modular anomaly in (4.17).

Collecting all terms, we can write a closed-string channel expression for the total
amplitude in the SW limit. In order to make contact with the expressions in section 3, we
define a dual Schwinger parameter with mass squared dimension

s =
τ2

8π2α′
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in terms of which, we have

ANCFT = lim
SW

gN
YM (α′)N0+

4−d
4 N

∫ ∞

0

ds s−d⊥/2

∫ 1

0

[dx±]

×
∑

σ

Cσ

∑
`∈Z

e−s[β2`2+(θp)2] U`,σ

〈
Dd−1;Vp+ , x+

∣∣∣e−s(2πα′Mcl)
2
∣∣∣Dd−1;Vp− , x−

〉
σ

(4.19)
with U`,σ is the Atick–Witten phase. We can recast this expression in the form of eq. (3.2)

ANCFT = lim
SW

WNC gN
YM

∫ ∞

0

ds s−N+ d−2
2

∑
`∈Z

e−s[β2`2+(θp)2]

∫ 1

0

[dx±] F`(s, p±, x±)

(4.20)
where WNC is the global noncommutative phase of the diagram given by Eq. (3.3), up to
numerical constants. This expression implies a ‘sum rule’ for the function F`(s, p, x):

WNCF`(s, p±, x±) = lim
SW

(α′)N0+
4−d
4 N s

2−D
2 +N

∑
σ

Cσ U`,σ

×
∑
Ψ

〈
Dd−1;Vp+ , x+

∣∣∣Ψ〉
σ

〈
Ψ
∣∣∣e−s(2πα′MΨ)2

∣∣∣Ψ〉
σ

〈
Ψ
∣∣∣Dd−1;Vp− , x−

〉
σ

(4.21)
where the sum over closed-string states |Ψ〉 runs over all oscillator degrees of freedom of
the closed strings in the bulk. In comparing (4.21) with the field-theoretical expression in
(3.4), we must take into account that M = 0 and (3.4) was derived for a purely bosonic
loop, hence there is no non-trivial Atick–Witten phase in (3.4). Furthermore, (4.21) was
derived under the assumption that external states were bosonic and static, i.e. exter-
nal momenta have vanishing time components. That explains the absence of the phase
exp[iβ`

∑
a xa(Q0

a)2] in (4.21).

We conclude this subsection with some observations on the interpretation of (4.21):

i) In terms of the dimensionless closed-string modulus, the SW limit in (4.21) takes
τ2 → 0. In this region of moduli space, the infinite tower of closed-string fields contributes
to the sum rule, which is by no means saturated by a few closed-string fields. This was
already obvious from the fact that the open-string channel expression was saturated by
massless open strings.

ii) The sum rule (4.21) replaces the naive one in (4.6). One of the defects of (4.6),
the mismatch between the powers of the Schwinger parameter and the true number of
transverse dimensions of the brane, is resolved by noticing that the sum rule includes a
non-trivial power of s

D−2
2 , together with an explicit exponential kernel, which gives back

the field-theoretical measure in (3.2) in the SW limit, and ensures the convergence of the
sum over closed-string states. In fact, since this limit takes τ2 ∼ α′s → 0, the way to
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evaluate the infinite sum over states in (4.21) is to perform a modular transformation back
to the open-string variables. In this process we get the appropriate powers of the Schwinger
parameter from the modular anomaly of the oscillator traces (Jacobi’s theta functions).

This discussion makes also manifest the formal character of the extra ‘bulk dimensions’
d⊥χ = 2N + 2 − d of the winding fields χ`, something already clear from the fact that d⊥χ
depends on the number of insertions in the loop. We see that, in those models with a
string-theory embedding, there is a ‘bulk’ codimension d⊥ = D − d, but its relation with
d⊥χ is rather indirect.

iii) Another deficiency of (4.6), the absence of Koba–Nielsen parameters, is remedied
in (4.21). The interpretation of the full diagram in the NCFT as a tree-level exchange
of χ`-fields was all right provided we make a further convolution of the vertices with
Feynman parameters. We now understand this feature as a residue of the full string
picture, since Koba–Nielsen parameters map consistently to Feynman parameters in the
SW limit. Therefore, the χ`-field picture of the NCFT mimics closely the structure of the
closed-string channel in the full string theory.

iv) The sum rule (4.21) holds for the integrand of the moduli-space integral. Therefore,
it holds independently of the possible occurrence of open- or closed-channel tachyons in
the full string theory. This is in contrast with (4.6), which would be invalidated by open-
string tachyons, and perhaps also by closed-string tachyons. It would be very interesting
to study particular examples in detail to see the interplay between the various open/closed
tachyons that could appear, including the finite temperature Hagedorn tachyon.

v) Our discussion is tailored to the case of thermal amplitudes. However, it is clear
that the general features generalize to other toroidal compactifications with various degrees
of supersymmetry.

4.4. An illustrative example

Unlike Eq. (4.6), the sum rule (4.21) is valid point by point in the (s, x±) moduli
space. As a consequence, it is well defined even for tachyonic theories for which the
integrated expressions would diverge due to the contribution coming from the moduli
space boundaries. This being so, we can illustrate our sum rule (4.21) by considering the
simplest possible example and take the two-point function of open-string tachyons on a
Dd−1 brane of the D = 26 critical bosonic string theory. In order to avoid unneccesary
complications we will consider the static amplitude where incoming states do not carry
time-components of the momenta. Thus, the amplitude in the open-string channel can be
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written as [9][10][13]

A(p,−p)tachyon =Gs

∫ ∞

0

dτ

2τ
(4πα′τ)−

d
2

[
η

(
iτ

2π

)]−24∑
`∈Z

e−
`2β2

4α′τ e−
α′π2

τ pµ(gµν−Gµν )pν

× τ2

∫ 1

0

dx±
∣∣∣∣∣2πe− 1

2 x2
12
θ2
(

ix12τ
2π

∣∣ iτ
2π

)
θ′1
(
0
∣∣ iτ
2π

)
∣∣∣∣∣
−2

where we have defined x12 ≡ x+ − x−. Comparing this expression with Eqs. (4.8) and
(4.10) we can read both Z(τ)osc and V(p, x±, τ), in terms of which the overlap (4.17) is
expressed,

Z(τ)osc =
[
η

(
iτ

2π

)]−24

,

V(p±, x±, τ) = e
α′π2

τ pµGµνpν

∣∣∣∣∣2πe− 1
2 x2

12
θ2
(

ix12τ
2π

∣∣ iτ
2π

)
θ′1
(
0
∣∣ iτ
2π

)
∣∣∣∣∣
−2

.

Switching from τ to the closed-string modular parameter τ2 = 2π2/τ and performing the
inversion on the modular functions we find for the partition function of the oscillators

Z

(
2π2

τ2

)osc

=
(τ2
π

)−12
[
η

(
iτ2
π

)]−24

,

whereas the function V(p±, x±, τ) is written

V
(
p, x±,

2π2

τ2

)
=
(τ2
π

)2

e
1
2 α′τ2pµGµνpν

∣∣∣∣∣2π θ4
(
x12| iτ2

π

)
θ′1
(
0
∣∣ iτ2

π

)
∣∣∣∣∣
−2

.

Using Eq. (4.17) we can now obtain the expression for the overlap, namely

〈
Dd−1;Vp+ , x+

∣∣∣e−τ2∆
osc
cl

∣∣∣Dd−1;Vp− , x−
〉

= e
1
2 τ2

[
η

(
iτ2
π

)]−18 [
θ4

(
x12

∣∣∣∣ iτ2π
)]−2

,

where we have used the on-shell condition for the external tachyons, pµG
µνpν = 1/α′ and

also the relation θ′1(0|τ) = 2πη3(τ). Actually, the modular functions can be rewritten
using their product representations. Expanding the resulting infinite products in power
series of e−2τ2 we finally arrive at〈

Dd−1;Vp+ , x+
∣∣∣e−τ2∆osc

cl

∣∣∣Dd−1;Vp− , x−
〉

= e2τ2

∞∏
k=1

(1 − e−2kτ2)−20
∣∣∣1 − e−(2k−1)τ2e2πix+

e−2πix−∣∣∣−4

=
∞∑

n=0

ρD(n)C+
n (x+) e−

1
2 α′τ2M2

n C−
n (x−)∗.

(4.22)
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where M2
n = 4

α′ (n− 1) is the mass of the level-n oscillator states, and ρD(n) is the level-
density of those states with non-vanishing coupling to the Dd−1 brane. Notice that, because
of the structure of the product representation for the modular functions, the coefficient of
e−2(n−1)τ2 in the series always factorizes into contributions from the two different bound-
aries, C±

n (x±), weighted by the level-density, ρD(n). Comparing this expression with the
sum rule (4.21) we read-off the couplings of a level-n closed-string state |Ψn〉 to the bound-
ary state with an external open-string tachyon insertion〈

Dd−1;Vp+ , x±
∣∣∣Ψn

〉
= C±

n (x±). (4.23)

In this example we explicitely see how the coupling between |Ψn〉 and the boundary state
with a tachyon insertion is in general nonvanishing for all values of n and thus all closed-
string oscillator levels run in the cylinder. As a consequence, the effective χ`-fields cannot
be seen as some undecoupled winding string state in the SW limit, but rather as a su-
perposition of all massive closed-string modes with coherent couplings to the elementary
quanta of the NCFT.

5. Concluding remarks

In the present paper we have tried to identify the stringy connection of the recently
conjectured winding modes emerging in NCFT [17]. We have seen how a thermal loop
in NCFT can be represented in a ‘dual channel’ picture as an infinite tower of tree-level
exchanges of some effective fields χ` with masses proportional to |β`| (` ∈ Z) and kinetic
term ∂ ◦ ∂ in the effective action. The scaling of the masses of these fields with the length
of the euclidean time suggests a winding mode interpretation for them.

In many respects these fields are similar to the ψ-fields introduced in Refs. [5][6]. It
is important to notice however that there are a number of differences. First of all, in the
thermal case we have not just one, but an infinite tower of effective fields replacing the
thermal loop in nonplanar amplitudes. As a consequence, one is able to replace the whole
thermal loop by a tree-level exchange of these fields and not just the high energy part as
in [5]. Most importantly, the χ`-fields have nonstandard Feynman rules. If the nonlocality
in NCFT is just encoded in a nonpolynomial dependence of the interaction vertices on the
incoming momenta, in the perturbation theory for the effective χ`-fields the interaction
vertices are convoluted in finite dimensional integrals over the Feynman parameters of the
original diagram.

Actually, both features, winding-like masses and integration over the relative moduli
of the interaction vertices, strongly suggest a stringy interpretation. We have found that
such interpretation exists in those models which can be obtained from a D-brane theory
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in the presence of a constant B-field in the SW limit5. In this case, we found that the
scaling of the masses of the χ`-fields with the length of the thermal circle is a residue of
winding closed-string states, whereas the convolution over the vertex moduli descend from
the integration over the Koba–Nielsen moduli of the D-brane boundary states.

It is however important to notice that the ‘winding states’ identified in [17] have no
simple interpretation in terms of individual string states that fail to decouple in the SW
limit. On the contrary, the χ`-fields have to be considered formal devices to represent a
coherent coupling of an infinite number of closed-string states. These fields have effective
couplings to the ordinary fields that can be derived from the elementary coupling of closed
strings to D-brane boundaries via ‘sum rules’ involving the full tower of closed-string
oscillator modes in the bulk. This is a rather unusual picture, and essentially is telling us
that the SW limit is not an ordinary low-energy limit in the closed-string channel since
all massive states are squeezed below the gap of the winding modes. As a consequence,
the resulting NCFT present a degenerate version of the open/closed string duality of the
original string theory: the ordinary ‘open’ representation of the Feynman diagram in NCFT
and the ‘closed’ dual channel in terms of the winding χ`-fields.
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