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1. INTRODUCTION

The top quark, when it was finally discovered at Fermilab in 1995 [1, 2, 3], completed the three-
generation structure of the Standard Model (SM) and opened up the new field of top quark physics.
Viewed as just another SM quark, the top quark appears to be a rather uninteresting species. Produced
predominantly, in hadron-hadron collisions, through strong interactions, it decays rapidly without form-
ing hadrons, and almost exclusively through the single ntedd/5. The relevant CKM couplindy, is

already determined by the (three-generation) unitarity of the CKM matrix. Rare decays and CP violation
are unmeasurably small in the SM.

Yet the top quark is distinguished by its large mass, about 35 times larger than the mass of the
next heavy quark, and intriguingly close to the scale of electroweak (EW) symmetry breaking. This
unique property raises a number of interesting questions. Is the top quark mass generated by the Higgs
mechanism as the SM predicts and is its mass related to the top-Higgs-Yukawa coupling? Or does it play
an even more fundamental role in the EW symmetry breaking mechanism? If there are new particles
lighter than the top quark, does the top quark decay into them? Could non-SM physics first manifest
itself in non-standard couplings of the top quark which show up as anomalies in top quark production
and decays? Top quark physics tries to answer these questions.

Several properties of the top quark have already been examined at the Tevatron. These include
studies of the kinematical properties of top production [4], the measurements of the top mass [5, 6], of the
top production cross-section [7, 8], the reconstructiort giirs in the fully hadronic final states [9, 10],
the study ofr decays of the top quark [11], the reconstruction of hadronic decays ®tbeson from
top decays [12], the search for flavour changing neutral current decays [13], the measurement of the
W helicity in top decays [14], and bounds eihspin correlations [15]. Most of these measurements are
limited by the small sample of top quarks collected at the Tevatron up to now. The LHC is, in comparison,
a top factory, producing about 8 millian pairs per experiment per year at low luminosity (10*idyear),
and another few million (anti-)tops in EW single (anti-)top quark production. We therefore expect that
top quark properties can be examined with significant precision at the LHC. Entirely new measurements
can be contemplated on the basis of the large available statistics.

In this chapter we summarize the top physics potential of the LHC experiments. An important
aspect of this chapter is to document SM model properties of the top quark against which anomalous
behaviour has to be compared. In each section (with the exception of the one devoted to anomalous
couplings) we begin by summarizing SM expectations and review the current theoretical status on a
particular topic. This is followed by a detailed description of experimental analysis strategies in the
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context of the ATLAS and CMS experiments. Particular emphasis is given to new simulations carried
out in the course of this workshop. In detail, the outline of this chapter is as follows:

In Section 2. we summarizeM precision calculationsf thetop quark mass relationand of the
total top quark width We then recall the importance of the top quark mass in EW precision measure-
ments. We discuss, in particular, the role of EW precision measurements under the assumption that a SM
Higgs boson has been discovered.

Section 3. deals with th& production processexpectations for and measurements of the total
cross section, the transverse momentum @nidvariant mass distribution are discussed. A separate
subsection is devoted to EW radiative correctiongttproduction, and to radiative corrections in the
Minimal Supersymmetric SM (MSSM).

The prospects for an accurdigp quark mass measuremeate detailed in Section 4. Next to
“standard” measurements in the lepton+jets and di-lepton channels, two mass measurements are dis-
cussed that make use of the large number of top quarks available at the LHC: the selection of top quarks
with large transverse momentum in the lepton+jets channel and the measuremény aorrelations
in t—¢.J /v X decays. This decay mode appears to be particularly promising and the systematic uncer-
tainties are analyzed in considerable detail.

Single top quark productiothrough EW interactions provides the only known way to directly
measure the CKM matrix elememf; at hadron colliders. It also probes the nature of the top quark
charged current. In Section 5. the SM expectations for the three basic single top production mechanisms
and their detection are documented, including the possibility to measure the high degree of polarisation
in the SM.

The issue of top quark spin is pursued in Section 6. Here we summarize expectatisps on
correlations intt production the construction of observables sensitive to such correlations and the results
of a simulation study of di-lepton angular correlations sensitive to spin correlations. Possible non-SM
CP violating couplings of the top quark can be revealed through anomalous spin-momentum correlations
and are also discussed here.

As mentioned above, the search &momalous (i.e. non-SM) interactioissone of the main moti-
vations for top quark physics. In Section 7. the sensitivity of the LHC experiments to the following cou-
plings is investigatedytt couplings and anomaloudtb couplings in top production, flavour-changing
neutral currents (FCNCs) in top production and decay.

Section 8. is devoted t@re top decaysThe SM expectations for radiative top decays and FCNC
decays are documented. Decay rates large enough to be of interest require physics beyond the SM.
The two Higgs Doublet Models, the MSSM and generic anomalous couplings are considered explicitly
followed by ATLAS and CMS studies on the expected sensitivity in particular decay channels.

Finally, the measurement of thep quark Yukawa coupling itt H productionis considered (Sec-
tion 9.). The SM cross sections are tabulated in the various production channels at the LHC. For the case
of a low mass Higgs boson, the results of a realistic study using a simulation of the ATLAS detector are
discussed.

The following topics are collected in the appendicésjuark tagging and the calibration of the
jet energy scale in top events; the direct measurement of the top quark spin (as opposed to that of a top
squark) and and of top quark electric charge; the total cross section for production of a fourth genera-
tion heavy quark; a compendium of Monte Carlo event generators available for top production and its
backgrounds.

The internal ATLAS and CMS notes quoted in the bibliography can be obtained from the collab-
orations’ web pages [16, 17]. Updated versions of this document, as well as a list of addenda and errata,
will be available on the web page of the LHC Workshop top working group [18].



2. TOP QUARK PROPERTIES AND ELECTROWEAK PRECISION MEASUREMENTS !

The top quark is, according to the Standard Model (SM), a spin-1/2 and ch&dermion, transform-

ing as a colour triplet under the grofd/ (3) of the strong interactions and as the weak-isospin partner

of the bottom quark. None of these quantum numbers has been directly measured so far, although a
large amount of indirect evidence supports these assignments. The analysis of EW observaBles in
decays [19] requires the existence of'a = 1/2, charge-2/3 fermion, with a mass in the range of

170 GeV, consistent with the direct Tevatron measurements. The measurement of the total cross section
at the Tevatron, and its comparison with the theoretical estimates, are consistent with the production of
a spin-1/2 and colour-triplet particle. The LHC should provide a direct measurement of the top quantum
numbers. We present the results of some studies in this direction in Appendix B.

2.1 Top quark mass and width

In addition to its quantum numbers, the two most fundamental properties of the top quark are its;mass
and widthI';, defined through the position of the single particle pale= m; —iI';/2 in the perturbative
top quark propagator. In the SM; is related to the top Yukawa coupling:

ye(n) = 224G my (14 6,()) (1)

whered, (1) accounts for radiative corrections. Besides the top quark pole mass, the topviftiankss
my(p) is often used. The definition afi, (1) including EW corrections is subtle (see the discussion in
[20]). As usually done in the literature, we define Y& mass by including only pure QCD corrections:

e (1) = my (14 Sqep (1)~ - 2

The conversion factafgcep (1) is very well known [21]. Definingn, = m. () andas = oMS () /m,
we have

4
dqcn() = 5 as+8.23660F +73.638a5 + ...
= (4.63+0.99 4 0.31 +0.117011)% = (6.057511)%. 3)

This assumes five massless flavours besides the top quark and we-t$e03475 which corresponds

to aMS(my) = 0.119 andm; = 165GeV. The error estimate translates into an absolute uncertainty

of £180MeV in m; — ™ and uses an estimate of the four-loop contribution. Note that the difference
between the two mass definitions,, — 7, is aboutl0 GeV. This means that any observable that is
supposed to measure a top quark mass with an accurdey @eV and which is known only at leading

order (LO) must come with an explanation for why higher order corrections are small when the observ-
able is expressed in terms of that top quark mass definition that it is supposed to determine accurately.
We will return to this point in Section 4.

The on-shell decay width; is less well known, but the theoretical accuraey (%) is more than
sufficient compared to the accuracy of foreseeable measurements. The decay thsolighs by far
dominant and we restrict the discussion to this decay mode. It is useful to quantify the decay width in
units of the lowest order decay width wifty;; andm,, set to zero andlVy,| set to 1:

GF’rfL:t3
Iy = = 1.76 GeV. 4
0= 2 4)
IncorporatingMyy the leading order result reads
M M
Tro(t—bW)/|Vi|> =Ty <1 -3+ 2—V6V> = 0.885T = 1.56 GeV. (5)
my my

Section coordinators: M. Beneke, G. Weiglein.



Table 1: Corrections to the top quark width (Mw = 0, lowest order) in units of o. The best estimate &f(t—bW)/|Vip|?
is obtained by adding all corrections together. Parametgrs: 0.03475, My = 80.4 GeV andm.; = 175 GeV.

My # 0 correction at lowest order, see ($)—11.5%
o correction, My, = 0 -9.5%

ag correction, My, # 0 correction +1.8%

a? correction, My, = 0[22, 23] —2.0%

o2 correction,My, # 0 correction [23] +0.1%
EW correction [24] +1.7%

The correction for non-vanishing bottom quark mass is abdu2% in units of'y. Likewise corrections

to treating thel’” boson as a stable particle are negligible. Radiative corrections are known to second
order in QCD and to first order in the EW theory. Table 1 summarises the known corrections to the
limiting case (4). Putting all effects together we obtain:

L (t—bW)/|Vip|* ~ 0.807Ty = 1.42 GeV. (6)

The top quark lifetime is small compared to the time scale for hadronisation [25]. For this reason, top-
hadron spectroscopy is not expected to be the subject of LHC measurements.

2.2 Role ofmy in EW precision physics

The EW precision observables serve as an important tool for testing the theory, as they provide an impor-
tant consistency test for every model under consideration. By comparing the EW precision data with the
predictions (incorporating quantum corrections) within the SM or its extensions, most notably the mini-
mal supersymmetric extension of the Standard Model (MSSM) [26], it is in principle possible to derive
indirect constraints on all parameters of the model. The information obtained in this way, for instance, on
the mass of the Higgs boson in the SM or on the masses of supersymmetric particles is complementary
to the information gained from the direct production of these particles.

In order to derive precise theoretical predictions, two kinds of theoretical uncertainties have to
be kept under control: the uncertainties from unknown higher-order corrections, as the predictions are
derived only up to a finite order in perturbation theory, and the parametric uncertainties caused by the
experimental errors of the input parameters. The top quark mass enters the EW precision observables as
an input parameter via quantum effects, i.e. loop corrections. As a distinctive feature, the large numerical
value of m; gives rise to sizable corrections that behave as powers,of This is in contrast to the
corrections associated with all other particles of the SM. In particular, the dependence on the mass of the
Higgs boson is only logarithmic in leading order and therefore much weaker than the dependence on
In the MSSM large corrections from SUSY particles are only possible for large splittings in the SUSY
spectrum, while the SUSY patrticles in general decouple for large masses.

The most importantn;-dependent contribution to the EW precision observables in the SM and
the MSSM enters via the universal parametgrwhich is proportional ton? [27],

»Z0) XW(0) a m?
Ap= = = No—g—s b 7
P ( My MR ), Cl6nstc, My (7)

where the limitm;,—0 has been takemy (cy) is the sin (cos) of the weak mixing angle, and (0)
andx"(0) indicate the transverse parts of the gauge-boson self-energies at zero momentum transfer.

The theoretical prediction fak/yy is obtained from the relation between the vector-boson masses



and the Fermi constant,
M?2 TQ
M3 |1-=X) = 1+ Ar), (8)
v ( M%) V2GE (

where the quantity\r [28] is derived from muon decay and contains the radiative corrections. At one-
2

loop order,Ar can be written ad\r = Ao — %Ap + (A7), whereA« contains the large logarithmic
w

contributions from the light fermions, and the non-leading terms are collectehij,;.
The leptonic effective weak mixing angle is determined from the effective couplings of the neu-

1/2
tral current at the Z-boson resonance to charged Ieptﬁﬁﬁg, = (\/§GFM§) / [9v Y. — gAY Y5)s

according to
: 1 Re(gv))
2 plept -~ (1=
sin” 0 g 4( Re(ga) ) 9)
lept

In sin® 6" the leadingn;-dependent contributions enter viain? 6/ = —(c2,s2,)/(c%, — %) Ap.

The precision observablédy;, andsin? Hi‘g’t are currently known with experimental accuracies of

0.05% and0.07%, respectively [19]. The accuracy My, will be further improved at the LHC by about

a factor of three (see the EW chapter of this Yellow Report). Besides the universal coresgtitivere is

also a non-universal correction proportionahtg in the Zbb coupling, which however is less accurately
measured experimentally comparedMg, andsin? 9};5? The strong dependence of the SM radiative
corrections to the precision observables on the input value,ohade it possible to predict the value of

m; from the precision measurements prior to its actual experimental discovery, and the predicted value
turned out to be in remarkable agreement with the experimental result [5, 6].

Within the MSSM, the mass of the lightest CP-even Higgs bosap, is a further observable
whose theoretical prediction strongly depends»an While in the SM the Higgs-boson mass is a free
parametermny, is calculable from the other SUSY parameters in the MSSM and is bounded to be lighter
thanM; at the tree level. The dominant one-loop corrections arise from the top and scalar-top sector via
terms of the formG pmy In(m; m;, /m?) [29]. As a rule of thumb, a variation ok by 1 GeV, keeping
all other parameters fixed, roughly translates into a shift of the predicted valug by 1 GeV. If the
lightest CP-even Higgs boson of the MSSM will be detected at the LHC, its mass will be measurable
with an accuracy of aboutm; = 0.2 GeV [30].

Due to the sensitive dependence of the EW precision observables on the numerical value of
a high accuracy in the input value of; is very important for stringent consistency tests of a model,
for constraints on the model's parameters (e.g. the Higgs boson mass within the SM), and for a high
sensitivity to possible effects of new physics. It should be noted that this calls not only for a high
precision in the experimental measurement of the top quark mass, but also for a detailed investigation
of how the quantity that is actually determined experimentally is related to the paramgetesed as
input in higher-order calculations. While these quantities are the same in the simplest approximation,
their relation is non-trivial in general due to higher-order contributions and hadronisation effects. A
further discussion of this problem, which can be regarded as a systematic uncertainty in the experimental
determination ofn,, is given in Section 4.

2.3 Physics gain from improvingAm, from Am¢ = 2 GeV to Amy = 1 GeV

During this workshop the question was investigated of how much information one could gain from the
EW precision observables by improving the experimental precision imnom Am; = 2 GeV, reachable
within the first year of LHC running (see Section 4.2) Ae; = 1 GeV, possibly attainable on a longer
time scale (see Section 4.6).

In order to analyse this question quantitatively, we have considered the case of the SM and the
MSSM and assumed that the Higgs boson has been found at the LHC. For the uncertainty, jrithe



Table 2: Comparison of the current theoretical uncertainty from unknown higher-order correcigns) (in Mw and
sin? Gi‘g’t with the parametric uncertainties from the errotNv, .4 andm..

Atneo | 6(Aonad) = 0.00016 | Amy =2GeV | Am; = 1 GeV

AMyy /MeV 6 3.0 12 6.1
Asin? %" x 105 | 4 5.6 6.1 3.1

hadronic contribution to the electromagnetic coupling at the st&lg we have adopted(Aay.q) =
0.00016, which corresponds to the “theory driven” analyses of [31].

Concerning the current theoretical prediction fd; andsin? Hé?t in the SM, the theoretical un-
certainty from unknown higher-order corrections has been estimated to be/&abéyt = 6 MeV and
Asin®0/%" = 4 x 1075 [32]. In Table 2 the theoretical uncertainties fofyy: andsin? 6" from un-
known higher-order corrections are compared with the parametric uncertainty from the input parameters
Aayaq andm; for Am; = 2 GeV as well agAm; = 1 GeV. The parametric uncertainties from the other
parameters, supposing that the SM Higgs boson has been found at the LHC in the currently preferred
range, are negligible compared to the uncertainties ffom,q andm;. The resulting uncertainties in
My, andsin? Hi‘g’t have been obtained using the parameterisation of the results for these quantities given
in [33]. As can be seen in the table, fanm; = 2 GeV the parametric uncertainty in; gives rise to the
largest theoretical uncertainty in both precision observables. Whik&rf%f?}jc?t the uncertainty induced
from the error inm, is comparable to the one from the errorMuwy,.4, for My, the uncertainty from
the error inm; is twice as big as the one from unknown higher-order corrections and four times as big
as the one from the error ihay,,q. A reduction of the error from\m; = 2 GeV to Am; = 1 GeV
will thus mainly improve the precision in the prediction fbfy;;. The uncertainty induced iffy, by
Am; = 1 GeV is about the same as the current uncertainty from unknown higher-order corrections.
The latter uncertainty can of course be improved by going beyond the present level in the perturbative

evaluation ofAr.

In Fig. 1 the theoretical predictions fddy, andsin? Hé?t (see [34] and references therein) are

compared with the expected accuracies for these observables at LEP2/Tevatron and at the LHC (for the
central values, the current experimental values are taken). The parametric uncertainties corresponding to
d(Aanaq) = 0.00016 andAm; = 2 GeV, Am; = 1 GeV are shown for two values of the Higgs boson
mass,my = 120 GeV andmy = 200 GeV, and the present theoretical uncertainty is also indicated
(heremy is varied within 100 Ge¥ my < 400 GeV andAm; = 5.1 GeV). The figure shows that,
assuming that the Higgs boson will be discovered at the LHC, the improved accuragyaimd My, at

the LHC will allow a stringent consistency test of the theory. A reduction of the experimental erngr in

from Am; = 2 GeV toAm; = 1 GeV leads to a sizable improvement in the accuracy of the theoretical
prediction. In view of the precision tests of the theory a further reduction of the experimental error in
My andsin? Hé‘g’t would clearly be very desirable.

While within the MSSM the improved accuracy in; and My at the LHC will have a similar
impact on the analysis of the precision observables as in the SM, the detection of the mass of the lightest
CP-even Higgs boson will provide a further stringent test of the model. The predictionfevithin
the MSSM is particularly sensitive to the parameters inttHesector, while in the region of larg&/ 4
and largetan /3 (giving rise to Higgs masses beyond the reach of LEP2) the dependence on the latter two
parameters is relatively mild. A precise measurememtgtan thus be used to constrain the parameters
in thet— sector of the MSSM.

In Fig. 2 it is assumed that the mass of the lightest scalar top quark,is known with high
precision, while the mass of the heavier scalar top quagk, and the mixing anglé; are treated as free
parameters. The Higgs boson mass is assumed to be known with an experimental pre¢iSiérn3eV
and the impact oAm; = 2 GeV andAm; = 1 GeV is shown (the theoretical uncertainty in the Higgs-
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Fig. 1: The SM prediction in thé/y, —sin? 95’;“ plane is compared with the expected experimental accuracy at LEP2/Tevatron
(AMw = 30 MeV, sin? 01P" = 1.7 x 10~*) and at the LHC A My = 15 MeV, sin? 6:°° = 1.7 x 10~*). The theoretical
uncertainties induced by(Aanaqa) = 0.00016 and Am; = 2 GeV (full line) as well asAm; = 1 GeV (dashed line) are
shown for two values of the Higgs boson massg .
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Fig. 2: Indirect constraints on the parameters of the scalar top sector of the MSSM from the measuremeat tife LHC.
The effect of the experimental errorin; is shown forAm; = 2 GeV andAm; = 1 GeV.



mass prediction from unknown higher-order contributions and the parametric uncertainties besides the
ones induced by; , 07 andm; have been neglected here). The two bands represent the vatues 6f

which are compatible with a Higgs-mass predictiomof = 120.54+0.5 GeV, where the two-loop result

of [35] has been used (the bands corresponding to smaller and larger valugsaoé related to smaller

and larger values of the off-diagonal entry in the scalar top mixing matrix, respectively). Combining the
constraints on the parameters in the scalar top sector obtained in this way with the results of the direct
search for the scalar top quarks will allow a sensitive test of the MSSM. As can be seen in the figure, a
reduction ofAm; from Am; = 2 GeV to Am; = 1 GeV will lead to a considerable reduction of the
allowed parameter space in the, —0; plane.

3. tt PRODUCTION AT THE LHC 2

The determination of the top production characteristics will be one of the first measurements to be carried
out with the large statistics available at the LHC. The large top quark mass ensures that top production
is a short-distance process, and that the perturbative expansion, given by a series in powers of the small
parametervs(m;) ~ 0.1, converges rapidly. Because of the large statistics (of the order’ abp quark

pairs produced per year), the measurements and their interpretation will be dominated by experimen-
tal and theoretical systematic errors. Statistical uncertainties will be below the percent level for most
observables. It will therefore be a severe challenge to reduce experimental and theoretical systematic
uncertainties to a comparable level. In addition to providing interesting tests of QCD, accurate studies of
the top production and decay mechanisms will be the basis for the evaluation of the intrinsic properties
of the top quark and of its EW interactions. An accurate determination of the production cross section,
for example, provides an independent indirect determination,ofAsymmetries in the rapidity distri-
butions of top and antitop quarks [36] are sensitive to the light-quark parton distribution functions of the
proton. Anomalies in the total rate would indicate the presence of non-QCD production channels, to be
confirmed by precise studies of the top quark distributi@ng. p andt¢t invariant mass spectra). These
would be distorted by the presence of anomalous couplingscbannel resonances expected in several
beyond-the-SM (BSM) scenarios. Parity-violating asymmetries (for example in the rapidity distributions

of right and left handed top quarks) are sensitive to the top EW couplings, and can be affected by the
presence of BSM processes, such as the exchange of supersymmetric particles. As already observed at
the Tevatron [5, 6], the structure of thefinal state affects the direct determinationsof. Initial and
final-state gluon radiation do in fact contribute to the amount of energy carried by the jets produced in
the decay of top quarks, and therefore need to be taken into proper account when jets are combined to
extractm;. The details of the structure of these jeagy their fragmentation function and their shapes),

will also influence the experimental determination of the jet energy scales (important for the extraction
of m;), as well as the determination of the efficiency with whiejets will be tagged (important for the
measurement of the production cross section).

It is therefore clear that an accurate understanding of the QCD dynamics is required to make full
use of the rich statistics af final states in the study of the SM properties of top quarks, as well as to
explore the presence of possible deviations from the SM. In this section we review the current state of the
art in predicting the production properties for top quark pairs (for a more detailed review of the theory of
heavy quark production, see [37]). The study of single top production will be presented in Section 5.

3.1 Tools for QCD calculations

Full next-to-leading-order (NLOQ(a?)) calculations are available for the following quantities:
1. Total cross sections [38]
2. Single-inclusiveny andy spectra [39]
3. Double-differential spectrarf,;, azimuthal correlationa ®, etc.) [40]

2Section coordinators: M.L. Mangano, D. Wackeroth, M. Cobal (ATLAS), J. Parsons (ATLAS).
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All of the above calculations are available in the form of Fortran programs [40, 41], so that kinematical
distributions can be evaluated at NLO [42] even in the presence of analysis cuts.

Theoretical progress over the last few years has led to the resummation of Sudakov-type loga-
rithms [43] which appear at all orders in the perturbative expansion for the total cross sections [44, 45].
More recently, the accuracy of these resummations has been extended to the next-to-leading logarithmic
(NLL) level [46, 47]. For a review of the theoretical aspects of Sudakov resummation, see the QCD
chapter of this report. As will be shown later, while the inclusion of these higher-order terms does not
affect significantly the total production rate, it stabilises the theoretical predictions under changes in the
renormalisation and factorisation scales, hence improving the predictive power.

Unfortunately, the results of these resummed calculations are not available in a form suitable to
implement selection cuts, as they only provide results for total cross-sections, fully integrated over all
of phase space. The formalism has been generalised to the case of one-particle inclusive distributions
in [48], although no complete numerical analyses have been performed yet.

The corrections of)(a?) to the full production and decay should include the effect of gluon
radiation off the quarks produced in the top decay. Interference effects are expected to take place between
soft gluons emitted before and after the decay, at least for gluon energies not much larger than the top
decay width. While these correlations are not expected to affect the measurement of generic distributions,
even small soft-gluon corrections can have an impact on the determination of the top mass. Matrix
elements for hard-gluon emissiontinproduction and decayp— W bW ~bg, with t and? intermediate
states) are implemented in a parton-level generator [49]. The one-gluon emission off the light quarks
from the W decays was implemented, in the soft-gluon approximation, in the parton-level calculation
of [50].

The above results refer to the production of top quarks treated as free, stable partons. Parton-
shower Monte Carlo programs are availabhERWIG [51], PYTHIA [52], ISAJET [53]) for a complete
description of the final state, including the full development of the perturbative gluon shower from both
initial and final states, the decay of the top quarks, and the hadronisation of the final-state partons. These
will be reviewed in Appendix D. Recently)(«s) matrix element corrections to the decay of the top
quark ¢—Whbg) have been included in th¢ERWIG Monte Carlo [54]. The impact of these corrections
will be reviewed in Sections 3.3 and 4.62.

3.2 Total tt production rates

In this section we collect the current theoretical predictions for cross sections and distributions, pro-
viding our best estimates of the systematic uncertainties. The theoretical uncertainties we shall consider
include renormalisationu.(;) and factorisationy() scale variations, and the choice of parton distribution
functions (PDF’s);
We shall explore the first two by varying the scales over the rangeé < p < 2up, where
W= pr = pr and
e 1o = my for the total cross sections

e 1o = /m? + p3 for single inclusive distributions
® Lo = \/m? + (p%,, + p%.;)/2 for double inclusive distributions
In the case of PDF’s, we shall consider the latest fits of the CTEQ [55] and of the MRST [56, 57] groups:

MRST (as(Mz) = 0.1175, (kr) = 0.4 GeV) (default)
MRST(g |) (as = 0.1175, (k) = 0.64 GeV)
MRST(g 1) (as = 0.1175, (kz) = 0)

MRST(as |]) (as = 0.1125, (kr) = 0.4 GeV)
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Fig. 3: tt production rates. Left: scale dependence at fixed order (NLO, dashed lines in the lower inset), and at NLO+NLL
(solid lines). Right: PDF dependence. See the text for details.

MRST(as 17) (s = 0.1225, (kr) = 0.4 GeV)
CTEQ5M (s = 0.118)
CTEQS5HJ &g = 0.118, enhanced weight for Tevatron highy jets)

CTEQ5HQ ¢s = 0.118, using the ACOT heavy flavour scheme [58].)

All our numerical results relative to the MRST sets refer to the updated fits provided in [57]. These give
total rates which are on average 5% larger than the fits in [56]. Thettopabduction cross section is
given in Fig. 3, as a function of the top mass. As a reference set of parameters, we@dopt; and

MRST. Full NLO+NLL corrections are included. The upper inset shows the dependence of the cross
section on the top mass. A fit to the distribution shows that/o ~ 5Am;/m.. As a result, a 5% mea-
surement of the total cross section is equivalent to a 1% determination ¢dpproximately 2 GeV).

As will be shown later on, 2 GeV is a rather safe estimate of the expected experimental accuracy in the
determination ofn; (1 GeV being the optimistic ultimate limit). It follows that 5% should be a minimal
goal in the overall precision for the measurement @ff). The scale uncertainty of the theoretical pre-
dictions is shown in the lower inset of Fig. 3. The dashed lines refer to the NLO scale dependence, which
is of the order of:12%. The dotted lines refer to the inclusion of the NLL corrections, according to the
results of [47]. The solid lines include the resummation of NLL effects, but assume a different structure
of yet higher order (NNLL) corrections, relative to those contained in the reference NLL results (this is
indicated by the value of thé parameter equal to 2, see [47] for the details). The scale uncertainty, after
inclusion of NLL corrections, is significantly reduced. In the most conservative case-02, we have a

+6% variation. A detailed breakdown of the NLO(a? + o) and higher-orde©(az*) contributions,

as a function of the scale and of the value of the paramétés given in Table 3. A recent study [59]

of resummation effects on the total cross section for photo- and hadro-production of quarkonium states
indicates that allowing., # u increases the scale dependence of the NLL resummed cross-sections
to almost match the scale dependence of the NLO results [60]. Preliminary results of this study also
suggest a similar increase of scale dependence in the césprotiuction, ifu, andyu are varied inde-
pendently. This dependence can however be reduced by repjagiwith 1.~ as the argument afg in

the sub-leading coefficients of the resummed exponent [61].

The PDF dependence is shown on the right hand side of Fig. 3, and given in detai} fer
175 GeV in Table 4. The current uncertainty is at the leveldf0%. Notice that the largest deviations
from the default set occur for sets using different input values @f\/). The difference between the
reference sets of the two groups (MRST and CTEQ5M) is at the level of 3%. It is interesting to explore
potential correlations between the PDF dependence of top production, and the PDF dependence of other
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Table 3: Resummation contributions to the tdtatross-sections: = 175 GeV) in pb. PDF set MRST.
NLL resummed, A=2| NLL resummed, A=0
g = pr | NLO (’)(a?) NLO+NLL (’)(a?‘) NLO+NLL

myl2 890 -7 883 —12 878
my 796 29 825 63 859
2my 705 77 782 148 853

Table 4: Totakt cross-sections: = 175 GeV) in pb. NLO+NLL (4 = 0).

| PDF | p=m/2 p=m p=2m
MRST 877 859 853
MRSTg 1 | 881 862 857
MRSTg | | 876 858 852
MRST s | | 796 781 777
MRSTag | | 964 942 934
CTEQ5M | 904 886 881
CTEQ5HJ | 905 886 881

processes induced by initial states with similar parton composition and rangeiine such example is
given by inclusive jet production. Fig. 4 shows the initial-state fraction of inclusive jet final states (with
In| < 2.5) as a function of the jefs, threshold. For values of, ~ 200 GeV, 90% of the jets come
from processes with at least one gluon in the initial state. This fraction is similar to that pregent in
production, where 90% of the rate is dugjtpcollisions. On the right side of Fig. 4 we show the double

ratios: )
[o(tt)/o(jet, Br > EP™)|ppp
[o(th)/oliet, By > BF™)]ypar

As the plot shows, there is a strong correlation between the PDF dependences of the two processes. The

correlation is maximal foE%1in ~ 200 GeV, as expected, since for this value the flavour composition of

the initial states and the range of partonic momentum fractions probed in the two production processes are

similar. In the rangd 80 < ER® < 260 GeV the PDF dependence of the ratittt) /o (jet, E, > EXin)

is reduced to a level a£1%, even for those sets for which the absolute top cross-section varies1l9y.

The jet cross-sections were calculated [62] using a sMFe: Er = u{)et. If we vary the scales faott

and jet production in a correlated walye( selectingujet/u{ft = p'*/uf), no significant scale depen-

dence is observed. There is however no a-priori guarantee that the scales should be correlated. Unless

this correlation can be proved to exist, use of the inclusive-jet cross section to normalisertiss sec-

tion will therefore leave a residual systematic uncertainty which is no smaller than the scale dependence

of the jet cross section. We do not expect this to become any smaller than the PDF dependence in the

near future.

(10)

Combining in quadrature the scale and PDF dependence of thettatalss section, we are left
with an overall 12% theoretical systematic uncertainty, corresponding to a 4 GeV uncertainty on the
determination of the top mass from the total cross section.

3.3 Kinematical properties of tt production

We start from the most inclusive quantity, the fgpspectrum. The NLO predictions are shown in Fig. 5.
Here we also explore the dependence on scale variations and on the choice of PDF. The uncertainties are
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Fig. 5: Inclusive toppr spectrum. Left: scale and PDF dependence at NLO. Right: event rates above psgiteashold.

+15% and+10%, respectively. The reconstruction of top quarks and their momenta, as well as the
determination of the reconstruction efficiencies and of the possible biases induced by the experimental
selection cuts, depend on the detailed structure of the final state. It is important to verify that inclusive
distributions as predicted by the most accurate NLO calculations are faithfully reproduced by the shower
Monte Carlo calculations, used for all experimental studies. This is done in Fig. 6, where the NLO
calculation is compared to the result of tHERWIG Monte Carlo, after a proper rescaling by an overall
constantk -factor. The bin-by-bin agreement between the two calculations is at the level of 10%, which
should be adequate for a determination of acceptances and efficiencies at the percent level.

Similar results are obtained for the invariant mass distribution of top quark pairs, shown in the
plot of Fig. 6. The scale and PDF dependence of the NLO calculation are similar to those found for the
inclusivepr spectrum, and are not reported in the figure.

Contrary to the case of inclusiye. and M,; spectra, other kinematical distributions show large
differences when comparing NLO and Monte Carlo results [42]. This is the case of distributions which
are trivial at LO, and which are sensitive to Sudakov-like effects, such as the azimuthal correlations or the
spectrum of the? pair transverse momentupy. These two distributions are shown in the two plots of
Fig. 7. Notice that the scale uncertainty at NLO is larger for these distributions than for previous inclusive
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Continuous lines correspond to the parton-level NLO calculation, for different scale choices; the plots correspond to the result
of the HERWIG Monte Carlo.

quantities. These kinematical quantities are in fact triviaDét?2) (proportional tos-functions), and

their evaluation at)(a?) is therefore not a true NLO prediction. The regigis—0 and A¢—n are
sensitive to multiple soft-gluon emission, and the differences between the NLO calculation (which only
accounts for the emission of one gluon) and the Monte Carlo prediction (which includes the multi-gluon
emission) is large. The regig#f > m, is vice-versa sensitive to the emission of individual hard gluons,

a process which is more accurately accounted for by the@tt?) matrix elements included in the
NLO calculation than by the Monte Carlo approach. Notice that the average vajifeiofjuite large,
above 50 GeV. This is reasonable, as it is of the orderofimes the average value of the hardness of
the process((M,:) ~ 540 GeV). It is found that this large transverse momentum is compensated by the
emission of a jet recoiling against the top pair, with a smaller fraction of events wherpg!themes

from emission of hard gluons from the final state top quarks. The Igfgdiscrepancy observed in

Fig. 7 should be eliminated once the matrix element corrections to top production will be incorporated
in HERWIG, along the lines of the work done for Drell-Yan production in [63].

Emission of extra jets is also expected from the evolution of the decay products of the top quarks
(b's, as well as the jets from the hadroi¢ decays). Gluon radiation off the decay products is included
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in the shower Monte Carlo calculations. In the case of the latest versiBiERWIG (v6.1) [51], the
emission of the hardest gluon from theuarks is evaluated using the exact matrix elements [54]. This
improvement, in addition to a few bug fixes, resolve the discrepancies uncovered in [49] between an
exact parton level calculation and previous versiondERWIG. The matrix-element corrections do not
alter significantly most of the inclusive jet observables. As examples, we show in Fig/A8Rland the

jet multiplicity distributions for events where bofl¥’s decay leptonically. More details can be found

in [64]. Jets are defined using tle algorithm [65], with radius parametd? = 1. As can be seen,

the impact of the exact matrix element corrections is limited, mostly because the extra-jet emission is
dominated by initial-state radiation.

The impact on quantities which more directly affect the determination of the top mass remains
to be fully evaluated. Given the large rate of high-jet emissions, their proper description will be a
fundamental ingredient in the accurate reconstruction of the top quarks from the final state jets, and in the
determination of the top quark mass. A complete analysis will only be possible once the matrix element
corrections to thet production will be incorporated in the Monte Carlos. Work in this direction is in
progress (G. Corcella and M.H. Seymour).

3.4 Non-QCD radiative corrections tott production

The production and decay of top quarks at hadron colliders is a promising environment for the detection
and study of loop induced SUSY effects: at the parton level there is a large center of masssenergy
available and owing to its large mass, the top quark strongly couples to the (virtual) Higgs bosons, a
coupling which is additionally enhanced in SUSY models. Moreover, it might turn out that SUSY loop
effects in connection with top and Higgs boson interactions less rapidly decouple than the ones to gauge
boson observables.

To fully explore the potential of precision top physics at the LHC and at the Tevatron [66] to detect,
discriminate and constrain new physics, the theoretical predictions for top quark observables need to be
calculated beyond leading order (LO) in perturbation theory. Here we will concentrate on the effects of
non-QCD radiative corrections to the production proceggestt andqg—tt, including supersymmetric
corrections. When searching for quantum signatures of new physics also the SM loop effects have to be
under control. The present SM prediction férobservables includes the QCD corrections as discussed
above and the EW one-loop contributions to the QZProduction processes [67, 68, 69]. The latter
modify the gtt(¢gg) vertex by the virtual presence of the EW gauge bosons and the SM Higgs boson.
At the parton level, the EW radiative corrections can enhance the LO cross sections by U
close to the threshol@/3 < 2m, when the SM Higgs boson is light and reduce the LO cross sections
with increasings by up to the same order of magnitude. After convoluting with the parton distribution
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functions (PDF’s), however, they only reduce the LO production cross seetjgr—tt X ) at the LHC
by a few percent [67]: up t@.5(1.8)% for the following cuts on the transverse momentpmand the
pseudo rapidity; of the top quarkpr > 100(20) GeV and|n| < 2.5.

So far, the studies of loop induced effects of BSM physicstiproduction at hadron colliders
include the following calculations:

The O(«) correctionswithin a general two Higgs doublet model (G2HDM) (=SM with two Higgs
doublets but without imposing SUSY constraints)te-tt [70, 71] andgg—tt [71]. In addition to the
contribution of thelV and Z, the gtt(qqg) vertex is modified by the virtual presence of five physical
Higgs bosons which appear in any G2HDM after spontaneous symmetry bre@king?, A°, H+.

Thus, the G2HDM predictions fart observables depend on their masses and on two mixing amles,
anda. The G2HDM radiative corrections are especially large for light Higgs bosons and for very small
(< 1) and very large values afin 5 due to the enhanced Yukawa-like couplings of the top quark to
the (virtual) Higgs bosons. Moreover, there is a possible source for large corrections due to a threshold
effect in the renormalised top quark self-energy, i.e. when~ Mg+ + m;. In [71] the s-channel

Higgs exchange diagrams in the gluon fusion subprocegs;h?, H'—tt, had been included. For

this workshop we also considered the— A°—tt contribution [72]. A study of the-channel Higgs
exchange diagrams alone, can be found in [Z8]Xand [74, 75] {° and AY). They are of particular
interest, since they can cause a peak-dip structure in the invatiamdss distribution for heavy Higgs
bosons Mo 40 > 2m, when interfered with the LO QCE production processes.

The SUSY EW O(«) corrections within the MSSM togg—tt [71, 76, 77, 78] andig—tt [71,
79]. In [71] also the squark loop contribution to the—h°, H® production process in the channel
Higgs exchange diagrams has been taken into account. The SUSY EW corrections comprise the con-
tributions of the supersymmetric Higgs sector, and the genuine SUSY contributions due to the virtual
presence of two charginog®, four neutralinosy’, two top squarksy, r and two bottom squarlisL,R.
The MSSM input parameters can be fixed in such a way thatttbbservables including MSSM loop
corrections depend on a relatively small set of parameters @i }3, M 40, m;, mp, 7, 1, Mo, where
LR mixing is considered only in the top squark sector, parametrized by the mixing @pgte; and
my, = my, denote the mass of the lighter top squark and the bottom squark, respectively. The effects
of the supersymmetric Higgs sector tend to be less pronounced than the ones of the G2HDM: since su-
persymmetry tightly correlates the parameters of the Higgs potential, the freedom to choose that set of
parameters which yield the maximum effect is rather limited. On the other hand, they can be enhanced
by the genuine SUSY contribution depending on the choice of the MSSM input parameters. The SUSY
EW corrections can become large close to the threshold for the top quark dec¢ay Y. They are
enhanced for very smalk{ 1) and very large values afn 3 and when there exists a light top squark
(mg, =~ 100 GeV).

The SUSY QCD O(«s) corrections to gg—tt [78, 80, 81, 82, 83] andg—tt [84]. So far,
there are only results available separately for ¢iie-tt (Tevatron) and thgg—tt (LHC) production
processes. The combination of both is work in progress and will be presented in [85]. The SUSY QCD
contribution describes the modification of th&(qgg) vertex and the gluon vacuum polarisation due to
the virtual presence of gluinos and squarks. Thus, additionally to the dependence on squarks masses (and
on mixing angles if LR mixing is considered) the SUSY QCD corrections introduce a sensitivity of
observables on the gluino massg. As expected, the effects are the largest the lighter the gluino and/or
the squarks. Again, there are possible enhancements due to threshold effects, for instance close to the
anomalous thresholehf = m? + m? .

The tt observables under investigation so far comprise the tétptoduction cross sectio;,
the invarianttt mass distributiondo /dM,; and parity violating asymmetried; z in the production
of left and right handed top quark pairs. At present, the numerical discussion is concentrated on the
impact of BSM quantum effects am observables imf[o) —ttX. A parton level Monte Carlo program
for pp —tt—WtW~bb—(f; f])(f}f;)bb is presently under construction [72]. This will allow a more
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Table 5: The relative corrections fp—ttX at the LHC when only including SUSY QCD one-loop corrections [84] (with
pr >20 GeV,|n| < 2.5) or only the EW one-loop corrections within the G2HDM and the MSSM [p4] & 100 GeV). For
comparison the SM prediction is also listed.

\ | SM (My =100 GeV) | G2HDM | SUSY EW | SUSY QCD|

Lo ™0 — o%l/oi° 2.5% [ <4% | <10% | <4% |

realistic study of the sensitivity of a variety of kinematical distributions to SUSY quantum signatures in
thett production processes, for instance by taking into account detector effects.

In the following we give an overview of the present status of BSM quantum effe¢tsoinserv-
ables at the LHC:

oyt ¢ In Table 5 we provide the relative corrections tgf at the LHC for different BSM physics
scenarios. They reflect the typical maximum size of the radiative corrections within the models under
consideration. As already mentioned there are possible enhancements due to threshold effects, which
can yield much larger relative corrections. However, they only arise for very specific choices of the
MSSM input parameters. The SUSY EW one-loop corrections always reduce the LO production cross
sections and range from SM values, to upxto—5% for heavy squarks and up te —20% close to
my = mg + mgo. The SUSY QCD one-loop corrections, however, can either reduce or enbgnce
The relative corrections are negative for smalj and increase with decreasing gluino and/or squark
masses. They change sign when approaching the threshold for real sparticle production and reach a
maximum atn; ~ 200 GeV of about+-2% [84]. Again, very large corrections arise in the vicinity of a
threshold for real sparticle productiom; = mg + m;, . The SUSY EW and QCD one-loop corrections,
so far, have only been combined for tiig—t¢ production process and numerical results are provided
for the Tevatrorpp collider in [78, 83]. To summarise, apart from exceptional regions in the MSSM
parameter space, it will be difficult to detect SUSY through loop contributions tdttipeoduction
rate. If light sparticles exist, they are most likely directly observed first. Then, the comparison of the
precisely measured top production rate with the MSSM predictions will test the consistency of the model
under consideration at quantum level and might yield additional information on the parameter space, for
instance constraints aan 3 and®;.

do/dM; : More promising are the distributions of kinematic variables. Here we will concen-
trate on the impact of SUSY quantum signatures on the invatitamass distribution. Results for the
effects of EW one-loop corrections within the G2HDM and the MSSMderidM,; at the LHC are
provided in [71]. So far, the impact of the SUSY QCD one-loop contributioniefiM/,; has only
been discussed for the Tevatrpp collider [81], where it turned out that they can significantly change
the normalisation and distort the shapedef/dM,;. As already mentioned, there is the possibility for
an interesting peak-dip structure due to a heavy neutral Higgs resonapge-itt within two Higgs
doublet models. The potential of the LHC for the observation of such resonances has been studied
in [74, 86]. In Section 3.5 the results of an ATLAS analysis of the observability oftj\é—tt chan-
nel for different luminosities are presented. In Fig. 9 we show preliminary results for the invariant
mass distribution tgp—tt—W W ~bb— (v.e*)(du)bb at the LHC when including MSSM EW one-
loop corrections [72]. Whe 4o > 2m; the gg— H°, A°—tt contributions can cause an excessof
events atV/,; slightly belowM 40, when the Higgs bosons are not too heavy, and a dip in the distribution
slightly aboveM,;; = M 40. For the choice of MSSM parameters used in Fig. 9 the peak vanishes for
M 40 > 400 GeV and only a deficiency of events survives which decreases rapidly for incre&sjng
These effects can be enhanced when the SUSY QCD contributions are taken into account.

Apr : Parity violating asymmetries in the distribution of left and right-handed top quark pairs
at hadron colliders directly probe the parity non-conserving parts of the non-QCD one-loop corrections
to thett production processes within the model under consideration and have been studied at the Teva-
tron [77, 82, 87, 68, 81, 83] and at the LHC [88]. In Fig. 10 we show the left-right asymmegtygigsn
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the invariant mass distribution of (longitudinally) polarised top quark paigpirts, rtr, rX, induced

by SM and MSSM EW one-loop corrections [88]. The parity violating asymmetry within the MSSM
results from the interplay of the supersymmetric Higgs sectds£) and the genuine SUSY contribu-
tions (x*, ¥°). The contribution from the charged Higgs boson can either be enhanced or diminished
depending on the values of;, and ®;. Within the G2HDM the loop-induced asymmetries are most
pronounced for a light charged Higgs boson and very small and very large valties®fAt the LHC,

the G2HDM and MSSM EW one-loop corrections induce asymmetries in the total production rate of left
and right-handed top quark pairs of up to ab®iath and3.2%, respectively, and thus can be consider-
ably larger than the SM expectation (SM2%). When the squarks are non-degenerate in mass also the
SUSY QCD one-loop corrections induce parity violating asymmetries in sttbpgoduction. So far,
there exist only studies for the Tevatron [82, 81, 83].

3.5 Measurement oftt production properties

According to the SM, the top quark decays almost exclusivelyt via Wb. The final state topology
of tt events then depends on the decay modes ofithieosons. In approximately 65.5% of events,
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both W bosons decay hadronically Vi&@ — jj, or at least onéV decays vidV — 7v. These events
are difficult to extract cleanly above the large QCD multi-jet background, and are for the most part
not considered further. Instead, the analyses presented here concentrate on legtmits, where at
least one of théV bosons decays vidl — (v (¢{ = e,u). The lepton plus large”;»***, due to the
escaping neutrino(s), provide a large suppression against multi-jet backgrounds. The leptonic events,
which account for approximately 34.5% of all events, can be subdivided into a “single lepton plus
jets” sample and a “di-lepton” sample, depending on whether one or both W bosons decay leptonically.
As discussed below, the selection cuts and background issues are quite different for the various final state
topologies.

An important experimental tool for selecting clean top quark samples is the ability to identify
jets. Techniques fdr-tagging, using secondary vertices, semi-leptérilecays, and other characteristics
of b-jets, have been extensively studied. Both ATLAS and CMS expect to achieve, bftagaying
efficiency of 60%, a rejection of at least 100 against prompt jets (i.e. jets containing no long-lived
particles) at low luminosity. At high luminosity, a rejection factor of around 100 can be obtained with a
somewhat reduceldtagging efficiency of typically 50%.

All the results presented in this section are obtained using for the signa¥tteAP Monte Carlo
program. Most background processes have also been generated'with Rvith the exception ofV bb,
which has been produced using HERWIG implementation [89] of the exact massive matrix-element
calculation.

3.51 Single lepton plus jets sample

The single lepton plus jets topology, — WWWbb — (¢v)(j5)bb arises in2 x 2/9 x 6/9 ~ 29.6% of

all t¢ events. One expects, therefore, production of almost 2.5 million single lepton plus jet events for
an integrated luminosity of 10 fd, corresponding to one year of LHC runninglaf? cm=2 s~!. The
presence of a highy isolated lepton provides an efficient trigger. The lepton and the high valbe of

give a large suppression of backgrounds from QCD multi-jetsbamaoduction.

For the single lepton plus jets sample, it is possible to fully reconstruct the final state. The four-
momentum of the missing neutrino can be reconstructed by sélfing 0, assigninge?, = E7***, and
calculatingp?, with a quadratic ambiguity, by applying the constraint th&t’ = My .

An analysis by ATLAS [30] examined a typical set of selection cuts. First, the presence of an
isolated electron or muon withy > 20 GeV andn| < 2.5 was required, along with a value éfs* >
20 GeV. At least four jets withhr > 20 GeV were required, where the jets were reconstructed using a
fixed cone algorithm with cone size d&fR = 0.7. After cuts, the major sources of backgrounds were
W+jet production withiW — /v decay, andZ+jet events withZ — ¢T¢~. Potential backgrounds
from WW, WZ, andZ Z gauge boson pair production have also been considered, but are reduced to a
negligible level after cuts.

A clean sample oft events was obtained usihgagging. Requiring that at least one of the jets be
tagged as &-jet yielded a selection efficiency (not counting branching ratios) of 33.3%. For an integrated
luminosity of 10 fo~!, this would correspond to a signal of 820,0@0events. The total background,
dominated by +jet production, leads to a signal-to-background ratio (S/B) of 18.6. Tighter cuts can be
used to select a particularly clean sample. Examples of this will be given in Section 4.

3.52 Di-lepton sample

Di-lepton events, where each W decays leptonically, provide a particularly clean sanplevets,
although the product of branching ratios is smajfl9 x 2/9 ~ 4.9%. With this branching ratio, one
expects the production of over 400,000 di-lepton events for an integrated luminosity of10 fb

The presence of two highy isolated leptons allows these events to be triggered efficiently. Back-
grounds arise from Drell-Yan processes associated withjets, 7"~ associated with jet3)/ W +jets,
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andbb production. Typical selection criteria [30, 90] require two opposite-sign leptons withia 2.5,

with pr > 35 and 25 GeV respectively, and witl}*** > 40 GeV. For the case of like-flavour leptons
(ete andutp™), an additional cutM* — M#| > 10 GeV was made on the di-lepton mass to remove

Z candidates. Requiring, in addition, at least two jets with> 25 GeV produced a signal of 80,000
events for 10 fo!, with S/B around 10. Introducing the requirement that at least one jet be tagged as a
b-jet reduced the signal to about 58,000 events while improving the purity te=58.

3.53 Multi-jet sample

The largest sample af events consists of the topology — WWbb — (jj)(jj)bb. The product of
branching ratios 06/9x6/9 ~ 44.4% implies production of 3.7 million multi-jet events for an integrated
luminosity of 10 fl'. However, these events suffer from a very large background from QCD multi-jet
events. In addition, the all-jet final state poses difficulties for triggering. For example, the trigger menus
examined so far by ATLAS [30] consider multi-jet trigger thresholds only up to four jets, for which a jet
Er threshold of 55 GeV is applied at low luminosity. Further study is required to determine appropriate
thresholds for a six-jet topology.

At the Fermilab Tevatron Collider, both the CDF and DO collaborations have shown that it is pos-
sible to isolate &t signal in this channel. The CDF collaboration has obtained a signal significance over
background of better than three standard deviations [9] by applying simple selection cuts and relying on
the highb-tagging efficiency £ 46%). To compensate for the less efficidrtagging, the DO collab-
oration has developed a more sophisticated event selection technique [10]. Ten kinematic variables to
separate signal and background were used in a neural network, and the output was combined in a second
network together with three additional variables designed to best characteriseveats.

ATLAS has made a very preliminary investigation [30, 91] of a simple selection and reconstruction
algorithm for attempting to extract the multi-jgtsignal from the background. Events were selected by
requiring six or more jets withpr > 15 GeV, and with at least two of them taggedbgsts. Jets were
required to satisfyn| < 3 (Jn| < 2.5 for b-jet candidates). In addition, the scalar sum of the transverse
momenta of the jets was required to be greater than 200 Ge\it Bignal efficiency for these cuts was
19.3%, while only 0.29% of the QCD multi-jet events survived. With this selection, and assuming a
QCD multi-jet cross-section of 1410732 mb for py(hard process) 100 GeV, one obtains a signal-to-
background ratio S/B: 1/57.

Reconstruction of thet final state proceeded by first selecting di-jet pairs, from among those jets
not tagged a#-jets, to formW — jj candidates. A}, was calculated from the deviations of the two
M;; values from the known value affy,. The combination which minimised the value pf, was
selected, and events wigff,, > 3.5 were rejected. For accepted events, thelfivoandidates were then
combined withb-tagged jets to form top and anti-top quark candidates, apfiaas calculated as the
deviation from the condition that the top and anti-top masses are equal. Again, the combination with the
lowesty? was selected, and events with > 7 were rejected. After this reconstruction procedure and
cuts, the value of S/B improved to 1/8 within the mass window 130-200 GeV. Increasipg theeshold
for jets led to some further improvement; for example, requigihg> 25 GeV yielded S/B = 1/6.

The isolation of a top signal can be further improved in a number of ways, such as using a multi-
variate discriminant based on kinematic variables like aplanarity, sphericibhyRffet-jet), or restricting
the analysis to a sample of higplfﬁp events. These techniques are undergoing further investigation, but
it will be very difficult to reliably extract the signal from the background in this channel. In particular,
the multi-jet rates and topologies suffer from very large uncertainties.

3.54 Measurement of thié invariant mass spectrum
As discussed previously, propertiestofvents provide important probes of both SM and BSM physics.

For example, a heavy resonance decaying tmight enhance the cross-section, and might produce a

19



peak in theM,; invariant mass spectrum. Deviations from the SM top quark branching ratios, due for
example to a large rate of— H b, could lead to an apparent deficit in thiecross-section measured
with the assumption that BR(~ Wb) ~ 1.

Due to the very large samples of top quarks which will be produced at the LHC, measurements of
the total cross-sectiom(¢t) will be limited by the uncertainty of the integrated luminosity determination,
which is currently estimated to be 5%-10%. The cross-section relative to some other hard process, such
asZ production, should be measured more precisely.

Concerning differential cross-sections, particular attention has thus far been paid by ATLAS [30]
to measurement of th&/,; invariant mass spectrum. A number of theoretical models predict the existence
of heavy resonances which decaytoAn example within the SM is the Higgs boson, which will decay
to tt provided the decay is kinematically allowed. However, the strong coupling of the SM Higgs boson
to the W and Z implies that the branching ratio to is never very large. For example, féfy = 500
GeV, the SM Higgs natural width would be 63 GeV, and BR{ tt) ~ 17%. The resulting value of
oxBR for H — tt in the SM is not sufficiently large to see a Higgs peak above the large background
from continuumt¢ production. In the case of MSSM, however)if; 4 > 2m,, then BRH/A — tt)
~ 100% fortan 8 ~ 1. For the case of scalar or pseudo-scalar Higgs resonances, it has been pointed
out [73, 74] that interference can occur between the amplitude for the production of the resonance via
g9 — H/A — tt and the usual gluon fusion procegs — tt. The interference effects become stronger
as the Higgs’ mass and width increase, severely complicating attempts to extract a resonance signal.

The possible existence of heavy resonances decayin@tises in technicolor models [92] as well
as other models of strong EW symmetry breaking [93]. Recent variants of technicolor theories, such as
Topcolor [94], posit new interactions which are specifically associated with the top quark, and could give
rise to heavy particles decaying#b Sincett production at the LHC is dominated lgy fusion, colour
octet resonances (“colourons”) could also be produced [95].

Because of the large variety of models and their parameters, ATLAS performed a study [30, 96]
of the sensitivity to a “generic” narrow resonance decaying tdEvents of the single lepton plus jets
topologytt — WWbb — ({v)(jj)bb were selected by requiring** > 20 GeV, and the presence
of an isolated electron or muon withy > 20 GeV and|n| < 2.5. In addition, it was required that
there were between four and ten jets, each with> 20 GeV and|n| < 3.2. At least one of the jets
was required to be tagged ag-get. After these cuts, the background to theesonance search was
dominated by continuurnt¥ production.

The momentum of the neutrino was reconstructed, as described previously, by 8é&gting,
assigninglyy, = E7**°, and calculating’ (with a quadratic ambiguity) by applying the constraint that
My, = Myy. The hadronic — ;5 decay was reconstructed by selecting pairs of jets from among
those not tagged dsjets. In cases where there were at least dwagged jets, candidates for— Wb
were formed by combining thB/ candidates with eachijet. In events with only a single-tagged jet,
this was assigned as one of thguarks and each of the still unassigned jets was then considered as a
candidate for the othérquark.

Among the many different possible jet-parton assignments, the combination was chosen that min-
imised the followingy?:

X* = (Mjjp —my)? /o (M) + (Mg — my)? /0 (M) + (M5 — Mw)? fo® (Mj;)

Events were rejected if eithéd,,,, or M ;;, disagreed with the known value of; by more than 30 GeV.

For events passing the reconstruction procedure, the measured energies were rescaled, according
to their resolution, to give the correct values [y and m, for the appropriate combinations. This
procedure improved the resolution of the mass reconstruction of {hegr too (M,;)/M,; ~ 6.6%. As
an example, Fig. 11 shows the reconstrucdtégd distribution for a narrow resonance of mass 1600 GeV.

The width of the Gaussian core is well described by the resolution function described above. The size
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Fig. 12: Value ofr x BR required for a & discovery potential for a narrow resonance decaying,tas a function of\/,, and
for an integrated luminosity of either 30 or 300th

of the tails, which are dominated by incorrect jet-parton assignments, is such that approximately 65% of
the events are contained withirRo of the peak.

The reconstruction efficiency, not including branching ratiostfors WWbb — ((v)(j5)bb was
about 20% for a resonance of mass 400 GeV, decreasing gradually to about 1&% fo? TeV.

For a narrow resonanc& decaying totf, Fig. 12 shows the requiregix BR(X — tt) for dis-
covery of the resonance. The criterion used to define the discovery potential was observation within a
+20 mass window of a signal above thiecontinuum background, where the required signal must have
a statistical significance of at least And must contain at least ten events. Results are shown vergus
for integrated luminosities of 30 fi3 and 300 fo'!. For example, with 30 fb!', a 500 GeV resonance
could be discovered provided itsx BR is at least 2560 fb. This value decreases to 830 fh\igr =
1 TeV, and to 160 fb foA/x = 2 TeV. The corresponding values for an integrated luminosity of 300 fb
are 835 fb, 265 fb, and 50 fb for resonances madsgs= 500 GeV, 1 TeV, and 2 TeV, respectively.

Once predictions from models exist for the mass, natural width,can@BR for a specific reso-
nance, the results in Fig. 12 can be used to determine the sensitivity and discovery potential for those
models. As discussed above, for the case of scalar or pseudo-scalar Higgs resonances, extra care must be
taken due to possible interference effects. While such effects are small for the case of a narrow resonance,
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they can be significant once the finite widths of heavy resonances are taken into account. For example,
ATLAS has performed an analysis [30, 97] of the deca§s4 — ¢t in MSSM with tan 8 = 1.5 and

Mp 4 > 2m;. Assuming thet continuum background is well known, a combingdt- A signal would

be visible for Higgs masses in the range of about 370 - 450 GeV. However, the interference effects pro-
duce an effective suppression of the combitéd- A production rates of about 30% fady 4 = 370

GeV, increasing to 70% for masses of 450 GeV, essentially eliminating the possibility to extract a sig-
nal for higher Higgs masses, and thereby severely limiting the MSSM parameter space for which this
channel has discovery potential (see Fig. 13).

4. TOP QUARK MASS?3

As discussed in Section 2.2 one of the main motivations for top physics at the LHC is an accurate
measurement of the top mass. Currently the best Tevatron single-experiment resujtarenobtained

with the lepton plus jets final states. These yield;= 175.94+ 4.8 (stat.) & 5.3 (syst.) (CDF) [6]

and 173.3t 5.6 (stat.)+ 5.5 (syst.) (D@) [5]. The systematic errors in both measurements are largely
dominated by the uncertainty on the jet energy scale which amounts to 4.4 GeV and 4 GeV for CDF
and Dd, respectively. On the other hand, the systematic errors in the di-lepton channels are somewhat
less, but the statistical errors are significantly larger, by a factor a2, as compared to the lepton

plus jets final states. Future runs of the Tevatron with an about 20-fold increase in statistics promise a
measurement of the top mass with an accuracy of up 8GeV [98]; in the lepton plus jets channel

the error is dominated by the systematics while in the di-lepton channels the limiting factor is still the
statistics.

Several studies of the accuracy which can be expected with the LHC experiments have been per-
formed in the past [99]. It is interesting to see whether one can use the large statistics available after a
few years of high-luminosity running to push the precision further. In particular, it is interesting to study
the ultimate accuracy achievable at a hadronic collider, and the factors that limit this accuracy.

In the following subsections, we begin with general remarks on the top quark mass and a very
brief review of the present status of the theoretical understanding of top quark mass measurement in the
threshold scan at a future™e~ collider. We then present the results of a recent studies of top mass
reconstruction at the LHC. The techniques used include the study of the lepton plus jets final states
(inclusive, as well as limited to highy top quarks), di-lepton final states (using the di-leptons from the
leptonic decay of bothl’s, as well as samples where the isolat&depton is paired with a non-isolated

3Section coordinators: M. Beneke, M.L. Mangano, |. Efthymiopoulos (ATLAS), P. Grenier (ATLAS), A. Kharchilava
(CMS).
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lepton from the decay of the companibinadron). A very promising analysis using thigy> from the

b hadron decay paired with the lepton from the leptonic decay olthes discussed at the end. The
conclusions of these studies indicate that an accuracy of 2 GeV should be achievable with the statistics
available after only 1 year of running at low luminosity. An accuracy of 1 GeV accuracy could be
achieved after the high luminosity phase.

4.1 General remarks and the top mass measurement ier"e™ annihilation

Although one speaks of “the” top quark mass, one should keep in mind that the concept of quark mass
is convention-dependent. The top quark pole mass definition is often implicit, but in a confining theory

it can be useful to choose another convention. This is true even for top quarks when one discusses mass
measurements with an accuracy of order of or below the strong interaction scale. Since different mass
conventions can differ by 10 GeV (see Section 2.1), the question arises which mass is actually determined
to an accuracy of-2 GeV by a particular measurement.

The simple answer is that a particular measurement determines those mass parameters accurately
in terms of which uncalculated higher order corrections to the matrix elements of the process are small.
This in turn may depend on the accuracy one aims at and the order to which the process has already
been calculated. To clarify these statements we briefly discuss the top quark mass measurement at a high
energye™e™ collider.

“The” top quark mass can be measured e~ collisions by recontructing top quark decay prod-
ucts in much the same way as at the LHC. In addition, there exists the unique possibility of determining
the mass in pair production near threshold. This is considered to be the most accurate method [100] and
it appears that an uncertainty &fz; ~ 0.15GeV can be achievetbr the top quark) S masswith the
presently available theoretical input [101]. This is a factor two improvement compared to the accuracy
that could be achieved with the same theoretical input if the cross section were parametrised in terms
of the top quark pole mass. The fundamental reason for this difference is the fact that the concept of
a quark pole mass is intriniscally ambiguous by an amount of akdgrp [102] and this conclusion
remains valid even if the quark decays on average before hadronisation [103]. In the context of pertur-
bation theory this ambiguity translates into sizeable higher order corrections to the matrix elements of a
given process renormalized in the pole mass scheme. This makes it preferable to choose another mass
convention if large corrections disappear in this way as is the case for the total cross section an-
nihilation, because the total cross section is less affected by non-perturbative effects than the pole mass
itself. Note, however, that despite this preference the position of the threshold is closer to twice the pole
mass than twice theIS mass, hence a leading order calculation determines the pole mass more naturally.
It is possible to introduce intermediate mass renormalizations that are better defined than the pole mass
and yet adequate to physical processes in which top quarks are close to mass shell [101, 104]. The con-
clusion that the top quark pole mass is disfavoured is based on the existence of such mass redefinitions
and the existence of accurate theoretical calculations.

The situation with mass determinations at the LHC appears much more complicated, since the
mass reconstruction is to a large extent an experimental procedure based on leading order theoretical
calculations, which are not sensitive to mass renormalization at all. Furthermore the concept of invari-
ant mass of a top quark decay system is prone to “large” non-perturbative corrections of relative order
Aqcp/my, because the loss or gain of a soft particle changes the invariant mass squared by an amount
of orderm;Aqcp. The parametric magnitude of non-perturbative corrections is of the same order of
magnitude as for the top quark pole mass itself and cannot be decreased by choosing another mass renor-
malization prescription. For this reason, top mass measurements based on reconstruétomg the
invariant mass of the decay products of a single top quark should be considered as measurements of the
top quark pole mass. From the remarks above it follows that there is a limitation of principle on the ac-
curacy of such measurements. However, under LHC conditions the experimental systematic uncertainty
discussed later in this section is the limiting factor in practice. A potential exception is the measure-
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Table 6: Efficiencies (in percent) for the inclusite single lepton plus jets signal and for background processes, as a function
of the selection cuts applied. No branching ratios are included in the numbers. The last column gives the equivalent number of
events for an integrated luminosity of 10fh and the signal-to-background ratio.

ph > 20 GeV as before, as before, events
Process E7es>20GeV  plusNj; >4  plusNy,_j > 2 perl0 fo !
tt signal 64.7 21.2 5.0 126000
W + jets 47.9 0.1 0.002 1658
Z + jets 15.0 0.05 0.002 232
WWwW 53.6 0.5 0.006 10
W2z 53.8 0.5 0.02 8
VA 2.8 0.04 0.008 14
Total background 1922
S/B 65

ment of m; in the decay modéJ/:)X discussed at the end of this section, since the systematic error

is estimated to be belowGeV and since the systematic error is to a large extent theoretical. It would

be interesting to investigate non-perturbative power corrections and principle obstructions to an accurate
mass measurement for this process. This analysis has however not yet been carried out in any detail,
comparable to the threshold scareirne™ annihilation.

4.2 my in the lepton plus jets channel. Inclusive sample

The inclusive lepton plus jets channel provides a large and clean sample of top quarks for mass recon-
struction. Considering only electrons and muons, the branching ratio of this channel is 29.6%. Therefore,
one can expect more than 2 millions events for one year of running at low luminosity. ATLAS performed
an analysis in that channel using events generated usingi# [52] and the ATLAS detector fast simu-

lation package ATLFAST [105]. The top mass is determined using the hadronic part of the decay, as the
invariant mass of the three jets coming from the same e m ;. The leptonic top decay is used to

tag the event with the presence of a hjghlepton and large~;*** . For the background processes, the
HERWIG [51, 89] generator was used for the background protiéss

The following background processes have been considébeld; + jets with W — (v, Z + jets
with Z — ¢t¢=, WW with one W — ¢v and the otheiV — qg, W Z with W — ¢v and Z — qq,
ZZ with one Z — ¢(*t¢~ and Z — ¢, andWbb with W — (v. Events are selected by requiring an
isolated lepton withp,.> 20 GeV and|n|< 2.5, E7** > 20 GeV, and four jets wittp,> 40 GeV and
In|< 2.5, of which two of them were required to be taggedbgsts. Jets were reconstructed using a
fixed cone algorithm withA R= 0.4. Although at production level the signal over background is very
unfavourable, after the selection cuts and for an integrated luminosity of 10 26000 signal events
and 1922 background events were kept, yielding a valug/éf = 65 (see Table 6).

The reconstruction of the decay” — jj is first performed. The invariant mass;; of all the
combinations of jets (withp,> 40 GeV and|n|< 2.5) that were not tagged dsjets is computed and
the jet pair with an invariant mass closestitgy is selected as th® candidate. Fig. 14 represents the
invariant mass distribution of the selected jet pairs. The reconstrdttedass is consistent with the
generated value, the mass resolution being 7.8 GeV. Within a windav2@GeV around thél” mass,
the purity (P) and the overall efficiency (E) of thié reconstruction are respectively P=67% and E=1.7%.
Additional pair association criteria, such as requiring the leading jet to be part of the combination, did
not improve significantly the purity and have not been considered further in the an&lysiandidates,
retained ifjm;; — M| < 20 GeV, have then to be associated with dragged jet to reconstruct the
decayt — Wh. To reconstruct the right combination, some association criteria have been tried, such as
choosing thé-jet furthest from the isolated lepton, theet closest to the reconstructéd, and choosing
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Fig. 15: Left: dependence of the reconstructed top mass on the generated value. Right: dependence of the reconstructed top
mass on the transverse momentpij(of the reconstructed top.

the jjb combination having the highegt for the reconstructed top. These various methods gave similar
results. Fig. 14 presents the invariant mass distribution of the reconstructed top whgh tbembi-

nation having the highegt. has been used as association criteria. i@ constraint is applied for the

light quark jets. For an integrated luminosity of 10fh the total number of reconstructed top is 32000
events, of which 30000 are within a window 85 GeV around the generated top mass= 175 GeV.

The total number of combinatorial events is 34000, of which 14000 are within the mass window. The
number of background events coming from other processes is negligiblemJjedistribution fitted

by a Gaussian plus a third order polynomial yields a top mass consistent with the generated value of
175 GeV and a top mass resolution of 11.9 GeV. The resulting statistical uncertainty for an integrated
luminosity of 10fo! is dm;= 0.070 GeV.

The dependence of the top reconstruction algorithm on the top mass has been checked using
several samples af events generated with different valuesrof ranging from 160 to 190 GeV. The
results, shown in Fig. 15, demonstrate a linear dependence of the reconstructed top mass on the generated
value: the data points are fitted to a linear function withindf = 6.7/8. The stability of the mass value
as a function of the transverse momentum of the reconstructegt¢ip(f)) was also checked. As shown
in Fig. 15, no significanp,(top) dependence is observed: the data points are fitted to a constant with
x?/ndf = 6.25/5. For more details of this analysis, see [106].
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Fig. 16: Invariantjjb mass distributions. Left: from fast simulation. Right: from full simulation.

The results presented above, obtained with a fast simulation package, have been cross-checked
with 30000 events passed through the ATLAS GEANT-based full simulation package [107]. In full
simulation, in order to save computing time, events have been generated under restrictive conditions at
the generator level. The comparison is done by using the same generated events which have been passed
through both the fast and full simulation packages. The results, in terms of purity, efficiency and mass
resolutions show a reasonable agreement between fast and full simulation. In addition, as it is shown in
Fig. 16, the shape and amount of the combinatorial background for.thedistributions are in good
agreement between the two types of simulations.

It has to be noted that for this analysis as well as for the other top mass reconstruction studies
performed within ATLAS, the jets were calibrated using the rati(parton)p(jet) obtained from Monte
Carlo samples of di-jet events &F — bb with mz = 100 GeV. In that aspect this calibration does not
include all possible detector effects and corrections. More details can be found in Chapter 20 of [30] and
in Appendix A.

4.3 my in the lepton plus jets channel. Highpt sample

An interesting possibility at the LHC, thanks to the latgeproduction rate, is the use of special sub-
samples, such as events where the top and anti-top quarks have-highthis case, they are produced
back-to-back in the lab-frame, and the daughters from the two top decays will appear in distinct “hemi-
spheres” of the detector. This topology would greatly reduce the combinatorial background as well as the
backgrounds from other processes. Furthermore, the higher average energy of the jets to be reconstructed
should reduce the sensitivity to systematic effects due to the jet energy calibration and to effects of gluon
radiation. However, in this case a competing effect appears which can limit the resulting precision: as the
toppr increases, the jet overlapping probability increases as well, which again affects the jet calibration.
ATLAS performed a preliminary study of this possibility using two different reconstruction methods:

e in the first one an analysis similar to the inclusive case is done,wjtheing reconstructed from
the three jets in the one hemisphene; £m;;);

¢ in the second oney; is reconstructed summing up the energies in the calorimeter towers in a large
cone around the top direction.

In the following paragraphs, highlights of these analyses are discussed.

4.31 Jet Analysis

High p, tt events were generated usingTRIA 5.7 [52] with ap, cut on the hard scattering process
above 200 GeV. The expected cross-section in this case is about 120 pb, or about 14.5% of the total
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tt production cross-section. The selection cuts required the presence of an isolated leptpp>with

30 GeV and|n|< 2.5, andE7*** > 30 GeV. The total transverse energy of the event was required to be
greater than 450 GeV. Jets were reconstructed using a cone algorithm with fell@.4. The plane
perpendicular to the direction of the isolated lepton was used to divide the detector into two hemispheres.
Considering only jets witlp;,> 40 GeV and|n|< 2.5, the cuts required onktagged jet in the same
hemisphere as the lepton, and three jets, one of whichhMagged, in the opposite hemisphere. Di-jet
candidates for th&l” — jj decay were selected among the rtetagged jets in the hemisphere opposite

to the lepton. The resultant;; invariant mass distribution is shown in Fig. 17 (left). Fitting the six bins
around the peak of the mass distribution with a Gaussian, yiel@fédvaass consistent with the generated
value, and an;; resolution of 7 GeV, in good agreement with that obtained for the inclusive sample.
Di-jets with 40 Ge\km,;;<120 GeV were then combined with tihetagged jet from the hemisphere
opposite to the lepton to form— ;b candidates. Finally, the high.(top) requirement was imposed by
requiringpr(jjb)> 250 GeV. With these cuts, the overall signal efficiency was 1.7%, and the background
from sources other thatt was reduced to a negligible level. The invariant mass distribution of the
acceptedijb combinations is shown in Fig. 17 (right). Fitting the six bins around the peak of the mass
distribution with a Gaussian, yielded a top mass consistent with the generated value of 175 GeV, and a
mj;, mass resolution of 11.8 GeV. For an integrated luminosity of 10 fla sample of 6300 events
would be collected in ATLAS, leading to a statistical erroréat,(stat.) =+0.25 GeV, which remains

well below the systematic uncertainty. As in the case of the inclusive sample, no giralggpendence

was observed and the reconstructed mass depends linearly on the Monte Carlo input value.

4.32 Using a large calorimeter cluster

For sufficiently highp,(top) values, the jets from the top decay are close to each other with a large
possibility of overlap. In such a case it might be possible to reconstruct the top mass by collecting all the
energy deposited in the calorimeter in a large cone around the top quark direction. Such a technique has
the potential to reduce the systematic errors, since it is less sensitive to the calibration of jets and to the
intrinsic complexities of effects due to leakage outside the smaller cones, energy sharing between jets,
etc. Some results from a preliminary investigation of the potential of this technique are discussed here.
More details of the analysis can be found in [30, 108].

Similar event selection criteria as in the previous case were used: an isolated leptgn. with
20 GeV and|n|< 2.5, E7** > 20 GeV, oneb-tagged jet (withA R=0.4 andp,> 20 GeV) in the lepton
hemisphere, and at least 3 jets in the hemisphere opposite to the lepixD(2, p,> 20 GeV) with
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one of themb-tagged. For the accepted events, the two higpestonb-tagged jets were combined

with the highest, b-jet candidate in the hemisphere opposite to the lepton to form candidates for the
jgb hadronic top decay. The selectgtb combination was required to hape> 150 GeV and|n|< 2.5.

With these selection criteria, about 13000 events would be expected in the mass window from 145 to
200 GeV, with a purity of 90%, for an integrated luminosity of 10fb The reconstructed invariant mass

of the jjb combination is shown in Fig. 18 (left). The direction of the top quark was then determined
from the jet momenta. Figure 18 (right) shows the distayégin (7, ¢) space between the reconstructed

and the true top direction at the parton level, demonstrating good agreement.

A large cone of radiug R was then drawn around the top quark direction, and the top mass was
determined by adding the energies of all calorimeter “towers” within the cone. A calorimeter tower
has a size ofn x §d¢= 0.1x0.1, combining the information of both the EM and hadronic calorimeters.
The invariant mass spectrum is shown in Fig. 19 (left) for a cone Aige 1.3, and exhibits a clean
peak at the top quark mass. The fitted value of the reconstructed top mass is shown in Fig. 19 (right),
where it displays a strong dependence on the cone size. If initial (ISR) and final (FSR) state radiation in
PYTHIA are turned off, the fitted mass remains constant (to within 2%), independently of cone size.

The large dependence of the reconstructed top mass on the cone size can be attributed to the
underlying event (UE) contribution. A method was developed to evaluate and subtract the underlying
event contribution using the calorimeter towers not associated with the products of the top quark decay.
The UE contribution was calculated as the averaigedeposited per calorimeter tower, averaged over
those towers which were far away from the reconstructed jets of the event. As expected, the average
E per calorimeter tower increases as more activity is added, especially in the case of ISR. However,
only a rather small dependence is observed on the radiRisised to isolate the towers associated with
the hard scattering process. The resulting value of the reconstructed /mass) ( with and without
UE subtraction, is also shown in Fig. 19 (right) as a function of the cone radius. As can be seen, after
the UE subtraction, the reconstructed top mass is independent of the cone size used. As a cross-check,
the meankE per cell subtracted was varied Hyl0% and the top mass recalculated in each case. As
shown superimposed on Fig. 19 (right), these “miscalibrations” lead to a re-emergence of a dependence
of m; on the cone size. While the prescription for the UE subtraction does lead to a top mass which is
independent of the cone size, it should be noted that the reconstructed mass is about 15 GeV (or 8.6%)
below the nominal valuen;= 175 GeV, implying that a rather large correction is needed.
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To investigate if this correction can be extracted from the data without relying on Monte Carlo
simulations, the same procedure was applied to a samglg-pfjet events generated with a range of
pr comparable to that of the top sample. Thewas forced to decay hadronically into jets. The UE
contribution was estimated with the same algorithm as described above. The results agreed within 1%
with the values determined for the high(top) sample. As in the case of the top events, the reconstructed
W mass after UE subtraction is independent of the cone size. The average vaiye after the UE
subtraction is about 8.5 GeV (or 10.6%) below the nominal valuegf. The fractional error omn;;,
as measured with thié’ +jet sample, was used as a correction factontg,. in the highp,(top) sample.
For a cone of radiua R= 1.3, the top mass after UE subtraction increases from 159.9 GeV to 176.0 GeV
after rescaling. The rescaled valuesmof,,. are about 1% higher than the generated top mass. This
over-correction ofm; using the value ofny, measured with the same method, is mainly due to ISR
contributions. If ISR is switched off, the rescaling procedure works to better than 1%.

4.4 Systematic uncertainties on the measurement aii; in the single lepton plus jets channel

For the analyses presented above within ATLAS, a number of sources of systematic error have been
studied using samples of events generated withHR and simulated mainly with the fast detector
package ATLFAST, but also using a relatively large number of fully simulated events in order to cross-
check some of the results. The results of these studies are summarised in Fig. 20 and discussed below.

Jet energy scaleThe measurement of; via reconstruction of — j;b relies on a precise knowl-
edge of the energy calibration for both light quark jets a&fjdts. The jet energy scale depends on a
variety of detector and physics effects, including non-linearities in the calorimeter response, energy lost
outside the jet cone (due, for example, to energy swept away by the magnetic field or to gluon radiation
at large angles with respect to the original parton), energy losses due to detector effects (cracks, leak-
age, etc.), and “noise” due to the underlying event. Preliminary studies done in ATLAS indicate that
a jet energy scale calibration at the level of 1% for both light quarktajets would be feasible at the
LHC (see discussion in the Appendix A). In the case ofsthereconstructed from the invariant mass
of the three jetsi(y; ;) the b-jet energy scale enters directly in the measurement and therefore it must be
calibrated from other sources, while the energy of the two light quark jets can be calibrated event-by-
event using thé¥ mass constraint. This would work quite well at least for the inclusive sample, where
the jets are well separated. In the high case, energy sharing algorithms and corrections for the two
jets are needed, and therefore in order to be conservative we assume in the following that no such an
event-by-event correction can be made. To estimate the effect of an absolute jet energy scale uncertainty,
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dashed lines indicates a 1% mass window. Right: the quoted error in tineeasurement.

different “miscalibration” coefficients were applied to the measured jet energies. A linear dependence
was observed.

b-quark fragmentationThe fraction of the originab-quark momentum which will appear as vis-
ible energy in the reconstruction cone of the correspondijgg depends on the fragmentation function
of the b-quark. This function is usually parametrised mTRIA in terms of one variables,, using the
Peterson fragmentation function [109]. To estimate the systematic erroy,ithe “default” value for
€, (=-0.006) was varied within its experimental uncertainty (0.0025) [110, 19] and the difference in the
reconstructedn; was taken as the systematic eréat;.

Initial and final state radiation:The presence of ISR or FSR can impact the measurement.of
To estimate the systematic error due to these, data samples were generated where ISR or FSR in the
PYTHIA generator were switched off. In the case of FSR, a large mass shift was observed for a jet cone of
AR=0.4. This is reduced as expected when a larger cone is used. Clearly this case is rather pessimistic
since the knowledge in both ISR and FSR is typically at the level of 10%. Therefore as a conservative
estimate of the resultant systematic errorsiif) 20% of the mass shifts were used.

An alternative approach uses the measured jet multiplicity to search, event-by-event, for the pres-
ence of hard gluon radiation. Following the convention for this approach adopted at the Tevatron [5, 6],
the mass shift would be defined not by comparing events with radiation switched on and events with
radiation switched off, but by the differenc&m;, between the value ah; determined from events
with exactly four jets and that determined from events with more than four jets. The systematic error
due to effects of initial and final radiation would then be considerethas Am,/v/12. Such a calcu-
lation would yield systematic errors of approximately 0.4-1.1 GeV, smaller than the more conservative
approach adopted here.

BackgroundUncertainties in the size and shape of the background, which is dominated by “wrong
combinations” int¢ events, can affect the top mass reconstruction. The resultant systematic uncertainty
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onm, was estimated by varying the assumptions on the background shape in the fitting procedure. Fits of
them,;; distribution were performed assuming a Gaussian shape for the signal and either a polynomial
or a threshold function for the background. Varying the background function resulted in a systematic
error onm; of 0.2 GeV. The structure of the UE can affect the top mass reconstruction. However, as
discussed above, it is possible to estimate and correct for this effect using data. Given the large statistics
available at the LHC, it is assumed that the residual uncertainty from the underlying event will be small
compared to the other errors (note that the UE denotes here a minimum bias event, since the impact of
ISR has already been accounted for).

For the particular case of the; reconstructed using a large calorimeter cluster, similar procedures
were adopted to estimate the the systematic errors. It is important to notice that, as expected, the use of a
large cone substantially reduces the effects of FSRbameark fragmentation, each of which gives rise
to a systematic error of 0.1 GeV. The uncertainty arising from ISR, which can affect the determination
of the UE subtraction, is about 0.1 GeV as well. However, the main uncertainty in this technique comes
from the calibration procedure. The calibration with e} jet sample produces a value wf; which
is about 1% above the generated value. Furthermoréjthe j;j events would suffer from background
from QCD multi-jet events. On-going studies suggest that one could calibrate 1#5irgj;j decays
from the highp,(top) events themselves, selecting those events in which-tagged jet is far away
from the other two jets of th&l” decay and then reconstructing tHé — j; decay using a single cone
of size A R=0.8. Further study is required to reliably estimate the potential of this calibration procedure,
and therefore a conservative systematic uncertainty of 1% is assigned to it.

4.5 my in the di-lepton channel

Di-Lepton events can provide a measurement of the top quark mass complementary to that obtained
from the single lepton plus jets mode. The signature of a di-lepton event consists of two isolated high
pr leptons, highE7*** due to the neutrinos, and two jets from thquarks. The measurementef using
di-lepton events is not a direct measurement as in the previous case but it relies on the relation between
the kinematical distributions of the top decay products angd and on how they can be reproduced

by the Monte Carlo simulation. About 400000 di-leptahevents are expected to be produced in a
data sample corresponding to an integrated luminosity of 1d.fBackgrounds arise from Drell-Yan
processes associated with jefs;,— 77 associated with jetd) TV + jets andbb production.

Of the many possible kinematic variables which could be studied, ATLAS performed a preliminary
study using: the massyy, of the lepton-jet system, the energy of the two highdst jets, and the
massmy, of the di-lepton system formed with both leptons originating from the same top decay (i.e.
t — fvb followed by b — fvc). The event selection criteria required two opposite-sign leptons within
In|< 2.5, with p,> 35 and 25 GeV respectively, and wifli;* > 40 GeV. Two jets withp, > 25 GeV
were required in addition. After the selection cuts, 80000 signal events surviveds iwtlaround 10.

4.51 Top mass measurement using
In this analysis, the value of; was estimated using the expression:

m® = My + 2(mp,) /[1 — (cos 0p,)] (11)

Here, (mj,) is the squared mean invariant mass of the leptontajetl from the same top decay. The

mean value ofcos 64,), the angle between the lepton and thet in theWV rest frame, can be regarded

as an input parameter to be taken from Monte Carlo. To obtain a very clean sample, the two highest
pr jets were required to be tagged taets, leaving a total of about 15200 signal events per 10.fb

One cannot determine, in general, which lepton should be paired with whath The pairing which

gave the smaller value @dfnj,) was chosen, and checking the parton-level information showed that this
criterion selected the correct pairing in 85% of the cases, for a generated top mass of 175 GeV. The mean
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Fig. 21: Template distributions of the total energy of the two leading jetsénents for top quark masses of 165 and 175 GeV.
The two distributions are normalised to the same area.

value (mj,) was measured for samples generated with different input top massasd thenn, was
calculated from the expression above. For an integrated luminosity of 10 tiie expected statistical
uncertainty onm; using this method ig-0.9 GeV. Major sources of systematics include uncertainty on

the b-quark fragmentation function, which produces a systematic errenoof 0.7 GeV if defined as
described in Section 4.4. Systematic errors due to the effects of FSR and ISR together are about 1 GeV,
while those due to varying the jet energy scale by 1% are 0.6 GeV. Further studies are required to estimate
the uncertainties due to the reliance upon the Monte Carlo modelling of Kieematics.

452 Top mass measurement using the energy of the two leading jets

Increased sensitivity could be obtained with a technique which utilises not only the mean, but also the
shape of the kinematic distribution. As an example, a study has been made of the sensitivitylto

tained by comparing to “template” distributions the energy of the two highgsjets. The template
distributions were made by generatingTRIA samples oft events with different values ofi; in the

range 160-190 GeV, in steps of 5 GeV. Figure 21 shows, as an example, the templates obtained for
my = 165 GeV and 175 GeV. For each possible top mass vaty@ y%(m) was obtained by compar-

ing the kinematical distribution of the simulated data with the templates of masehe best value for

the mass was the value which, for the “data” set, generatedwjth175 GeV, gave the minimurg?.

For an integrated luminosity of 10 B, the expected statistical sensitivity @r. corresponds to about

+0.4 GeV. Varying the calorimeter jet energy scale by 1% produced a systematic emgobt.5 GeV.

Other sources of systematic error result from the dependence of the method on the Monte Carlo mod-
elling of thett kinematics, and require further study. As an example, changing the choice of the structure
functions used in the Monte Carlo simulation (for example, from CTEQ2L to CTEQ2M or EHQL1) led

to differences in the top mass 0.7 GeV.

453 Top mass measurement using in tri-lepton events

The invariant mass distribution of the two leptons from the same top quark dezay-{ ¢vb followed

by b — fvc) is quite sensitive tan;. It has been shown that the mass distribution of lepton pairs from the
same top quark decay is much less sensitive to the top quark transverse momentum distribution than that
of lepton pairs from different top quarks [99]. Signal events are expected to contain two leptons from
the decay of théV bosons produced directly in the top and anti-top quark decays, and one lepton from
the b-quark decay. In addition to the cuts described above, one non-isolated muopwiths GeV

was required. For an integrated luminosity of 10 fpthe expected signal would be about 7250 events,
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yielding a statistical uncertainty on the measurementpbf approximately+1 GeV. This technique
is insensitive to the jet energy scale. The dominant uncertainties arise from effects of ISR and FSR and
from theb-quark fragmentation, which sum up to about 1.5 GeV.

4.6 m¢ from t—1+4 J/¢ + X decays

An interesting proposal [111] by CMS, explored in detail during the workshop [112], is to take advantage
of the large top production rates and exploit the correlation between the top mass and the invariant mass
distribution of the system composed ofay (from the decay of & hadron) and of the leptorf & e, 1)

from the associatetd” decay (see Fig. 22).

The advantage of using.&/+» compared to the other studies involving leptons as presented above
is twofold: first, the large mass of th&/v) induces a stronger correlation with the top mass (as will be
shown later). Second, the identification of thé&) provides a much cleaner signal. In order to uniquely
determine the top decay topology one can tag the charge df tleezaying toJ/¢) by requiring the
otherb-jet to contain a muon as well. The overall branching ratid.3sx 10~°, taking into account the
charge conjugate reaction abld — ev decays. In spite of this strong suppression, we stress that these
final states are experimentally very clean and can be exploited even at the highest LHC luminosities.
Furthermore, one can also explore other ways to associatd /thewith the corresponding isolated
lepton — for example by measuring the jet charge of identtfiedOne should say that all these methods
of top mass determination essentially rely on the Monte-Carlo description of its production and decay.
Nonetheless the model, to a large extent, can be verified and tuned to the data.

4.61 Analysis

In the following we assume # production cross-section of 800 pb for; = 175 GeV. Events are sim-
ulated with the PTHIAL.7 [52] orHERWIG 5.9 [51] event generators. Particle momenta are smeared
according to parameterisations obtained from detailed simulation of the CMS detector performance.
Four-lepton events are selected by requiring an isolated leptorpwiti5 GeV andn|<2.4, and three
non-isolated, centrally produced muonspef>4 GeV and|n|<2.4, with the invariant mass of the two

of them being consistent with th&/¢) mass. These cuts significantly reduce the external {npback-
ground, mainlylV’bb production? which can be further reduced by employing, in addition, two central
jets from anothe#?”. The resulting kinematical acceptance of the selection criteria is 30%; this rather
small value is largely due to soft muons frofyl) andb. In one year high luminosity running of LHC,
corresponding to an integrated luminosity of 100 fhand assuming trigger plus reconstruction effi-
ciency of 0.8, we expect abo®> x 800 x 5.3 - 107° x 0.3 x 0.8 = 1000 events.

An example of the/.J /¢ mass distribution with the expected background is shown in Fig. 23. The
background is internal (from the& production) and is due to the wrong assignment of.fji¢ to the
corresponding isolated lepton. These tagging muons of wrong sign are predominantly originating from

*PYTHIA results indicate that with the above cuts this source of the background can be kept at a per cent level.
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BO/EO oscillations,b—c—p transitions,W (—¢, 7)—u decays,r/K decays in flight and amount to

~ 30% of the signal combinations. The shape of the sigrdl) events (those with the correct sign

of the tagging muon) is consistent with a Gaussian distribution over the entire mass interval up to its
kinematical limit of~ 175 GeV. The background shape is approximated by a cubic polynomial. The
parameters of this polynomial are determined with “data” made of the wrong combinatiénsyotvith

an admixture of signal. In such a way the shape of the background is determined more precisely and in
situ. Thus, when the signal distribution is fitted, only the background normalisation factor is left as a free
parameter along with the three parameters of a Gaussian. The result of the fit is shown in Fig. 23. We
point out that this procedure allows to absorb also the remaining external background (if any) into the
background fit function.
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Fig. 23: Example of th&.J/¢ invariant mass spectrum in Fig. 24: Correlation betweeh/™** and the top quark mass
four-lepton final states. The number of events corresponds tin isolated lepton plus//« (solid line) and isolated lepton
four years running at LHC high luminosity. plus u-in-jet (dashed line) final states.

As a measure of the top quark mass we use the mean value (position of the maximum of the
distribution) of the Gaussiam/_lg}%. In four years running at LHC with high luminosity the typical
errors on this variable, including the uncertainty on the background, are about 0.5 GeV. It is composed
of < 0.5 GeV statistical error ang 0.15 GeV systematics contribution due to the uncertainty on the
measurement of the background shape.

The measurement of tﬁdg}% can then be related to the generated top quark mass. An example
of the correlation between the™%* andm, is shown in Fig. 24 along with the parameters of a linear
fit. For comparison, we also show the corresponding dependence in a more traditional isolated lepton
plus u-in-jet channel. Not surprisingly, the stronger correlation, and thus a better sensitivity to the top
mass, is expected in the//+ final states as compared to the isolated lepton plusjet channel. This
is because, in the former case, we pickup a heavy object{ti¢ which carries a larger fraction of the
b-jet momentum. TheMg}aj} measurement error, statistical and systematic, scales as the inverse slope
value of the fit, which is a factor of 2 in our case. Hence the statistical error on the top mass in this
particular example is- 1 GeV.

It is appropriate to comment on the ways to obtain a larger event sample. Encouraging results
have been obtained in [113] to reconstruct the.J/¢»—eTe~ decays for low luminosity runs. The
extension of these studies for a high luminosity environment is very desirable. Another possibility would
be to relax the kinematical requirements. The choiceottut on soft muons is not dictated by the

5The statistical power of the sample can be further improved by exploiting full spectrum, rather than its Gaussian part.
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background considerations but by the trigger rates, and is set here to 4 GeV rather arbitrarily. For
example, the di-muon trigger withrdependent thresholds which is available in CMS for low luminosity

runs [114] allows to significantly increase the kinematical acceptance, practically to the limit determined
by muon penetration up to the muon chambers. Therefore, the assessment of the trigger rates at high
luminosity with lowerpr thresholds and in multi-lepton events clearly deserves a dedicated study.

An even larger event sample can be obtained in three lepton final states, using instead the jet-charge
technique to determine the decay topology instead of the tagging muon. The jet charge is defined as
a pr-weighted charge of particles collected in a cone around/the direction. Obviously, this kind
of analysis requires detailed simulations with full pattern recognition which are under way. However,
particle level simulations performed withyiPHIA and with realistic assumptions on track reconstruc-
tion efficiency give event samples comparable to the muon-tag performance, with about 10 times less
integrated luminosity. In any case, through the LHC lifetime, one can collect enough events so that the
overall top mass measurement accuracy would not be hampered by the lack of statistics; it would rather
be limited by the systematic uncertainties which are tightly linked with the Monte-Carlo tools in use, as
will be argued in the following section.

4.62 Systematics

An essential aspect of the current analysis is to understand limitations which would arise from the Monte-
Carlo description of the top production and decay. It is important to realize that the observable used in
this study enjoys two properties: it is Lorentz invariant an it does not depend on the detailed structure of
the jets, but only on the momentum spectrum ofittreadron and of thg'/« from its decay.

As aresult, were it not for distortions of tlig /) mass distribution induced by acceptance effects
and by the presence of an underlying background, the measurement would be entirely insensitive with
respect to changes in the top production dynamics, and in the structure of the underlying event. As a
result, typical systematics such as those induced by higher-order corrections to the production process,
or by the ISR and by the structure of the minimum bias event, are strongly reduced relative to other
measurements of;. This expectation will be shown to be true in the following of this section.

The main limitations to an accurate extraction of the top mass using this technique are expected
to come from: i) the knowledge of the fragmentation function of 4Headrons contained in thiejet
and, ii) the size of the non-perturbative corrections to the relation between the top quark mass and the
¢J /v mass distribution. The /¢ spectrum in the decay of thehadrons will be measured with high
accuracy in the next generation Btfactory experiments. It should be pointed out, however, that the
composition ofb-hadrons measured at thg4S5) and in the top decays will not be the same. In this
second case, one expects a hon-negligible contribution from baryons andfrstates. The size of the
relevant corrections to the inclusive’y> spectrum in top decays is not known, and, although expected to
be small, it needs to be studied. Additional effects, such as QED correctionsii6 lggtonic decaylV’
polarisation and spin correlation effects can all be controlled and included in the theoretical simulations.

The rest of this section presents the results of a detailed study [112] of the systematics, mostly
based on fPTHIA.

Detector resolutionHere we have considered only Gaussian smearing of particle momenta and the effect
on theMZ}% measurement uncertainty is negligible. A possible nonlinearity of the detector response
can be well controlled with the huge samplepf), T andZ leptonic decays that will be available.

Background:The uncertainty would be mainly due to an inaccurate measurement of the background
shape and the systematics contribution<ad.15 GeV quoted in previous section would scale down with
increasing statistics. For example, already with0* events the induced uncertainty §s0.1 GeV.

PDF: Depending on the relative fraction of gluon/quarks versus various PDF’s the top produc-
tion kinematics might be different. No straightforward procedure is available for the moment to evalu-
ate uncertainties due to a particular choice of PDF. We compared results obtained with the default set
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CTEQ2L[115] and a more rece®TEQA4L[116] parameterisations of PDF’s. The observed change in the

M7, value is well within 0.1 GeV.

Topp, spectrum:As shown in Section 3.3, one does not expect significant uncertainties in the prediction
of the topp, spectrum. However, to see an effect we have artificially altered thetagpectrum by
applying a cut at the generator level. We found that even requiring all top quarks tphavé00 GeV

gives rise to only ad change £0.7 GeV) in the fitted value ofn;.

Initial state radiation:TheMg% value is unchanged even switching off completely the ISR.

Top andlW widths: Kinematical cuts that are usually applied affect the observed Breit-Wigner shape
(tails) of decaying particles. Conversely, poor knowledge of the widths may alter the genefated
mass spectrum depending on the cuts. In our case, only a small change]\ﬂ;%evalue is seen
relative to the zero-width approximation.

W polarisation: A significant shift is found for the isotropic decays of W when compared to the SM
expectation of its~ 70% longitudinal polarisation. In future runs of the Tevatron fiepolarisation

will be measured with a- 2% accuracy [98], and at the LHC this would be further improved, so that it
should not introduce additional uncertainties in simulations.

tt spin correlations:A “cross-talk” between andt decay products is possible due to experimental cuts.
To examine this effect in detail tHe—6 matrix elements have been implemented ¥TIRA preserving

the spin correlations [117]. No sizeable difference in Mg}% value is seen compared to the default
2—2 matrix elements.

QED bremsstrahlungOnly a small effect is observed when it is switched off. Furthermore, QED radia-
tion is well understood and can be properly simulated.

Final State RadiationA large shift of~ 7 GeV is observed when the FSR is switched off. This is due
to the absence of evolution for tlbequark, whose fragmentation function will be unphysically hard.
To evaluate the uncertainty we varied the parton virtuality sealg,,, the invariant mass cut-off below
which the showering is terminated. A50% variation of it around the default (tuned to data) value of
1 GeV induces an uncertainty of 1, GeV.

b fragmentation, except FSIAs a default, in PTHIA we have used the Peterson form for thquark
fragmentation function witl, = 0.005. Variation of this value by-10% [118] leads to an uncertainty
of ;8;35 GeV. (The+10% uncertainty omy is inferred from LEP/SLD precision of 1% on the average
scaled energy aoB-hadrons.) It should be pointed out that recent accurate measurements-afuiuek
fragmentation function [119] are not well fitted by the Peterson form.

The last two items of this list deserve some additional comments. While the separation between
the FSR and the non-perturbative fragmentation phases seems unnecessary, and liable to lead to an over-
estimate of the uncertainty, it is important to remark that our knowledge of the non-perturbative hadroni-
sation comes entirely from the productiontefiadrons inZ" decays at LEP and SLC. It is important to
ensure that the accuracy of both perturbative and non-perturbative effects is known, since the perturbative
evolution ofb quarks fromZ° and top decays are not the same owing to the different scales involved. An
agreement between data and Monte Carlo calculations fdrhiagiron fragmentation function at tt#
does not guarantee a correct estimate obthadron fragmentation function in top decays.

To be specific, we shall consider here the effects induced by the higher-order matrix element
corrections to the radiative top decays:bWW g [54]. These effects cannot be simulated by a change
in the virtuality scalem,,,;, as explored above in the study based oTHRA, as they have a different
physical origin. The extended phase-space available for gluon emission after inclusion of the matrix-
element corrections leads to a softening of thguark, and, as a result, of tHeg//¢) spectrum. For
simplicity, we study here the invariant mass of the syst&fnThe resulting invariant mass distributions,
for m;= 175 GeV, with (HERWIG 6.1) and without IERWIG 6.0) matrix element corrections are shown
in Fig. 25. The averages of the two distributions, as a function of the top mass, are given on the right
of the figure, and the difference of the averages are given in Table 7. Given the slopes of the correlation

36



105 ————
| Solid: Herwig 6.1
Dashes: Herwig 6.0
7> 100 — ]
B 0010 |— 1=
U )
g S
m o~
é Em 95 (— o
30‘005 — —
Iy 0.568 m, — 6.004
o
5 -
> 90 — |
0.000 s L L ‘ L
0 50 100 150 170 172 174 176 178 180
mp, m, (GeV)

Fig. 25: Left: invariant mass of th8-lepton system forn; = 175 GeV, according tdHERWIG 6.0 (dotted) and 6.1 (with
matrix element corrections, solid). Right: linear fits to the average invariant fnasg as a function oin;.

Table 7: Negative shift in the average invariant m@ss;,) after inclusion of matrix element corrections for the top decay in
HERWIG. Left: average over all values of 5,. Right: average over the sample withz, > 50 GeV.

Ly | (m%2) — (m%y) @Impe) | (mBy) — (mBi) (mpe > 50 GeV) |
171 GeV| (0.891 £ 0.033) GeV (0.479 £ 0.036) GeV
173 GeV| (0.844 £ 0.033) GeV (0.479 £ 0.034) GeV
175 GeV|  (0.843 £ 0.039) GeV (0.510 £ 0.035) GeV
177 GeV| (0.855 = 0.039) GeV (0.466 = 0.035) GeV
179 GeV| (0.792 * 0.040) GeV (0.427 £ 0.036) GeV

between(mp,) andm,, we see that the corrections due to inclusion of the exact matrix elements are
between 1 GeV (fornp, > 50 GeV) and 1.5 GeV (for the full sample).

More details of the analysis will be found in [64]. It is also found there that the dependence of
(mpe) on the hadronic center of mass energy, or on the partonic initial state producitigptiig is no
larger than 100 MeV. We take this as an indication that the effects of non-factorisable non-perturbative
corrections (such as those induced by the neutralisation of the colour of the top quark decay products)
are much smaller than the 1 GeV accuracy goal on the mass.

A summary of these studies is given in Fig. 26. One sees an impressive stability of the re-
sults for reasonable choices of parameters. The expected systematic erroM%;ﬁeletermination
is < 0% GeV which translates into a systematic error on the top maésipfs 703 GeV.

In addition to the above studies, we also compared directly the resulER¥VIG (v5.9) and
PYTHIA. With HERWIG we have tried various tunings from LEP experiments as well as its default
settings [51]. They all yield comparable results to each other andrtelIR results, and are within
< 0.5 GeV. This corresponds to a systematic uncertadinty <1 GeV.

4.7 Conclusions for the top mass measurement at the LHC

The very large samples of top quark events which will be accumulated at the LHC lead to a precision
measurement of the top quark mass. Different statistically independent channels have been investigated
and from the studies so far a precision of better than 2 GeV in each case can be obtained. In particular
for the lepton plus jets channel where thg is measured directly reconstructing the invariant mass of
them,; candidates, such a precision can be achieved within a year or running at low luminosity. For
the channels involving two or more leptons, data from several years have to be combined to limit the
statistical error in the measurement beyond the expected systematic errors.
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Fig. 26: Observean, shifts for the various systematic effects studied fordhe.J /) channel.

With the statistical error not being a problem, the emphasis of the work was devoted to estimate
the systematic error involved in each method. For each sample, the contributing systematic errors are
different, a fact which will allow important cross-checks to be made. The results indicate that a total
error below 2 GeV should be feasible. In the case of the lepton plus jet channel the major contribution
to the uncertainty is identified in the jet energy scale (in particular fob{je¢s) and in the knowledge
of FSR. When a special sub-sample of hjghtop events is used and the; is reconstructed using a
large calorimeter cluster the FSR sensitivity is reduced, but further work is required to validate it. For
the channels using two or more leptons for the top decay, the major contribution in the systematic error
comes from the Monte Carlo and from how well the kinematic observable used for the mass measurement
is related to the mass of the top quark.

In ¢J /v final states the top mass can be determined with a systematic uncertaigtyldgeV.
These final states are experimentally very clean and can be exploited even at highest LHC luminosities.
The precision would be limited by the theoretical uncertainties which is basically reduced to the one
associated with the— B meson transition. This method of top mass determination looks very promising,
and a final definition of its ultimate reach will rely on a better understanding of theoretical issues, and on
the possibility to minimise the model dependence using the LHC data themselves.

5. SINGLE TOP PRODUCTION®

At the LHC, top quarks are mostly produced in pairs, via the strong pragesst (and, to a lesser
extent,qg—tt). However, there are a significant number of top quarks that are produced singly, via the
weak interaction. There are three separate single-top quark production processes of interest at the LHC,
which may be characterised by the virtuality of héboson (of four-momentury) in the process:
e t-channel: The dominant process involves a spacekikboson (2 < 0), as shown in Fig. 27(a)
[120]. The virtuallW boson strikes & quark in the proton sea, promoting it to a top quark. This

®Section coordinators: S. Willenbrock, D. O'Neil (ATLAS), J. Womersley (CMS).
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Fig. 27: Feynman diagrams for single-top quark production in hadron collisions:ctennel process; (3}channel process;
(c) associated production (only one of the two diagrams for this process is shown).

Table 8: Total cross sections (pb) for single-top quark production and top quark pair production at the LHG135
42 GeV. The NLOt-channel cross section is from [125]. The Nls&hannel cross section is from [126]. The cross section
for the Wt process is from [124]; it is leading order, with a subset of the NLO corrections included. The uncertainties are due
to variation of the factorisation and renormalisation scales; uncertainty in the parton distribution functions; and uncertainty in
the top quark mas2(GeV).

| process:| t-channel s-channel Wt tt |

| o(pb): [ 245+£27 102+£0.7 51+9 ~ 800 |

process is also referred to #88-gluon fusion, because thliequark ultimately arises from a gluon
splitting tobb.

e s-channel: If one rotates thechannel diagram such that the virtd&l boson becomes time-like,
as shown in Fig. 27(b), one has another process that produces a single top quark [121, 122]. The
virtuality of the W boson isg? > (my + my)?.

e Associated production: A single top quark may also be produced via the weak interaction in
association with a redV’ boson ¢* = M3,), as shown in Fig. 27(c) [123, 124]. One of the initial
partons is @& quark in the proton sea, as in thehannel process.

The total cross sections for these three single-top quark production processes are listed in Table 8,
along with the cross section for the strong production of top quark pairs.¢t-Thannel process has
the largest cross section; it is nearly one third as large as the cross section for top quark pairs. The
channel process has the smallest cross section, more than an order of magnitude lesg-tblaanimel
process. Th&/t process has a cross section intermediate between these two. We will argue that all three
processes are observable at the LHC. #-bbannel and-channel processes will first be observed at the
Fermilab Tevatron [127]; th&/t process will first be seen at the LHC.

There are several reasons for studying the production of single top quarks at the LHC:

e The cross sections for single-top quark processes are proportiofia}|to These processes pro-
vide the only known way to directly measurg, at hadron colliders.

e Single-top quark events are backgrounds to other signals. For example, single-top quark events
are backgrounds to some signals for the Higgs boson [128].

e Single top quarks are produced with nearly)% polarisation, due to the weak interaction [123,
129, 130, 131]. This polarisation serves as a test oithe A structure of the top quark charged-
current weak interaction.

e New physics may be discernible in single-top quark events. New physics can influence single-top
quark production by inducing non-SM weak interactions [129, 132, 133, 134, 135], via loop effects
[136, 137, 138, 139, 140], or by providing new sources of single-top quark events [133, 137, 141,
142).

In the next three subsections we separately consider the three single-top quark production pro-
cesses. The subsection after these discusses the polarisation of single top quarks. In the concluding
section, we discuss the accuracy with whighcan be measured in single-top quark events at the LHC.
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5.1 t-channel single-top production
5.11 Theory

The largest source of single top quarks at the LHC is viattbhbannel process, shown in Fig. 27(a)
[120, 123, 125, 129, 143, 144, 145]. A space-liké € 0) W boson strikes & quark in the proton sea,
promoting it to a top quark. As shown in Table 8, the cross section for this process is about one third that
of the strong production of top quark pairs. Thus there will be an enormous number of single top quarks
produced via theé-channel process at the LHC.

It is perhaps surprising that the cross section for the weak production of a single top quark, of
order a3, is comparable to that of the strong production of top quark pairs, of etélerThere are
several enhancements to thehannel production of a single top quark that are responsible for this:

e The differential cross section for thechannel process is proportionalde/dq? ~ 1/(q*—M3,)?,
due to thelW-boson propagator. The total cross section is therefore dominated by the region
l¢?| < M}, and is proportional td /Mg,. In contrast, the total cross section for the strong
production of top quark pairs is proportional tds, wheres > 4m? is the parton center-of-mass
energy.

e Since only a single top quark is produced, the typical value of the parton momentum fragion
half that of top quark pair production. Since parton distribution functions scale roughly like
at small values of, and there are two parton distribution functions, this leads to an enhancement
factor of roughly four.

The fact that the total cross section is dominated by the regign< M7, also has the implication that
the final-state light quark tends to be emitted at small angles,high rapidities. This characteristic
feature of the signal proves to be useful when isolating it from backgrounds.

Theb distribution function in the proton sea arises from the splitting of virtual gluons into nearly-
collinearbb pairs. Thus it is implicit that there istain the final state, which accompanies the top quark
and the light quark. The final-stabdends to reside at small-, so it is usually unobservable.

The total cross section for thechannel production of single top quarks has been calculated at
NLO [125, 143]; the result is given in Table 8. A subset of the NLO corrections is shown in Fig. 28(a).
This correction arises from an initial gluon which splits intébepair. If thebb pair is nearly collinear,
then this process contributes to the generation obttistribution function, which is already present at
leading order; hence, one does not include this kinematic region as a contribution to the NLO correction.
This is indicated schematically in Fig. 28(b). Only the contribution wheratlpair is non-collinear is a
proper NLO correction to the total cross sectiofihe other corrections to this process, due to final-state
and virtual gluons, as well as corrections associated with the light quark, are also included in the cross
section given in Table 8.

The central value for the cross section is obtained by setting the factorisatio? sfcttled distri-
bution function equal ta? = —q? + m?. The uncertainty in the NLO cross section due to the variation
of the factorisation scale between one half and twice its central valig.iDue to the similarity with
deep-inelastic scattering, the factorisation scale of the light quark is —¢?, and is not varied [125].

Since the tends to reside at lowr, the dominant final state #8755, where thdV'b are the decay
products of the top quark, and the jet is at high rapidity. Howeven thatpr > 20 GeV in roughly40%
of the events, in which case the final statéli$b;j. From a theoretical perspective, the optimal strategy
is to isolate both final states and thereby measure the total cross section, which has an uncertainty of
only 4% from varying the factorisation scale, as mentioned above. Howevel/ titg final state has a
large background from¥, and it has not yet been established by ATLAS or CMS that this signal can be
isolated, although the analysis of [145] gives cause for optimism. Thus we focus Gnithinal state,

"The formalism for separating the nearly-collinear and non-collinear regions, and for generafirdisthibution function,
was developed in Refs. [146, 58].
8The factorisation and renormalisation scales are set equal.
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Fig. 28: (a) Initial-gluon correction to single-top quark production via #fohannel process (the diagram with tHé and

gluon lines crossed is not shown); (b) the kinematic region in which the gluon splits to a nearly-cdiliner (the double

line through the) propagator indicates that it is nearly on shell) is subtracted from the correction, as it is already included at
leading order.

demanding that thé havepr < preus. FOrprew: = 20 GeV? the cross section for this semi-inclusive
process is 164 pb, with an uncertainty 1@f% from varying the factorisation scale [144], about twice

the uncertainty of the total cross section. Work is in progress to calculate the differential cross section
do /dpry at NLO with the goal of reducing this uncertainty [147]. It would also be desirable to calculate
the total cross section at next-to-next-to-leading order (NNLO).

Additional theoretical uncertainties stem from the top quark mass and the parton distribution func-
tions. An uncertainty in the top quark masdseV yields an uncertainty of onBf in the cross section,
which is negligible. This is due to the fact that the cross section scale$/likg, rather thanl/s. The
uncertainty in the cross section due to the parton distribution functions is estimated in [148](% be
That analysis suggests that the uncertainty can be reduced below this value. Combining all uncertainties
in quadrature, we conclude that the total theoretical uncertainty is pregéfitlyn the Wb; cross sec-
tion (11% in the total cross section). The discussion above suggests that this can be significantly reduced
with further effort.

5.12 Phenomenology

Studies of the-channel process have been carried out by both ATLAS and CMS. We will first describe
the CMS study, and then that of ATLAS.

In order to reject the largét background in this channel, it is necessary to impose a cut on jet
multiplicity. Accurate modelling of jet response and resolution is therefore desirable, and so CMS [149]
used a full GEANT calorimeter simulation of the detector. The GEANT simulation also allows a more
realistic modelling of the missingr response of the detector, which is important in understanding the
mass resolution which can be obtained on the reconstruciadrk. The detailed calorimeter simulation
was combined with a parameterisethgging efficiency.

Signal events were generated usingrBA 5.72 [52], withm; = 175 GeV and the CTEQ2L
parton distribution functions. Events were preselected at the generator level to have one and only one
charged lepton (withhy > 25 GeV and|n| < 2.5) and one or two jets (generator-level jets were found
using the LUCELL clustering algorithm, which is part of fHIA). Generated events were then passed
through the parameteriséetagging and the GEANT detector simulation. The CM&gging perfor-
mance is taken from a study which used a detailed detector simulation combined with existing CDF data
on impact-parameter resolutions. The tagging efficiencypfor> 50 GeV is typically 50% forb-jets,
10% for c-jets, and 1-2% for light quarks and gluons. These efficiencies fall quite rapidly for lower
transverse momenta, and it was assumed no tagging could be perfornpgd<ta20 GeV or|n| > 2.4.
The generated luminosity corresponded to about 100 plonly 30 hours of running at033cm—2s~1.

Thett andW Z backgrounds were also generated usingHPA 5.72. The same pre-selections
were applied at the generator level. THé&+ jets backgrounds were generated using the VECBOS

®The CMS analysis presented below uges,: = 20 GeV; the ATLAS analysis us@sr..: = 15 GeV.
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Fig. 29: Reconstructed top mass for signal plus backgrounds (open histogram) and backgrounds only (shaded). The back-
grounds considered atg W + 2 jets andiV + 3 jets. The vertical scale is events per 6 GeV mass bin pet pbluminosity.

generator [150], combined WitHERWIG 5.6 [51] to fragment the outgoing partoHsIW + 2 jets and
W + 3 jets processes were generated separately. Again, events were preselected to have a charged lepton
with pr > 25 GeV and|n| < 2.5, and to have a (parton-levely > 15 GeV for the final-state jets.

Events were then selected which passed the following requirements:

e One and only one isolated leptofi£ e or ) with pr > 20 GeV and|n| < 2.5. This allows the
events to pass a reasonable lepton trigger.

e Missingpr > 20 GeV, and transverse mass (of the lepton and misgiNg0 < mr < 100 GeV.
These two requirements seléét— /v candidates.

e Exactly two jets withpy > 20 GeV and|n| < 4. Requiring at least two jets reduces flie+ jets
background, while requiring no more than two jets rejects thmckground which naively would
produce four jets in the final state.

e One jet withpy > 20 GeV and|n| < 2.5, the other jet witlpr > 50 GeV and2.5 < |n| < 4.0.
The requirement that the second jet be at forward rapidities tends to select the detiegthel
process.

e Leading jetpr < 100 GeV. This helps to reduce thé background.

e Exactly oneb-tagged jet (given thé-tagging acceptance, this is always the central jet). This
requirement again reduces and of course rejectd’+ jets processes with light-quark or gluon
jets.

e Invariant mass of the two jets in tl%® — 100 GeV range. This rejectd’ Z events withZ —bb.

The single-top signal is then searched for in the invariant mass dfittend theb-tagged jet (which

should peak at the top quark mass). The mass was reconstructed assuming the solutioriifor the
kinematics which yields the lowdp?|. (It is possible to use other choices, for example the solution
which gives thelW’b mass closest taz;. This would result in an apparently better top mass resolution

but would also severely bias the background shape; the statistical significance of the signal would not be
improved.)

Figure 29 shows the reconstructed mass distribution for signal and background combined. The
signal is apparent as an excess over the background (the shaded histogram) around 160 GeV. (Since jet

10T he version of VECBOS used here, and its interfadd ERWIG, were developed for use in CDF [151], and were adapted
for CMS by R. Vidal.
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energy scale corrections have not been applied to the simulated events, the top mass reconstructs to less
than its true value.) The signal-to-background ratio in a windon66ft 20 GeV is 3.5 with a clear peak

visible in the Wb invariant-mass distribution. The number of signal events is 66 in 100,ahving a

signal efficiency of 1.2% (after thd’— ¢ branching ratio). We then find that 10fbwould yield 6600

signal events{) and 1900 backgrounds), sufficient for a statistical accuracy on the number of signal
events ofy/S + B/S = 1.4%.

The largest background comes frdiic; with the charm jet mistagged asbget. It would be
worthwhile to develop &-tagging algorithm having greater rejection against such mistags, even at the
cost of some signal efficiency. Th&bb background was found to be a small contribution tolie}- 2
jets background at the parton level for the selection cuts employed here, and was therefore not explicitly
included in the analysis.

The use of the forward jet tag substantially improves the signal-to-background ratio, and allows
a clear reconstructed top-mass peak to be seen. However, it does not significantly igpsreves /.S
[144]. One could therefore imagine omitting the forward jet requirement if the systematic uncertainty
could thereby be reduced.

Compared with earlier studies (for example [144]), this analysis uses more realistic jet and mis-
singpr resolutions, and includes initial- and final-state gluon radiation. As a result, the top-mass res-
olution is worsened; but the resolution found here compares well with the result of a full simulation of
single-top production in CDF.

A study of the cross-section measurement forttbkannel process was also carried out by ATLAS
[152]. Signal events were generated using the ONETOP parton-level Monte Carlo [153] with fragmen-
tation, radiation, and underlying event simulated bWriRA 5.72. Backgrounds containing top quarks
(tt and other single-top production) were also generated using ONETOP, Whilgets andi¥ bb back-
grounds were generated B\ERWIG 5.6 These events were processed by the ATLAS parameterised
detector simulation assuming a 6(%agging efficiency for-jets, 10% forc-jets, and 1% for light
guarks and gluons. The events were then analysed with a view towards sepadtamel single top
from background and measuring its cross section.

Event selection criteria were divided into two types: pre-selection and selection cuts. The pre-
selection criteria were as follows:
e at least one isolated lepton with > 20 GeV;
¢ at least oné-tagged jet withpr > 50 GeV,
e at least one other jet withy > 30 GeV.
These were followed by the selection cuts:

¢ two and only two jets in the event (a jet has > 15 GeV);
e One jetis a centrdl-tagged jet;
e the other jet is a forward«| > 2.5) untagged jet witlpr > 50 GeV.

The application of these cuts, and also the requirement of a reconstructed top mass between 150
and 200 GeV, yields the number of events shown in Table 9. The final signal efficiency is 3% and the
signal-to-background ratio is 2.4. This implies a statistical precision on the cross-section measurement of
V'S + B/S = 0.9% with 10 fo~! of data. Introducing other event selection variables (see [30, 154, 155])
it is possible to improve the signal-to-background ratio to nearly 5, but this does not improve the cross-
section measurement due to the small remaining signal efficiency.

Both the CMS and ATLAS studies indicate that it will be possible to obsenleannel single-top
production with a good signal-to-background ratio and a statistical uncertainty in the cross section of
less than 2% with 10 fb'. Thus the uncertainty in the extracted valuelff will aimost certainly be
dominated by systematic uncertainties, as discussed in the conclusions.

1The Wbb background was generated using the matrix element from [89] interfaddERWIG 5.6.
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Table 9: Cumulative effect of cuts archannel signal and backgrounds. The first four rows of this table refer to cumulative
efficiencies of various cuts. The last two rows refer to the number of events for 10@nly events in whichV — ev or uv
are considered in this table. Uncertainties quoted in this table are due entirely to Monte Carlo statistics.

cut t-channel tt Wbb W+ jets
eff(%) eff(%) eff(%) eff(%)
pre-selection 18.5 44.4 2.53 0.66
njets=2 12.1 0.996 1.55 0.291
fwd jet
In| > 2.5 4.15 0.035 0.064 0.043
pr >50 GeV
Mewp
150-200 GeV 3.00 0.017 0.023 0.016
1
events/10 M1 o 4 % 105 | 2.40 x 105 | 6.67 x 105 | 4.00 x 107
(before cuts)
1
events/l0M™ |y e51549 | 455074 | 155017 | 6339:265
(after cuts)

5.2 s-channel single-top production
5.21 Theory

The s-channel production of single top quarks is shown in Fig. 27(b) [121, 122, 123, 126, 144, 145]. The
cross section is much less than that oftfehannel process because it scales likerather thanl /M3, .
However, thes-channel process has the advantage that the quark and antiquark distribution functions are
relatively well known, so the uncertainty from the parton distribution functions is small. Furthermore,
the parton luminosity can be constrained by measuring the Drell-Yan pregesd’*—/{, which has

the identical initial state [122, 156F.

The total cross section for thechannel process has been calculated at NLO [126]; the result is
given in Table 8. The factorisation and renormalisation scales are set equaktog?; varying each,
independently, between one-half and twice its central value yields uncertainties in the cross s@étion of
from each source. The uncertainty in the cross section from the parton distribution functions is estimated
to be4%. The largest single source of uncertainty is the top quark mass; an uncertan@edf yields
an uncertainty in the cross sectioni¥%. The relatively large sensitivity of the cross section to the top
quark mass is a manifestation of thes scaling. Combining all theoretical uncertainties in quadrature
yields a total uncertainty in the cross section78f. This is much less than the present theoretical
uncertainty in the-channel cross section.

The Yukawa correction to this process, of ordaym?/MZ,, is less than one percent [126].
However, this correction could be significant in a two-Higgs-doublet model for low valuesng?,
in which the Yukawa coupling is enhanced [138].

5.22 Phenomenology

In order to evaluate the potential to separate ¢fahannel signal from its backgrounds, Monte Carlo
events have been processed by a fast (parameterised) simulation of an LHC detector. At parton level the
signal and thet background were generated by the ONETOP Monte Carlo [153]. Radiation, showering,
and the underlying event were added byTRIA 5.72 [52]. ThelV + jets andiW bb backgrounds were
generated usinlERWIG 5.6 [51]13 Table 8 presents the cross sections assumed for the processes

12The parton luminosity can only be constrained, not directly measured, with this process. Since the neutrino longitudinal
momentum is unknown, the? of the virtualTW cannot be reconstructed.
3The Wbb background was generated using the matrix element from [89] interfaddERWIG 5.6.
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Table 10: Cumulative effect of cuts aachannel signal and backgrounds. The first five rows of this table refer to cumulative
efficiencies of various cuts. The last two rows refer to the number of events for30 @nly events in which W- ev or pv
are considered in this table. Uncertainties quoted in this table are due entirely to Monte Carlo statistics.

cut s-channel | t-channel Wt tt Wbb W+ jets
eff(%) eff(%) | eff%) | eff%) | eff(%) | eff(%)
pre-selection 27.0 18.5 25.5 44.4 2.53 0.667
njets=2 18.4 121 4.03 0.996 1.55 0.291
nbjet=2 2.10 0.035 0.018 0.023 0.034 | 0.0005
pr > 75 GeV
Sy
s ey 1.92 0.031 0.016 0.021 0.028 | 0.0005
M
150200 Gev 1.36 0.023 0.006 0.012 0.0097 | 0.00014
1
events/30 | o 100 | 1.63 % 108 | 4.5 % 10° | 6.9 x 106 | 2.0 x 106 | 1.2 x 108
(before cuts)
1
events/30 0™ | oo L35 | 375413 | 27415 | 8534175 | 194434 | 160 = 76
(after cuts)

containing top quarks. The cross section for thet jets background is normalised to that predicted
by the VECBOS Monte Carlo [150] and is taken to be 18006“piThe Wb cross section is taken
from [144] to be 300 pb.

From a phenomenological standpoint the most important distinction betweencti@nnel and
t-channel sources of single top is the presence of a secondvhigket in the s-channel process. As
mentioned previously, in-channel events the secohdet tends to be at low, and is often not seen.
Therefore, requiring twoé-jets above 75 Geyr will eliminate most of the-channel background. Re-
quiring two highpr b-jets in the event also suppresses itig- jets background relative to the signal.

In addition to suppressing thechannel background it is also necessary, as in other single-top
signals, to design cuts to reduce thé+ jets and:t backgrounds. In order to reduce contamination by
W+ jets events, the reconstructed top mass in each event must fall within a window about the known top
mass (150-200 GeV), and the events must have a total transverse jet moffaatione 175 GeV. Only
events containing exactly two jets (both tagged'ssare kept in order to reduce tiebackground.

Table 10 presents the cumulative effect of all cuts onsticsbannel signal and on the backgrounds.
Events from¢-channel single-top production are included in this table as a background 4ecttannel
process. From this table the predicted signal-to-background ratio fert¢hannel signal is calculated
to be 0.56. The results also imply a signal statistical significasga/3) of 23 with an integrated
luminosity of 30 fo-!. The statistical precision on the cross section, calculated fy@n+ B/, is
5.5% with 30 fo~!.

This study indicates that, despite the large anticipated background rate, it should be possible to
perform a good statistical measurement of thehannel single-top cross section. The accuracy with
which V,;, can be measured is discussed in the conclusions.

5.3 Associated production
5.31 Theory

Single top quarks may also be produced in association withteoson, as shown in Fig. 27(c) [123, 124,
145]. Like thet-channel process, one of the initial partons isquark. However, unlike the-channel

1This cross section is defined for events containing at least two jets, eachwith15 GeV and|n| < 5.
15scalar sum of the transverse momentum of all jets in the event.
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process, this process scales likes. This, combined with the higher values:oheeded to produce both
a top quark and & boson, leads to a cross section for associated production which is about a factor of
five less than that of the thiechannel process, despite the fact that it is of ordery, rather thams3,, .

The total cross section for associated production has been calculated at leading order, with a subset
of the NLO corrections included [124, 145]; the result is given in Table 8. This subset is analogous to the
initial-gluon correction to the-channel process, discussed previously. The other corrections have not
yet been evaluatetf. The initial-gluon correction contains an interesting feature which has no analogue
in the t-channel process. One of the contributing diagrams to the initial-gluon corregijen i tb)
corresponds tgg—tt, followed byt—1¥b. This should not be considered as a correction to associated
production, but rather as a background (it is in fact the dominant background, as discussed below). Thus,
when evaluating the initial-gluon correction, it is necessary to subtract the contribution in whictsthe
on shell. This is done properly in [124].

The cross section is evaluated with the common factorisation and renormalisation scales set equal
to 2 = s. The uncertainty in the cross section due to varying these scales between one half and twice
their central value i85%. This uncertainty would presumably be reduced with a full NLO calculation.
The uncertainty in the cross section from the parton distribution functions is estimatedi(# he48],1"
although this could be improved with further study. The uncertainty in the cross section due to an
uncertainty in the top quark mass dfGeV is4%, relatively large due to thé/s scaling of the cross
section. Combining all theoretical uncertainties in quadrature yields a total uncertainty at preiss¥if of
the largest of the three single-top processes.

5.32 Phenomenology

The strategy for measuring the cross section for associated produidtioméde) is similar to that for
thet-channel process, as they share the same backgrounds. However, the nature of associated production
makes it relatively easy to separate frdiy- jets and difficult to separate from events. This difficulty

in removing thett background does not preclude obtaining a precise cross-section measurement in this
channel, assuming the rate fiercan be well measured at the LHC.

Two studies designed to separate signal from background have been performed using two different
final states. The first is a study by ATLAS [30] which attempts to isol&tiesignal events in which one
W decays to jets and the other decays to leptons. The second study, which is presented in [124], attempts
to isolate signal events in which bolii’s decay leptonically.

The first study presented here was done by ATLAS using the same event sample described in
Section 5.1. Since the presence of a single isolated higlepton is one of the preconditions of this
study, the second’ must decay to two jets to be accepted by the event pre-selection. Therefore requiring
a two-jet invariant mass within a window around tHé mass will serve to eliminate most events that
do not contain a second/. The two-jet invariant-mass distribution is shown in Fig. 30 and clearly
demonstrates the presence of a sharp peak in the associated-production signaltamadkground.

This effectively leaves$t as the only background /¢ events.

In addition to these special distinguishing features of e signal, there are several simple
kinematic requirements which can be employed to reducettbackground. By choosing events with
exactly three jets and with exactly one of them tagged lage some rejection of th& background is
possible. Some further rejection is obtained by limiting the selection to events with invariant mass less
than 300 GeV, where the invariant mass of an event is defined as the invariant mass obtained by adding
the four-vectors of all reconstructed jets and charged leptoasd:). However, even with these cuts
thett background is significantly larger than tHét signal.

Table 11 presents the cumulative effect of all cuts onlthesignal and on thet and W+ jets

8The analogous calculation f&¥ ¢ production has been performed in [157].
This is the uncertainty in the gluon-gluon luminosity&t = (m; + Mw)/V/S ~ 0.02, wherey/S = 14 TeV.
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Fig. 30: The normalised two-jet invariant-mass distribution. For each event the two-jet combination with mass closest to the
W mass is plotted. This clearly shows a peak in the distributiofferandt¢ which is not present for the other backgrounds.

backgrounds. Th&/bb andt-channel single-top backgrounds are virtually eliminated by the cuts and
so are not included in the table. From this table the predicted signal-to-background ratio Toit the
signal is calculated to be 0.24. After three years of running at low luminosity (39 ,fhis implies a
signal statistical significances(+/B) of 25 and a statistical error on th&t cross sectiom\{'S + B/S)

of 4.4%.

The second study [124] was done at parton level and involved the separation of signal from back-
ground in the mode in which botl’s decay to leptons. This signal contains two hjghleptons and
only one jet (theé-jet produced from the top decay). In this decay channel it was found that, after apply-
ing detector acceptance cuts, requiring preciselyiotagged jet withpy > 15 GeV is enough to yield
a signal-to-background ratio of nearly unity. Also, the signal efficiency is significantly higher than in the
ATLAS analysis, allowing more total signal events to pass the cuts despite the lower branching ratio for
this decay mode. The statistical precision on the cross section measured in this analysis is 1.3% with
an integrated luminosity of 30 fii. The accuracy with whicl;;, can be extracted is discussed in the
conclusions.

5.4 Polarisation in single-top production
5.41 Theory

Because single top quarks are produced through the weak interaction, they are highly polarised [123,
129, 130, 131, 144]. In the ultra-relativistic limit, the top quarks are produced in helicity eigenstates
with helicity —1/2 (the top antiquarks have helicity1/2), because th& — A structure of the weak
interaction selects quarks of a definite chirality. However, if the top quarks are not ultra-relativistic,
chirality is not the same as helicity. Nevertheless, it was shown in [130] that there is a basis in which
the top quark ig900% polarised, regardless of its energy. The top quark spin points along the direction
of the d-type ord-type quark in the event, in the top quark rest frame {tlsin points opposite this
direction). Int-channel production, this is the direction of the final-state light quatk—+{dt) or the

beam direction {b—t). In s-channel production, this is the beam directia--tb). In associated
production gb—Wt), this is the direction of thd quark (or charged lepton) from th& decay.

We focus our attention on thechannel single-top process for the remainder of this section. The
top quark polarisation in thechannel process has been calculated at NLO [131]; the results below are
taken from this study. In the case pproduction,80% of the events have thétype quark in the final
state. This suggests using the direction of the light-quark jet, as observed in the top quark rest frame, to
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Table 11: Cumulative effect of cuts di't signal and backgrounds. Pre-selection cuts are defined in the same way as for the
ATLAS t-channel analysis described earlier in this report. The first five rows of this table refer to cumulative efficiencies of
various cuts. The last two rows refer to the number of events for 30.f@nly events in which W ev or uv are considered

in this table. Uncertainties quoted in this table are due entirely to Monte Carlo statistics.

cut Wt tt W+ jets
eff(%) eff(%) eff(%)
pre-selection 25.5 44.4 0.66
njets=3
1> 50 GeV 3.41 4.4 0.030
nbjet=1
o7 > 50 GeV 3.32 3.24 0.028
Invariant Mass
< 300 GeV 0.55 0.36 0.00051
65 < M;; <95 0.49 0.14 0.000085
1
events/S0f 1 g5 105 | 72100 | 1.2¢108
(before cuts)
1
events/30 0™ 1 o ee 1 166 | 10616 + 625 | 102 + 59
(after cuts)

measure the spin. This has been dubbed the “spectator basis” [130]. The polarisation of the top quark
in this basis (defined aB = (Ny — N|)/(Ny + N|)) is 0.89. However, the polarisation is increased to
nearly100% when the cuts used in thechannel analysis are imposed. This is because the polarisation is
diluted by events in which thieis produced at highz; but such events are eliminated by the requirement

of only two jets.

In the case of production,69% of the events have thé-type quark in the initial state. This
suggests using the beam direction to measure #pn. However, it turns out that the spectator basis
again yields the largest polarisatiai,= —0.87. This polarisation is increased & = —0.96 when cuts
are applied®

Since the top quark decays via the weak interaction, its spin is analysed by the angular distribution
of its decay products. The most sensitive spin analyser in top decay is the charged lepton, which has a
(leading order) angular distribution with respect to the top quark spin of
1 dr 1

= ==(1 0 12
I'dcosb, 2( + cos br) (12)

in the top quark rest frame [158]. Hence the charged lepton tends to point along the direction of the
spectator jet.

5.42 Phenomenology

The goal of this analysis is to estimate the sensitivity of ATLAS and CMS to the measurement of the
polarisation of the top quarks produced by thehannel single-top process. Thehannel process was
chosen due to the large statistics available in this channel and the relative ease with which it is separated
from its backgrounds. Thechannel events produced by the ONETOP generator and passed through
PYTHIA and a parameterised detector simulation are analysed to attempt to recover the predicted SM
top polarisation in the presence of background and detector effects. Details of the study are presented
in [152, 154].

Bwith cuts applied, the polarisation in the so-calledbeamline basis” is slightly higheP = —0.97.
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The experimental measurement of the polarisation of the top quark is essentially a measurement
of the angular distribution of its decay products in the top quark rest frame. As explained above, the
most sensitive angle is between the charged lepton from top decay and the direction of the spectator jet,
in the top quark rest frame. In the absence of background or detector effects the angular distribution of
the charged lepton is given by

f(cosby) = %(1 + P cosby) (13)

whereP is the polarisation of the sample and can range frehrto 1.

Experimentally, in order to measure the angular distribution of the charged lepton in the top quark
rest frame, it is necessary to first reconstruct the four-momentum of the top quark. However, the recon-
struction of the top four-momentum suffers from an ambiguity due to the unknown longitudinal momen-
tum of the neutrino produced in the top decay. Usingiflieand top masses as constraittgne can
reconstruct the top four-momentum, but the quality of the reconstruction is degraded by this ambiguity.
Once the top four-momentum has been reconstructed, one can determine the direction of the spectator
jet and the charged lepton in the top quark rest frame. The angle between these two direétions is

In order to extract the value of the top polarisation from the angular distribution, reference event
samples were created with 100% alignment with the polarisation axis (spi#® up, +1) and with
100% anti-alignment with the polarisation axis (spin dowh,= —1). These reference distributions
were compared to a statistically-independent data set with the predicted SM top quark polarisation. This
comparison was done by minimising

=¥ (fin(cos 0); — fa(cosby);)? (14)

2 2
O-thi + Udi

(cos 0);

where the subscript d represents quantities calculated for the data distribution and the subscript th refers
to the generated reference distribution. The theoretical vAlueos 6,) is calculated via

Fin(eos ) = 5((1— P) p(cos 0y) + (1 + P) fr(cos ) (15)

where fp and fy refer to the value of the generated theoretical distribution for the 100% spin-down and
the 100% spin-up tops, respectively, afds the polarisation of the top sample. The procedure returns

an estimate of the top polarisation and an error on that estimate. In this way the sensitivity to changes in
top polarisation can be quantified.

Moving from the parton-level simulation to a simulation which includes both hadronisation and
detector effects is certain to complicate the measurement of the polarisation of the top quark. In ad-
dition, the signal could be biased by an event selection designed to eliminate background and will be
contaminated by residual background events.

The first histogram in Fig. 31 shows the angular distribution for signal only, at parton-level. The
second histogram in Fig. 31 shows the angular distribution of the charged lepton after detector effects
have been simulated. In addition to effects associated with detector energy smearing, jet and cluster
definitions,etc, this distribution includes the effects of ambiguities in reconstructing the top quark due to
the absence of information about the neutrino longitudinal momentum. It does not, however, contain the
effects of any event selection in order to separate signal from background. This histogram demonstrates
that the effect of hadronisation and detector resolution changes the shape of the angular distribution but
still produces a highly asymmetric distribution.

In addition to the effects introduced by the detector resolution, the effect of applying the event-
selection criteria can be evaluated by applying them one at a time and observing the change in shape of

this distribution. Faor the purposes of the polarisation analysis the event-selection criteria are:
19The W mass can be used to calculate the neutrino longitudinal momentum to within a two-fold ambiguity. Of these two
solutions the one which produces the best top mass is chosen.
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Fig. 31: Angular distribution of charged lepton in top rest frame for various data samples. The histograms progress from left-

to-right, top-to-bottom. The first histogram shows the parton-level distribution. The second histogram is after the simulation of

detector and reconstruction effects. The final four histograms illustrate the influence of event selection criteria on the angular
distribution. The effects of the cuts are cumulative and are the result of adding pre-selection cuts, a jet-multiplicity requirement,

a forward jet tag, and a top mass window, respectively.

e Pre-selection (trigger) cuts as in ATLAShannel analysis described previously;
e number of jets = 2;

e forward jet (n| > 2.5) with pp > 50 GeV,

e reconstructed top mass in the range 150-200 GeV.

This set of criteria leads to a signal efficiency of 3.0%, corresponding to more than 16000 events in
10 fb~! of integrated luminosity. Fig. 31 demonstrates the effect of applying these cuts in a cumulative
manner. Again the asymmetry of thehannel angular distribution is preserved, though more degrada-
tion is clearly evident, in particular neavs 6, = 1. The degradation is worse at these valuesosfy,

because the leptons from these events are emitted in the direction opposite to the top boost. This reduces
the momentum of the leptons causing more of them tgfaibased selection criteria.

SinceWW + jet events dominate the background remaining after cuts, they are taken as the only
background in this analysis. Fig. 32 shows the cumulative effect of cuts on the angular distribution of
the charged lepton fromil’ + jets events. A peculiar feature of these events is evident in all of these
distributions. This is the tendency for events to be grouped ewedl; = 1. The events which populate
this region tend to be the highast events. This shows that even basic jet and isolated-lepton definitions
and pre-selection cuts bias the angular distributiol/6f jets events.

When the event-selection criteria described in the previous sections are applied, the signal-to-
background ratio (treatin§l’+ jets as the only background) is found to be 2.6. Using the methods
described earlier it is possible to estimate the polarisation of a mixed samplehahnel signal and
W+ jets background. The reference distributions for 100% spin-down and 100% spin-up top quarks
mixed with background in a ratio of 2.6 are shown in Fig. 33. Also shown is the angular distribution
corresponding to a statistically-independent data sample with SM polarisation mixed with background
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Fig. 32: The effect of event selection cuts on the angular distribution of the charged lepidsyiBvents. The effects of the
cuts are cumulative. The first distribution is the result of applying the pre-selection (trigger) cuts only. Further cuts are applied
cumulatively from left-to-right, top-to-bottom.

in the ratio 2.6. The? function presented in (14) is minimised to obtain an estimate of the polarisation

of the top. To estimate the precision for one year of data-taking, the fit was done with 3456 signal events
and 1345 background events, corresponding to2 fiif integrated luminosity~ 1/5 of a year). For

this integrated luminosity the error on the polarisation measurement is 4.0%. Then, assuming the statis-
tics on the reference distributiongp (cos 6y) and f(cos ,), will lead to a negligible source of error,

this precision improves to 3.5%. Projecting these results to one year of data-taking at low luminosity
(10 fb~1), assuming that the errors scale as the square root of the number of events, yields a predicted
statistical precision of 1.6% on the measurement of the top polarisation.

5.5 Conclusions on single top production

As mentioned in the introduction, single-top quark production is the only known way to directly measure
Vi at a hadron collider. In this section we estimate the accuracy with whjcban be extracted at the
LHC, and discuss what will be required to achieve that accuracy.

There are four sources of uncertainty in the extractiofi’gf? from the single-top cross section:
theoretical, experimental, statistical, and machine luminosity. As we have seen, the statistical uncertainty
with 30 fb~! of integrated luminosity is less tha@¥ for both thet-channel proces8 and associated
production, and i$.5% for the s-channel process3{» with 100 fo~1). It will be a challenge to reduce
the other sources of uncertaintyi#, so we regard the statistical accuracy as being sufficient in all three
processes.

The traditional uncertainty in the machine luminosity is ab@t[159]. It may be possible to
reduce the uncertainty below this value using Drell-Yan data, but this relies on accurate knowledge of
the quark distribution functions. However, the procegs-1W*— /(v involves the identical combination

20nly 10 fb~* are required to achieve this accuracy in theghannel process.
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Fig. 33: The first histogram shows the reference distribution for 100% spin-up top quarks after detector effects and event-
selection criteria have been applied and the appropriate level of background has been mixed in. The second histogram shows
the reference distribution for 100% spin-down top quarks. The third histogram represents the expected SM distribution for a
statistically-independent sample of signal and background.

of parton distribution functions as techannel process, so it can be used to almost directly measure the
relevant parton luminosity, thereby avoiding the need to measure the machine luminosity [156].

The theoretical uncertainty is under the best control instolannel process. The theoretical
uncertainty is dominated by the uncertainty in the top quark mass; an uncertait@e¥ yields an
uncertainty of5%. This is cut in half if the uncertainty in the top mass is reducetl @eV. The small
uncertainty due to variation of the factorisation and renormalisation scales can be reduced to a negligible
amount by calculating the cross section at NNLO order, which should be possible in the near future.
The small uncertainty from the parton distribution functions can be further reduced as described in the
previous paragraph; this also obviates the need for a measurement of the machine luminosity.

The theoretical uncertainty in thechannel process is presently dominated by the factorisation-
scale dependence and the parton luminosity. Although the scale dependence of the total cross section
is small @%), the uncertainty in the semi-inclusive cross sectiofpf;) < 20 GeV) is aboutl0%.

This can be reduced by calculating the spectrum of theb at NLO. It may also prove possible to
measure the total cross section, although this has yet to be demonstrated. It is therefore plausible that
the factorisation-scale dependence will be ali¢atonce the LHC is operating. It is also likely that the
uncertainty from the parton distribution functions will be reduced below its present vallg#of The

parton luminosity could be directly measured usiig production, which is dominated byg—Wgq,

and therefore involves the identical combination of parton distribution functions asttennel process.

Again, this has the desirable feature of eliminating the need to measure the machine luminosity.

The theoretical uncertainty in the associated-production cross section can be reduced far below
its present value of8%. A full NLO calculation should reduce the factorisation-scale dependence to
roughly 5%. It is likely that the uncertainty from the parton distribution functions will also be reduced.
Unless it is possible to measure the luminosity directly, the uncertainty from the parton distribution
functions will be augmented by the uncertainty in the machine luminosity.

As far as experimental systematic uncertainties are concerned, the extraction of a signal cross
section requires knowledge of the backgrounds and of the efficiency and acceptance for the signal. These
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analyses require hard cuts on both signal and background, and so the processes need to be modelled and
understood very well.

For all of these processes, the major backgroundstamad W + jets. The largest background
for the s-channel process (where a doulbliag is employed) and associated productiontisThe ¢t
process can be isolated in other decay modes and in principle well measured.tHdchtr@nel process
the biggest background comes frd#ic; with the charm jet mistagged ag$det. Obviously it would be
worthwhile to develop @&-tagging algorithm having greater rejection against such mistags, even at the
cost of some signal efficiency, given that the signal rate is large. It may be possible to understand the
W +jets backgrounds by comparing with a sampleéZef jets events after applying similar selections to
those used to select the single-top sampl&/in jets. TheZ+ charm rate will be suppressed compared
to theWW+ charm rate since the latter is mostly produced from the strange sea, which is bigger than the
charm sea; nonetheless, the cross section, kinematics, jet multiplicities and so on can all be compared to
our simulations using th&+ jets sample.

The forward jet tag is very effective in enhancing the signal-to-background ratio indhannel
process. This means that jets need to be found with good efficiency up to large rapidities, |af least
in the calorimeter. Unfortunately these observations also imply that the background estimate is very
sensitive to the Monte Carlo predicting the correct mix of jet flavours and jet rapidities iivthgets
events. (We note that VECBOS generates very few jets in the tagging region, and so far there is no
collider data on forward jets in vector-boson events which could verify whether this is correct.) Of
course, effort applied to understandifig+ heavy-flavour jets backgrounds will pay off in many other
searches besides this one, and will be a very worthwhile investment. We also look forward to the results
of ongoing efforts to improve the Monte Carlo simulation of vector-boson plus jet production [160].
Requiring exactly two jets (as was done here to rejectttibackground) also means that we will be very
sensitive to our knowledge of jet efficiencies, QCD radiatiete, The cross-section measurement also
requires knowledge of thietagging efficiency. This should be measurable at the few-percent level using
control samples oft events selected with kinematic cuts alone.

As mentioned above, the purely statistical uncertainty in the cross-section measurement will be
less than 5%, as will most of the theoretical uncertainties. It will be a considerable challenge to reduce
the experimental systematic uncertainty to this level. At the present time, the experimental systematic
uncertainty in thet cross section at the Tevatron (which is a similar challenge in many respects, in-
volving jets,b-tagging, and background subtraction) is abbif; [10]. This total is made up of many
components which are each at the 5% level, so while it will be a lot of work to reduce them, there is no
obvious “brick wall” that would prevent this.

Many of these systematic issues can also be addressed by comparirthtmnel and-channel
single-top processes. It will be a powerful tool to be able to meagyran two channels which have
different dominant backgrounds, different selection cuts, and a different balance between theoretical and
experimental systematic uncertainties.

We are only just now entering the era of precision top physics with Run Il at the Tevatron. Single-
top production has not yet even been observed. We will learn a great deal over the next few years about
how to model top events and their backgrounds, and how to understand the systematic uncertainties. The
LHC will undoubtedly benefit from all this experience.

If all sources of uncertainty are kept to th& level or less, it should be possible to measure
|Vip|? to 10% or less. We therefore regard the measurementpivith an accuracy 05% or less as an
ambitious but attainable goal at the LHC. We have also seen that a measurement of the polarisation of
single top quarks produced via thehannel process will be possible with a statistical accurady6t
with 10 fb~!. We have not attempted to estimate the systematic uncertainty in this measurement.
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6. tt SPIN CORRELATIONS AND CP VIOLATION 21

For t¢ production at the LHC quantities associated with the spins of the top and antitop quark will
be “good” observables as well. The reason for this is well known. Because of its extremely short
lifetime 7+ (see Section 2.1) the top quark decays before it can form hadronic bound states. Thus the
information on the spin of the top quark does not get diluted. As the spin-flip time is much larger
thanr it is, moreover, very unlikely that the top quark changes its spin-state by emitting gluon(s) via a
chromomagnetic dipole transition before it decays. In any case this amplitude is calculable with QCD
perturbation theory. Hence by measuring the angular distributions and correlations of the decay products
of ¢ andt the spin-polarisations and the spin-spin correlations that were imprinted upansdmaple by

the production mechanism can be determined and compared with predictions made within the SM or its
extensions. Therefore these spin phenomena are an additional important means to study the fundamental
interactions involving the top quark.

In this section we are concerned with the production and decay of top-antitop pairs. At the LHC
the maintt production process is gluon-gluon fusiamg, annihilation being sub-dominant. As the main
SM decay mode is— W b we shall consider here the parton reactions

gg,q@—>tf+X—>bB+4f+X, (16)

where f denotes either a quark, a charged lepton or a neutrino. If the final state in (16) contains two,
one, or no highpr charged lepton(s) then we call these reactions, as usual, the di-lepton, single lepton,
and non-leptonidt decay channels, respectively. To lowest order QCD the matrix elements for (16),
including the completet spin correlations and the effects of the finite top &Fdvidths, were given in

[161, 162]. Spin correlation effects i production in hadron collisions were studied within the SM in
[162, 163, 164, 165, 166, 167, 168].

In order to discuss the top spin-polarisation and correlation phenomena that are to be expected
at the LHC it is useful to employ the narrow-width approximation for thend¢ quarks. Because
I';/my < 1 one can write, to good approximation, the squares of the exact Born matrix elemiéhts
A = gg, qq, in the form

| MO o Tr [pRV ] = pora B 550795- (17)

The complete spin information is contained in the (unnormalised) spin density maftidesgor the
production of on-shelit pairs and in the density matricesp for the decay of polarisetiandt quarks
into the above final states. The trace in (17) is to be taken im &mgl¢ spin spaces. The decay density
matrices will be discussed below. The matrix structur&o¥ is

A N/ i (A i A i j
Rﬁwg/,w = AW 600 8pr + B (0o 0557 + BN bowr (055 + Y (0o (0P)gp . (18)

whereo® are the Pauli matrices. Using rotational invariance the “structure functlBtf\@’, Bf’\) and
CZ-(J-A) can be further decomposed. A general discussion of the symmetry properties of these functions is

given in [169]. The functiom™), which determines th& cross section, is known in QCD at NLO [38].
Because of parity (P) invariance the vect®®), B(*") can have, within QCD, only a component normal

to the scattering plane. This component, which amounts to a normal polarisationtafubek, P! , is

induced by the absorptive part of the respective scattering amplitude and was computed for the above
LHC processes to order? [170]. (P! = P! if CP invariance holds.) The size of the normal polarisation
depends on the top quark scattering angle and on the c.m. energy. In the gluon-gluon fusionfrocess
reaches peak values of about%.5n ¢¢ production at the LHC the polarisation of the top quark within

the partonic scattering plane, which is P-violating, is small as well within the SM. Therefoteatitd
polarisations in the scattering plane are good observables to search for P-violating non-SM interactions
in the reactions (16) — see Section 3.4.

Zgection coordinators: W. Bernreuther, A. Brandenburg, V. Simak (ATLAS), L. Sonnenschein (CMS).
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Thett production by the strong interactions leads, on the other hand, to a significant correlation

between the andt spins. This correlation is encoded in the functimg\). Using P- and charge-
conjugation (C) invariance they have, in the case tffanal state, the structure

CZ-(]\) = Mo+ SVpipy + kiky + Y (Rap; + pikey), (19)

wherep andk; are the directions of flight of the initial quark or gluon and of thipiark, respectively, in

the parton c.m. frame. So far the functioﬁé’ are known to lowest-order QCD only (see, e.g., [164]).
For attX final state a decomposition similar to (19) can be made.

From (19) one may read off the following set of spin-correlation observables [164]:

(ke - s¢) (ki - sp), (20)

(P s)(P-sp), (21)

St - Sf, (22)

(D se) (kg sp) + (B sp) (ke - s¢), (23)

wheres,, s; are thet andt spin operators, respectively. The observables (20), (21), and (23) determine
the correlations of different, ¢ spin projections. Eq. (20) corresponds to a correlation of:thad ¢

spins in the helicity basis, while (21) correlates the spins projected along the beam line. We note that the
“beam-line basis” defined in [166] refers to spin axes being parallel to the left- and right-moving beams
in thet andt rest frames, respectively. Thé spin correlation in this basis is a linear combination of
(20), (21), and (23).

A natural question is: what is — assuming only SM interactions — the best spin basis or, equiva-
lently, the best observable for investigating thespin correlations? For quark-antiquark annihilation,
which is the dominant production process at the Tevatron, it turns out that the spin correlation (21)
[164, 168] and the correlation in the beam-line basis [166] is stronger than the correlation in the helicity
basis. In fact, fogg annihilation a spin-quantisation axis was constructed in [167] with respect to which
thet and¢ spins are 10% correlated. At the LHC the situation is different. Fgy—tt at threshold
conservation of total angular momentum dictates thatiiein a'S, state. Choosing spin axes parallel
to the right- and left-moving beams this means that we hiave andtrtr states at threshold. On the
other hand at very high energies helicity conservation leads to the dominant production of unlike helicity
pairstzt;, andtytr. One can show that no spin quantisation axis existggestt with respect to which
thet andt spins are 108 correlated. The helicity basis is a good choice, but one can do better. This
is reflected in the above observables. Computing their expectation values and statistical fluctuations one
finds [164] that (22) has a higher statistical significance than the helicity correlation (20) which in turn is
more sensitive than (21) or the correlation in the beam-line basis.

The spins of the andt quarks are to be inferred from their P-violating weak decays, i.e., from
t—bW T —blTv, or bqg and likewise fort if only SM interactions are relevant. As already mentioned
and used in previous sections, in this case the charged leptorifra@cay is the best analyser of the top
spin. This is seen by considering the decay distribution of an ensemble of polagsadks decaying
into a particlef (plus anything) with respect to the angle between the polarisation v&ctdrthe top
quark and the direction of fligh; of the particlef in thet rest frame. This distribution has the generic

form L ar )
—— == - q 24
[ dcosd 5 (L+rp&-ap), (24)
where the magnitude of the coefficien signifies the spin-analyser quality ¢f The SM values for
somef, collected from [171, 172, 173, 174], are given in Table 12. The correspomndiagay density

matrix in thet rest frame is read off from (24) to h&,, = (1 + k7o - 4f)ao. The distributions for
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Table 12: Correlation coefficient; for V' — A charged current. In the last column |.e.j. stands for least energetic jet in the
rest frame.

flet,d,s | v,u,c b W+ | le.j. fromqq
Kf 1 —-0.31| -041] 041 0.51

the decay of polarised antitop quarks are obtained by replacirg — « in (24). The ordery, QCD
corrections to the decays-b/v andt— Wb of polarisedt quarks were computed in [171] and [175],
respectively. Fot, ¢ polarisation observables these corrections are small.

From the above table it is clear that the best way to analysetthpin correlations is through
angular correlations among the two charged leptort$™ in the di-lepton final state. Using the produc-
tion and decay density matrices in (17), neglecting the 1-loop induced QCD normal polarisation, and
integrating over the azimuthal angles of the charged leptons one obtains the following normalised double
distribution, e.g. in the helicity basis

1 d*c 1+ Cryrkyp-costy cost_ (25)
odcosfydcosf_ 4 ’
wherer,+ k- = —1 andf,(6_) is the angle between thgt) direction in thett c.m. frame and the

¢+ (¢7) direction of flight in thet(¢) rest frame. The coefficierd, which is the degree of the spin
correlation in the helicity basis, results from tdffé) in (19) and it is related to [165]:

N(tLEL + tRI?R) — N(tLI?R + tREL)

C = 2 " - L)
N(tptr, +trtr) + N(trtr + trtr)

(26)

For partonic final states and to lowest orderdn one getsC' = 0.332 for the LHC. (The number
depends somewhat on the parton distributions used. Here and below the set CTEQA4L [116] was used.)
The optimum would be to find a spin axis with respect to which= 1. But, as stated above, this is not
possible forgg fusion. In addition to (25), analogous correlations améhdrom ¢ and jets fromt decay

(and vice-versa) in the single lepton channels, and jet-jet correlations in the non-leptonic decay channels
should, of course, also be studied. While the spin-analysing power is lower in these cases, one gains in
statistics.

From the above example is quite obvious that, for a givetecay channel, the& spin correlation
will be most visible when the angular correlations amongttla@d¢ decay products are exhibited in
terms of variables defined in theandt rest frames. An important question is therefore how well the
4-momenta of theé andt quarks can be reconstructed experimentally? We briefly discuss the results of
a simulation of the single lepton and di-lepton channels [176] which includes hadronisation and detector
effects using PTHIA [52] and the ATLFAST [105] software packages. The transverse momentum of
every reconstructed object like a jet, a charged lepton, or the missing transverse energy of an event has to
exceed a certain minimum valpg". The detector acceptances impose further restrictions on the phase
space of the detected objects in pseudo-rapidity.

In the case of the single leptehdecay channels one isolated lepteti or ;. F) is required. From
the missing transverse energy of the event andithenass constraint the longitudinal momentgm
of the neutrino can be determined up to a twofold ambiguity. It turns out that in most cases the lower
solution ofp, is the correct one. To complete the event topology, four jets are demanded. Two of them
have to be identified asjets coming from top decay.

The two non-tagged jets are often misidentified due to additional activity in the detector from
initial and final state radiation. To suppress the QCD background the invariant mass of the two jets has to
lie in a narrow mass window around the known mass ofith&oson. After this cut the two-jet system
is rescaled to thél” mass. Finally there is a twofold ambiguity when thgts are combined with the

56



1600 1600 —
1400 —f 1400 —f
1200 —f 1200 —f
1000 —f 1000 —f

Fig. 34: Joint distributiord® N/d cos 6+ d cos §_ generated Fig. 35: Same distribution as in the figure to the left, but in-
with default PYTHIA. The detector response was simulateduding the SM¢¢ spin correlations. The detector response
with CMSJET. was simulated with CMSJET.

reconstructedV bosons. The combination which yields the lower reconstructed top mass turns out to be
the correct one most of the time.

In the case of the di-lepton decay channels two isolated oppositely charged leptons are requested.
Moreover two jets have to be detected and taggddjers. With the known top antd’ masses and with
the missing transverse energy of the event the unknown 3-momenta of the neutrino and anti-neutrino can
be computed using the kinematic constraints of the event. These result in a system of two linear and
four quadratic equations. The equations can be solved numerically and usually several solutions arise.
Since the experimentally determined momenta do not coincide with the corresponding variables at the
parton level the kinematic constraints have to be relaxed somewhat in order to improve the reconstruction
efficiency. The algorithm set up in [176] was used to solve these equations. The best solution can be
obtained by computing weights from known distributions. Following [176] the highest efficiency was
obtained using the weight given by the product of the energy distributiong afid 7, and thecos 6;
distribution in thett c.m. frame.

For the LHC running at low luminosityd = 1033 cm~2s1!), about4 x 10° tf events per year
are expected in the di-lepton decay channéls=(e, ). A further simulation of these channels was
performed in order to study the joint distribution (25)TRIA 5.7 [52] was used for the event generation,
CMSJET [177] for the detector response and the algorithm of [176] for the reconstruction #f the
momenta. The transverse momenta of the two isolated, oppositely charged leptons and of the two jets
were required to exceetl) GeV. The minimal missing transverse energy of the event was chosen to be
40 GeV. A further selection criterion was that each jet provides at least two tracks with a significance
of the transverse impact parameter ab8veto be tagged as-jet. The processes were simulated in
two different ways. First the SM matrix elements of [75] for the reactions (16), which contaiti the
spin correlations, were implemented intgTRIA. For comparison these channels were also simulated
with the PrTHIA default matrix elements fayg, gg—tt which do not contain spin correlations. In both
simulations initial and final state radiation, multiple interactions, and the detector response was included.
In Figs. 34, 35 we have plotted the resulting double distributitd$/d cos 6 d cos §_. They have been
corrected for the distortions of the phase space due to the cuts. A fit to the distribution Fig. 35 according
to (25) yields the correlation coefficiedt = 0.331 + 0.023, in agreement with the valug = 0.332
obtained at the parton level without cuts. A fitto Fig. 34 lead€’'te- —0.021 + 0.022 consistent with
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C = 0. Systematic errors, for instance due to background processesZe-g( ¢~ accompanied by
two b-jets, remain to be investigated.

From these double distributions one may form one- or zero-dimensional projections, for instance
asymmetries as considered in [166, 165, 168]. Another approach is to study distributions and expectation
values of angular correlation observables which would be zero in the absenceo$pire correlations.

A suitable set of observables is obtained by transcribing, for instance, the spin observables given above
into correlations involving the directions of flight of those final state particles that are used to analyse
thet and¢ spins. As an example we discuss the case of the single lepton chanselg , t—bl~ ;.

One may choose to analyse thepin by the direction of flighg; of the b-jet in the rest frame of the

quark and the spin by the momentum directidgip_ of the/~ in the laboratory frame. The latter is rather
conservative in that no reconstruction of theomentum is necessary. Then (20)-(22) are translated into
the observables

01 = (61?5 : f’p)(fl— ' f’p)a (27)
Oy = (q k)G -ky), (28)
O3 = §q;-q-, (29)

wherep, refers to the beam direction. The pattern of statistical sensitivities of the spin observables
(20)-(22) stated above is present also in these angular correlations. Computing the expectation values
(O;) and the statistical fluctuationAQ©; and those of the observables for the corresponding charge
conjugated channels, one gets for the statistical significances of these observables at the parton level
[164]: S; ~ 0.007/Ny—, So ~ 0.025\/N,,—, andS3 =~ 0.055\/N,,—, where N, is the number of
reconstructed events in the specific single lepton channel. The linear combination

Oy =03 — 0y (30)

has a still higher sensitivity tha@;, namelyS; ~ 0.073y/N,-. Even with10* reconstructed/~ and

b¢+ events each one would get a #.8pin-correlation signal with this observable. The significance of
these observables after the inclusion of hadronisation and detector effects remains to be studied.

The results of the above simulations are very encouraging for the prospe¢spin physics. On
the theoretical side the NLO QCD corrections to the helicity amplitudes, and to the spin density matrices
should be computed in order to improve the precision of the predictions and simulation tools.

If ¢t production and/or decay is affected by non-SM interactions then the correlations above will
be changed. One interesting possibility would be the existence of a heavy spin-zero resonéfuce
instance a heavy (pseudo)scalar Higgs boson as predicted, e.g., by SUSY models or some composite
object) that couples strongly to top quarks. For a certain range of masses and couplingsdo an
object would be visible in thét invariant mass spectrum [74, 75]. Suppose one will be fortunate and
discover such a resonance at the LHC. Then the parity of this state may be inferred from an investigation
of ¢ spin correlations. This is illustrated by the following example. As already mentioned above, close
to threshold gluon-gluon fusion produce# g@air in a'S, state. On the other hand if the pair is produced
by the X, resonancegg— X,—tt, then for a scalar (pseudo-scalax), the t¢ pair is in a3Py (1Sp)
state and has therefore characteristic spin correlations. Let us evaluate, for instance, the observable
(22). Its expectation value at threshold(is-s;) = 1/4 (—3/4) if tt is produced by a (pseudo)scalar
spin-zero boson, ignoring thg—tt background. An analysis which includes the interference with the
QCD tt amplitude shows characteristic differences also away from threshold. By investigating several
correlation observables (i.e., employing different spin bases) one can pin down the scalar/pseudo-scalar
nature of such a resonance for a rang&gfmasses and couplings to top quarks [75].

Another effect of new physics might be the generation of an anomalously large chromomagnetic
form factorx (see Section 7.1) in th production amplitude which would change the spin correlations
with respect to the SM predictions [178, 179] (see also [180, 181]). For the LHC with tOarftegrated
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luminosity one obtains from a study of asymmetries (that were also used in [179]) at the parton level a
statistical sensitivity obx ~ 0.02.

The top quark decay modes-blTv,, bgg might also be affected by non-SM interactions, for
instance by right-handed currents or by charged Higgs-boson exchange, and this would alter the angular
correlations discussed above as well. A Michel-parameter type analysis of the sensitivity to such effects
at the LHC remains to be done.

The largett samples to be collected at the LHC offer, in particular, an excellent opportunity to
search for CP-violating interactions beyond the SM in high energy reactions. (The Kobayashi-Maskawa
phase induces only tiny effectsifiproduction and decay.) We mention in passing that such interactions
are of great interest for attempts to understand the baryon asymmetry of the universe. Many proposals
and phenomenological studies of CP symmetry tests pmoduction and decay at hadron colliders have
been made. The following general statements apply [169]: A P- and CP-violating interaction affecting
tt production induces additional terms in the production density matfé®swhich generate two types
of CP-odd spin-momentum correlations, namely

A~

kt ' (St - Sf) ) (31)

and X
kt : (St X SL?) ) (32)

and two analogous correlations whégis replaced by. The longitudinal polarisation asymmetry (31)
requires a non-zero CP-violating absorptive part in the respective scattering amplitude. In analogy to the
SM spin correlations above, (31) and (32) can also be transcribed into angular correlations antong the
andt decay products, which may serve as basic CP observables (see below).

As to the modelling of non-SM CP violation two different approaches have been pursued. Oneis to
parameterise the unknown dynamics with form factors or, neglecting possible dependences on kinematic
variables, with couplings representing the strength of effective interactions [180, 182,173, 183,178, 179,
184, 185], and compute the effects on suitable observables. This yields estimates of the sensitivities to
the respective couplings. For instancetiproduction is affected by a new CP-violating interaction with
a characteristic energy scale:p > /5 then this interaction may effectively generate a chromoelectric
dipole moment (CEDMY).; of the top quark (see Section 7.1). Assumiig non-leptonic6x 10° single
lepton, andl10° ¢ di-lepton events, the analysis of [185], using optimal CP observables, comes to the
conclusion that do sensitivity of §(Re d;) ~ 5x10~2°g, cm may be reached at the LHC. A detector-
level study of CP violation it decays with di-lepton final states was performed in [186].

Alternatively one may consider specific extensions of the SM where new CP-violating interac-
tions involving the top quark appear and compute the induced effedtsgroduction and decay, in
particular for the reactions (16). We mention two examples. In supersymmetric extensions of the SM,
in particular in the minimal one (MSSM), the fermion-sfermion-neutralino interactions contain in gen-
eral CP-violating phases which originate from SUSY-breaking terms. These phases are unrelated to the
Kobayashi-Maskawa phase. The interaction Lagrangian for the top quark coupling to a scalar top
and a gluinaG reads in the mass basis

Loy =i1V2gs Y (67, 0GT ) + e 450G T ) + hec., (33)
1=1,2

whereg;, is the QCD coupling. A priori the phasg is unrelated to the analogous phases in the light
guark sector which are constrained by the experimental upper bound on the electric dipole moment of
the neutron. The CP-violating one-loop contributions of (33)¢0j¢—tt were computed in [187, 185].

A non-zero CP effect requires, apart from a non-zero pligsealso non-degeneracy of the masses of

7?172. For fixed phase anti — t, mass difference the effect decreases with increasing gluino and scalar
top masses. Assuming the same data samples as in the CEDM analysis above, [185] concludes from
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Fig. 36: Right: differential expectation value @f as a function of thet invariant mass at/s = 14 TeV for reduced Yukawa
couplingsa: = 1, a; = —1, and a Higgs boson mass, = 400 GeV. The dashed line represents the resonant and the solid

line the sum of the resonant and non-resoranbntributions. Left: same as figure to the left, but for the observ@bl{B6].

a computation of optimal CP observables that a sensitjvity> 0.1 can be reached at the LHC if the
gluino and squark masses do not exceed 400 GeV.

Another striking possibility would be CP violation by an extended scalar sector manifesting itself
through the existence of non-degenerate neutral Higgs bosons with undefined CP parity. Higgs sector CP
violation can occur already in extensions of the SM by an extra Higgs doublet (see, for instance [188]). It
may also be sizable in the MSSM within a certain parameter range [189]. The coupling of such a neutral
Higgs bosony with undefined CP parity to top quarks reads

Ly = —(ﬂGF)l/th(atft + agtiyst) @ (34)

wherea, anda; denote the reduced scalar and pseudo-scalar Yukawa couplings, respectively (in the
SMa; = 1 anda; = 0). The CP-violating effects of (34) ogg, gg—tt were investigated for light

@ in [190] and foryp bosons of arbitrary mass in [191, 169] (see also [185, 86]). The exchange of
bosons induces, at the level of thestates, both types of correlations (32), (31) (the CP asymmetry
ANpr = [N(trtL) — N(trtr)]/(all tt) considered in [190] corresponds to the longitudinal polarisation

asymmetry(k; - (s; — s¢))). If the mass ofp lies in the vicinity or abovem, the s-channelp-exchange
diagramgg— p—tt becomes resonant and is by far the most importacwntribution.

Simple and highly sensitive observables and asymmetries were investigated for the different
decay channels in [86]. For the di-lepton channels the following transcriptions of (31) and (32) may be
used: X X

@Q1=ki-q+ —k;-q- (35)
Q2= (ke —ky) - (@- x G1)/2 , (36)

wherek;, k; are here the, £ momentum directions in th& c.m. frame andy,,q_ are thel™, ¢~
momentum directions in theandt quark rest frames, respectively. Note tiiat = cos 6, — cos_
wheref are defined after (25). When taking expectation values of these observables the channels
0t 0~ with £,/ = e, are summed over. The sensitivity to the CP-violating product of couplings
vop = —aza; Of heavy Higgs bosons is significantly increased when expectation values of (35), (36) are
taken with respect to bins of thé invariant mass\/;;. Two examples of these “differential expectation
values” are shown in Fig. 36. In order to estimate the measurement errors we have used a sample of di-
lepton events, obtained from a simulation at the detector level using the same selection criteria as in the
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simulation described above, and determined the resulting error on the expectation v@jyetdosing
M,z bins with a width of 10 GeV. Witl2 x 10° reconstructed di-lepton events in the whalg; range
we find that the error on(‘@l)MtE is slightly below1% for a bin at, sayM,;; = 400 GeV. In addition one
may employ the following asymmetries which are experimentally more robust(than

AQ)) = Nep(Q; > 0)]\7 Nep(Q; <0) ’
o

wherei = 1,2 and Ny, is the number of di-lepton events. From an analysis of these observables and

asymmetries and analogous ones for the single lepton channels at the level of partonic final states the

conclusion can be drawn [86] that one will be sensitivéytep| > 0.1 at the LHC. This will constitute

rather unique CP tests.

(37)

7. TOP QUARK ANOMALOUS INTERACTIONS ??

In the SM the gauge couplings of the top quark are uniquely fixed by the gauge principle, the structure
of generations and the requirement of a lowest dimension interaction Lagrangian. Due to the large top
mass, top quark physics looks simple in this renormalisable and unitary quantum field theory. Indeed,

e the top quark production cross section is known with a rather good accura@dd(— 15) %),

¢ there are no top hadrons (mesons or baryons),

e the top quark decay is described by puve— A) weak interactions,

e only one significant decay channel is presentb 1V + (other decay channels are very suppressed
by small mixing angles).
This simplicity makes the top quark a unique place to search for new physics beyond the SM. If anoma-
lous top quark couplings exist, they will affect top production and decay at high energies, as well as
precisely measured quantities with virtual top quark contributions.

We do not know which type of new physics will be responsible for a future deviation from the SM
predictions. However, top quark couplings can be parametrized in a model independent way by an effec-
tive Lagrangian. The top quark interactions of dimension 4 can be written (in standard notation [192]):

_ g _
Ly = —gsty"TG), — —= Z t'y“(vgg/ — afg'yg,)qu
\/5 q=d,s,b
2 - g s wgZ 7
—3el A — 5 q;u:c ttv“ (vig = aig5)a 2, (38)

plus the hermitian conjugate operators for the flavour changing tefffisre the Gell-Mann matrices
satisfyingTr (T°T?) = 6° /2. Gauge invariance fixes the strong and electromagnetic interactions in (38)

and hemiticity implies real diagonal coupling§, a7, whereas the non-diagonal ong&”, a,,* can

be complex in general. Within the SM@’ = atV}; = % with V4, the Cabbibo-Kobayashi-Maskawa
(CKM) matrix elementspf = § — 4sin?6fy, aZ = 3, and the non-diagonat couplings are equal

to zero. Typically modifications of the SM couplings can be traced back to dimension 6 operators in
the effective Lagrangian description valid above the EW symmetry breaking scale [193, 194, 195] (see
also [196, 132, 197]). Hence, they are in principle of the same order as the other dimension 5 and
6 couplings below the EW scale. However, in specific models the new couplings in Eg. (38) can be
large [198]. Moreover, the present experimental limits are relatively weak and these couplings can show

up in simple processes and can be measured with much better precision at the LHC.
The dimension 5 couplings to one on-shell gauge boson, after gauge symmetry breaking, have the
generic form: [199] :

g w
Kig - . g Ktq - 0 .
Ly = —Js Z thO'” T‘l(ft‘% + Zh?q’YE))qG/aLV — E Z —Aq to* (ftI:]V + ZhEJ/’)/E))QW;—/
q=u,c,t q=d,s;b

225ection coordinators: F. del Aguila, S. Slabospitsky, M. Cobal (ATLAS), E. Boos (CMS).
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KJZ _
_eqzu:c | tqtguu (f + i} 5)q Ay — mq:;c,t%ww( fE+ihEs)aZ,  (39)
plus the hermitian conjugate operators for the flavour changing tef)sis 0,G7, — 0, G, (see, how-
ever, below) and similarly for the other gauge bosons. We normalise the couplings byAakirigTeV.
x is real and positive and, h are complex numbers satisfying for each teyfff + |r|> = 1. Asin
the dimension 4 case these dimension 5 terms typically result from dimension 6 operators after the EW
breaking. They could be large, although they are absent at tree level and receive small corrections in
renormalizable theories. At any rate the LHC will improve appreciably their present limits.

There are also dimension 5 terms with two gauge bosons. However, the only ones required by
the unbroken gauge symmetsy/(3)c x U(1)q, and taken into account here, are the strong couplings
with two gluons and the EW couplings with a photon an@i’aboson. They are obtained including
also the bilinear terng, f***G?,G¢, with fe* the SU(3)¢ structure constants, in the field strengtj,
in (39) and the bilinear term-ie(A,W," — A, W) in W/j,, respectively. We do not consider any other
dimension 5 term with two gauge bosons for thelr size is not constraine&tl/ig) x U(1)q and/or
they only affect to top quark processes with more complicated final states than those discussed here. We
will not elaborate on operators of dimension 6, although the itstorrections to dimension 4 terms
could be eventually observed at large hadron colliders [134]. In this section we are not concerned with

the effective top couplings to Higgs bosons either.

In what follows we study the LHC potential for measuring or putting bounds on the top quark
anomalous interactions in (38), (39) through production processes. Results from top quark decays are
presented is Section 8. The couplings to gluons are considered first, since they are responsible for
tt production. Secondly we discuss the top quark couplibgg. In the SM this coupling is not only
responsible for almost00% of the top decays but it also leads to an EW single top production mode,
as reviewed in Section 5.. Finally we deal with thigavour changing neutral currents (FCNC). The
and Ztt vertices have not been considered here becatise and ™y~ colliders can give a cleaner
environment for their study.

With the exception of the summary Table 23, we will quote limits from the literature without
attempting to compare them. In Table 13 we illustrate statistics frequently used and which we will refer
to in the text when presenting the bounds. As can be observed, the number of signal events, and the limit
estimates, vary appreciably with the choice of statistics. We do correct for the different normalizations
of the couplings used in the literature.

Table 13: Limits on the number of signal evest®btained with different statistics3 is the number of background events. In
the other columns we gathérfor (1): 99% CL (3 o) measuremen% > 3; (3): 99% CL (3 o) limit, % > 3; and (5):
99% CL for the Feldman-Cousins (FC) statistics [200]; and similarly for (2), (4), and (6), f&ritteCL (1.96¢), respectively.

Bl O[] [ @] 6 |6 ]
O 9 [384] 0 | O | 474309
5 | 12.57| 6.71| 6.71 | 4.38| 8.75 | 6.26
10| 15 |841| 9.49 | 6.20| 10.83| 7.82
15| 16.96| 9.75| 11.62| 7.59| 12.81| 9.31

7.1 Probes of anomalougtt couplings

The combinatiorf”]\‘—tmftft% (see (39)) can be identified with the anomalous chromomagnetic dipole mo-
ment of the top quark, which, as is the case of QED, receives one-loop contributions in QCD. Therefore,
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Table 14: Attainable & limits on Re(d:) and I'm(d;), throughTss, Ag and Q33 for one year of the LHC running at low
luminosity (10 fbo ') [204].

| Observable| Attainable b limits |
Ts3 |Re(dy)] = 0.899 x 10~ g,cm
Agp |[Im(d;)| = 0.858 x 10~ 18gscm
Q33 |[Im(ds)| = 0.205 x 10~17gscm

its natural size is of the order of; /7. As we observed above, when this coupling is non-zero a direct
ggtt four-point vertex is induced as a result of gauge invariance.

On the other hand the combinatidf x},hJ, can be identified as the anomalous chromoelectric
dipole moment of the top quark. Within the SM this can arise only beyond two loops [201]. On the
other hand it can be much larger in many models of CP violation such as multi-Higgs-doublet models and
SUSY [202]. Therefore, such a non-vanishing coupling would be a strong indication of BSM physics.

Considering the gluonic terms in (38), (39) for the process of light quark annihilatiortiotoe
obtains [181, 203]

32m?
A2

2= 0= - g ) +

dogg  2mas
dt 942

43
(k31 fE1% + p(ﬁ%fﬁ?(l -2,
(40)

§ being the incoming parton total energy squareleing the cosine of the scattering angten the cms
of the incoming partons, an@él= /1 — 4m?/s.

The squared matrix element fgg annihilation is a more complicated expression; we refer to [181,
204] for exact formulas. If the (anomalous) couplings are assumed to be functions (form-facigrs) of
and then corrected by operators of dimension higher than ggthanihilation amplitude would be eval-
uated at different scales (for théi) ands channels), and an additional violation of th&/(3) gauge
invariance could be made apparent. For a detailed discussion of this problem see, for example, [181] and
references therein.

The effects associated wittf, f; were examined in [181, 205, 206]. As shown in [134] they will
be easily distinguishable from the effects¢3f corrections to the strong coupling due to operators of
dimension 6, which are relatively straightforward to analyse [195} iproduction since the effective
coupling would be a simple rescaling of the strength of the ordinary QCD coupling by an addiffienal
dependent amount. It was shown in [206] that the high-end tail of the top guaakd M,; distributions
are the observables most sensitive to non-zero valug§ fif, with a reach fors = 22«7, £ as small
as~ 0.03. For these values of, only a minor change in the total rate is expected (see Fig. 37).
The effect of a non-zeref,h, was analysed, in particular, in [204, 207, 172]. It was shown in [204]
that information on<Y,1{, could be obtained by studying the following correlation observables between
¢T¢~ lepton pairs produced itt in di-lepton decays:

T3z = 2(p;—py)3(P7 X Py)3s

2
Ap = E;—E;, Q% =2(p;+po)s(P;—po)s — S (P} — 7).

Table 14 shows the & sensitivities of these correlations Re(d;) andIm(d;) (where,d, = g% kf,hf,).
Quantitatively, 733 andQs3 enable us to prob&e(d;) and Im(d;) of the order ofl0~17g,cm, respec-
tively, and A g allows us to probdm(d;) down to the order of0~ ' g,cm (see [204] for details).

7.2 Search for anomalousWtb couplings

The Wtb vertex structure can be probed and measured using either top pair or single top production
processes. The total rate depends very weakly on th&tb vertex structure, as top quarks are dom-
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Fig. 37: Cross section fart production (solid) at the LHC as a function ef The part of the cross section arising from the
99(qg) annihilation is shown by the dash-dotted (dotted) curve (see [206] for details).

inantly produced on-shell [208]. However, more sensitive observablesCli&lad P asymmetries, top
polarisation and spin correlations provide interesting information, as discussed in Section 6. The single
top production rate is directly proportional to the square ofifhé coupling, and therefore it is poten-

tially very sensitive to théV/tb structure. In single top events the study of the top polarisation properties
potentially provides a way to probe®tb coupling structure [209]. The potential to measure anomalous
Wtb couplings at LHC via single top from the production rate and from kinematical distributions has
been studied in several papers [195, 210, 135, 30].

In the model independent effective Lagrangian approach [193, 194, 195] there are four indepen-
dent form factors describing thd’ tb vertex (see [195] for details). The effective Lagrangian in the
unitary gauge [211, 208, 135] is given in (38), (39). As already mentione@ithe A) coupling in the
SM carries the CKM matrix elemefif;, which is very close to unity. The value of(& + A) coupling
is already bounded by the CLEfD— s+ data [212, 213] at a level [195, 213] such that it will be out
of reach even at the high energy colliders. Since we are looking for small deviations from the SM,
in the followingv;}” anda}; will be set tov}]” = a}} = ; and an analysis is presented only for the two
'magnetic’ anomalous couplinggr, = 2MW il (— fiV* — inlV*), Fro = 2wkl (— fV* +ih})*).

Natural values for the coupling#7, ()| are in the region of@ ~ 0.1 [196] and do not exceed the
unitarity violation bounds fofFy, r)s| ~ 0.6 [194].

Calculations of the complete set of diagrams for the two main procesgses bbIV andpp —
bbW + jet have been performed [135] for the effective Lagrangian in (38), (39), using the package Com-
pHEP [214]. The calculation includes the single-top signal and the irreducible backgrounds. Appropriate
observables and optimal cuts to enhance the single-top signal have been identified through an analysis of
singularities of Feynman diagrams and explicit calculations. The known NLO corrections to the single
top rate [126, 125] have been included, as well as a simple jet energy smearing. The upper part of Fig. 38
presents the resulting@exclusion contour for an integrated luminosity10D fb—!, assuming:, ;« and
T—{ decays of thd¥-boson. The combined selection efficiency in the kinematical region of interest,
including the doublé-tagging, is assumed to 56%. Figure 38 demonstrates that it will be essential to
measure both processgs — bbW andpp — bbW + jet at the LHC. The allowed region for each single
process is a rather large annuli, but the overlapping region is much smaller and allows an improvement
of the sensitivity on anomalous couplings of an order of magnitude with respect to the Tevatron. Since
the production rate is large, even after strong cuts, expected statistical errors are rather small, and the
systematic uncertainties (from luminosity measurements, parton distribution functions, QCDrsgales,
...) will play an important role. As it is not possible to predict thaoturately before the LHC startup,
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Fig. 38: Limits on anomalous couplings after optimised cuts from two procggses bbW andpp — bbW + jet (Upper
plot). Dependence of the combined limits on the values of systematic uncertainties (lower plot).

we show here how the results depend on the assumed combined systematic uncertainty. Figure 38 (lower
part) shows how the exclusion contours deteriorate when systematic erfdisanfd 5% are included.

Note that a systematic error of 10% at the LHC will diminish the sensitivity significantly and the allowed
regions will be comparable to those expected at the upgraded Tevatron.

The rate of single top production at LHC is different from the rate of single anti-top production.
This asymmetry provides an additional observable at LHC that is not available at the Tevatron and which
allows to reduce systematic uncertainties.

The potential of the hadron colliders can be compared to the potential of a next generation
linear collider (LC) where the best sensitivity could be obtained in high engrgnollisions [208, 215].
The results of this comparison are shown in Table 15. From the table we see that the upgraded Tevatron
will be able to perform the first direct measurements of the structure offithiecoupling. The LHC
with 5% systematic uncertainties will improve the Tevatron limits considerably, rivalling with the reach
of a high-luminosity (500 fo') 500 GeV LC option. The very high energy LC with 500 foluminosity
will eventually improve the LHC limits by a factor of three to eight, depending on the coupling under
consideration.
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Table 15: Uncorrelated limits on anomalous couplings from measurements at different machines.

| ‘ Fra ‘ Fro |
Tevatron Qgys. ~ 10%) | —0.18 ... 40.55 —0.24 ... 40.25
LHC (Asys, ~ 5%) 0052 ... 40.097 | —012 ... +0.13
ve ({/Sete- = 0.5TeV) | —0.1 ... +0.1 —0.1 ... F0.1
ve (\/Sere = 2.0TeV) | —0.008 ... +0.035 | —0.016 ... +0.016

7.3 FCNC in top quark physics

In the previous subsections, we analysed top quark anomalous couplings as small deviations from the
ordinary SM interactionsg{t andtWWb vertices). Here we consider new processes which are absent at
tree-level and highly suppressed in the SM, namely the FCNC couplingandtVu (V = g,7, 2).

The SM predicts very small rates for such processes [216] (see Table 16). The top quark plays therefore
a unique ole compared to the other quarks, for which the expected FCNC transitions are much larger:
the observation of a top quark FCNC interaction would signal the existence of new physics. As an
illustration, Table 16 shows predictions for the top quark decay branching ratios evaluated in the two-
Higgs doublet model [217], the SUSY models [218], and the SM extension with exotic (vector-like)
quarks [198].

Table 16: Branching ratios for FCNC top quark decays as predicted within the SM and in three SM extensions.

\ |  SM | two-Higgs [217]| SUSY [218]| Exotic quarks [198]|

B(t—qg) | 5 x 10711 ~ 107 ~ 1073 ~5x 1071
B(t—qy) | 5x 10713 ~ 1077 ~107° ~ 1075
B(t—qZ) | ~ 10713 ~ 1076 ~ 1074 ~ 1072

In the effective Lagrangian description of (38), (39) it is straightforward to calculate the top quark
decay rates as a function of the top quark FCNC couplings:

/@f 2 g /@2’ 2
P(t=qg) = (') gosmi . Tlt=gy) ={ "] 20mf, (41)
2
1 M?2 M?
_ 72 Z 2 3 Z Z
L(t—qZ)y = (\vtq] + |ty ) am; —4M% 226, <1 — —m? ) <1 + 2—m% ) , (42)
Z\ 2 2\ 2 2
K 1 M M
F(t—)QZ)O. = (%) am?m < — Fg) <2 + Fg) . (43)
t t

For comparison, Table 17 collects the rare top decay rates normalisdd to .}, = [v/|> + |af |* =

/-@th = 1, and for the SM. We assume; = 175 GeV, A = 1 TeV,a = ﬁ as = 0.1 and sum the
decays intay = u, c. In this 'extreme’ case with the anomalous couplings equal to one the top can decay
into a gluon or & boson plus a light quark = u, ¢ and into the SM modélV at similar rates.

7.31 Current Constraints on FCNC in top quark physics

Present constraints on top anomalous couplings are derived from low-energy data, direct searches of top
rare decays, deviations from the SM prediction foproduction and searches for single top production

at LEP2.

Indirect constraints: The top anomalous couplings are constrained by the experimental upper
bounds on the induced FCNC couplings between light fermions. For example” teem in theZtq
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Table 17: Top quark decay widths and corresponding branching ratios for the anomalous couplings equal to one and for the
SM. In the fourth line we gather the values of the corresponding anomalous couplings giving the same decay rates as in the SM.

Top decay mode

Wtb  (c+u)g (c+u)y (c+uw)Zy, (c+u)Z,
FCNC coupling 1 1 1 1
I'(GeV) 1.56 2.86 0.17 291 0.14
B 0.20 0.37 0.022 0.38 0.018
FCNC coupling 8x107% | 3x10°% | 4x1077
Tsm(GeV) 156 | 8 x 1071 [ 8 x 10712 | 22 x 10713
Bsm 1 [5x107M [ 5x10713 [ 1.5 x10713

vertex generates an effective interaction of the form [219]

’75
Lepp = i iy h.c., 44
ff= cosH Jf ——fiZ, + he (44)

wheref; ; are two different light down-type quarks. The one-loop estimate of the vertex gives:
1 m2 *( 7 Z * A2
aij = Tog o | Vi iy aig)Vag + V(v + i)V In — o (45)

whereV;; are the CKM matrix elements. Then, using the results of [219] and the experimental constraints
from [192] onK— "~ the K -K g mass differenceB® — B mixing, B—(+¢~ X andb— s+, one
obtains:

Usqg < 2% 107°, apg <4 x 1074, aps < 1.4 x 1073, (46)
and, takingy = 250 GeV,m; = 175 GeV andA = 1 TeV:

\vtu + atu| < 0.04, |vtC + atc\ < 0.11. 47)

thq - ath do not contribute ta:;; for massless external fermions. However, both chiralities ofZhg

vertex contribute, for instance, to the vacuum polarization tefi$é(q?). Thus, using the recent value
for the p parameterp = 0.9998 + 0.0008 (+0.0014) [192], the following2¢ limit is obtained:

\/|thq\2 + \ath|2 < 0.15. (48)

CDEF results: The CDF collaboration has searched for the de¢aysc(u) andt— Zc(u) in the
reactionpp — ttX at./s = 1.8 TeV, obtaining the following 95% CL limits [13]:

BR(t—c¢v) + BR(t—uy) < 3.2%, BR(t—cZ)+ BR(t—uZ) < 33% . (49)

These translate into the bounds on the top anomalous couplings

Kigg < 0.78,  /|vA|? +|af|? < 0.73. (50)

tt production via FCNCConstraints on the vertextq can be derived form the study of the
pair production cross-section. Imposing that th@air production cross-section, including the possible
effect of anomalous couplings, should not differ from the observed one (assumed in this study to be
o,;" = 6.7 & 1.3 pb [6]) by more than 2 pb, leads to the constraint [220]:

g
% < 0.47 TevV—L. 51)
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Table 18: Short summary of the LEP 2 resultsdoe~ — tg. The theoretical value, is evaluated assuming the limit on the
corresponding anomalous coupling in (50).

| Collab. [ /s(GeV) [ L(pb!) | 0exp(B%CL) | o |

DELPHI | 183 GeV [222]] 47.7 <055pb | <0.15 pb
ALEPH | 189 GeV [221]| 174 <0.60pb | <0.30 pb
DELPHI | 189 GeV [223]| 158 <0.22pb | <0.30 pb

DELPHI upper limit (preliminary)
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Fig. 39: Upper limit on branching fraction of—Zq resulted from LEP 2 data. Dashed curve correspondg te= 0, while
solid one corresponds g, < 0.78.

FCNC at LEP 2: Since 1997, LEP2 has run at cms energies in excess of 180 GeV, making the
production of single top quark kinematically possible through the reaction:

efem —=y(Z) —q (52)
Two LEP experiments [221, 222, 223] have presented the results of their search for this process. A short

summary of these data is given in Table 18. The production cross section is very sensitive to the top
quark massg;, ~ (1 — mTf)? (see [224] for details). Therefore, the upper limit on the corresponding
branching ratio depends from the exact valuengfas well, as shown in Fig.39. The current constraints

on the top quark FCNC processes are summarised in Table 19. Note that the LEP2 limit is slightly
better then that given by CDF (49). These constraints should further improve once the data from the
highest-energy runs are analysed.

7.4 Search for FCNC in top quark production processes

FCNC interactions of top quarks will be probed through anomalous top decays (as discussed in Sec-
tion 8.), and through anomalous production rates or channels, as discussed in the remainder of this
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Table 19: Current constraints on top quark FCNC interactions.

t—gq | BR< 1% Ky, < 0.47 (other FCNC couplings zera)
t—vyq | BR< 3.2% ki, < 0.78 (other FCNC couplings zeraq)

t—Zq | BR<22% | \/|[v&]?+ |a#]?> < 0.55 (other FCNC couplings zero)

Table 20: Upper bounds on the anomalous couplitfysand . from single top production processes. The symbelsl and
2—2 correspond to the reactions quark-gluon fusion, and single top production, respectively [225, 142].

Tevatron LHC
Runl Run2 Run3
Vs (TeV) 1.8 2.0 2.0 14.0
L(fb‘l) 0.1 2 30 10

) | 0.058 0.019 0.0092 0.0033
k), (2—2) | 0.082 0.026 0.013 0.0061
) 0.22 0.062 0.03Q 0.0084
) 0.31 0.092 0.046 0.013

section.

7.41 Deviations from SM expectations foproduction

As shown in the previous subsection, the FCNf@G-vertex contributes tgg—tt transitions, and to a
possible enhancement of the top quark production at |&%gend M,;. A recent study [220] shows that
at the LHC the sensitivity to these couplings is equivalent to that found with the data of Run 1 at the

Tevatron: g g
K K
(%) ~ (%) ~ 0.5 TeV L. (53)
LHC FNAL

7.42 ‘Direct’ top quark productionZ—1)

The ‘quark—gluon’ fusion process [22bH- u(c)—t is characterised by the largest cross-section for top
quark production through FCNC-interactions assuming equal anomalous couplings. At the LHC, using
g

the CTEQZL structure functions [115], these cross section'é%fo# 1 Tev—! are equal to:
o(ug—t) ~4x 10 pb |, o(ag—t) ~1x 10" pb , o(cg—t) ~ 6 x 10° pb. (54)

Note thato (ug—t) is about 50 times larger than the Sktross section. The major source of background

to this is thelW+ jet production. The additional background due to single top production, when the
associated jets are not observed, should not exceed 20% of the total background and was therefore
ignored. To reproduce the experimental conditions, a Gaussian smearing of the energy of the final leptons
and quarks was applied (see [225] for details). Cuts on the transverse momentum £5 GeV),
pseudo-rapidity |(;| < 2.0, || < 3.0), and lepton-jet separatiol\® > 0.4) were applied. Ab-

tagging efficiency of 60% and a mistagging probability of 1% were assumed.

The criterionS/+/S + B > 3 was used to determine the minimum values of anomalous couplings.
The couplingggu andtgc have been considered separately. The resulting constraints, andx?. are
given in Table 20, which also contains the results of an analysis done for the Tevatron.
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Fig. 41: s-channel diagrams fal/ (V = Z, ~) production
Fig. 40:2—2 single top quark production.

7.43 Single top quark productio--2)

Single top quark production i2—2 processes has been studied as well [142]. There are four different
subprocesses, which lead to one top quark in the final state together with one associated jet (see Fig. 40
and [142] for detailed considerations):

qq—tq, g9—tq, qq—tq, qg—tg (55)

The major background comes frollr + 2 jets andW + bb production, as well as from single top
production. In addition to the cuts and tagging rates used in the above analysis of 'direct’ top production,
additional cuts on the reconstructed top mass (145 Ge¥/, < 205 GeV), onpr, > 35 GeV,

and on jet-jet and lepton-jet separatioh R;; > 1.5, AR;; > 1.0) were applied here to improve

the signal/background separation. The corresponding limits on anomalous couplings in the top-gluon
interaction withc or v quarks are given in Table 20.

7.44 tZ andty production

All the anomalous couplings may contribute to the procegges:t Z (), and were considered in [226,
227]. The left diagram in Fig. 41 corresponds to #ey)tq coupling, while the right one shows the top-
gluon anomalous coupling (the correspondirghannel diagrams are not shown). For all the calculations
presented here, the MRSA PDF set [228] wilh = § was used. The resulting total cross sections for

kg = \/ VA2 + |af|? = 1 are [227]:

o(ug—yt) = T3pb, o(cg—~yt) = 10pb,
o(ug—Zt) = T46pb, o(cg—Zt) = 114pb.

Different background source$i{+ jets, Z+ jets, ZW + jets, Wbb+ jets, tf, and Wt production) were
considered. The experimental conditions were simulated by a Gaussian smearing of the lepton, photon
and jet energies (see [227] for details). Cuts on the transverse momeftay, v) > (15, 20, 40) GeV,

on pseudo-rapiditiegy; ¢ 4| < 2.5, and on lepton-jet-photon separatiah® > 0.4) were applied. A-

tagging efficiency of 60% and a mistagging probability of 1% were assumed. It was fouriettigaing

plays an essential role in tracing the top quark and reducing backgrounds.

It has been shown that the best limits on the top quark FCNC couplings can be obtained from the
decay channelg’t—/¢*¢~ fvb and~t—~ (vb (see [226] and [227] for details). Upper bounds at 95%
CL are derived using the FC statistics [200]. Table 21 collects the corresponding limits on eight top
anomalous couplings. Like in previous cases the bounds amd ¢ couplings were obtained under the
assumption that only one anomalous coupling at a time is non-zero. The analysis was done for both
Tevatron and LHC but with different optimized cuts.

70



Table 21: Upper bounds on top anomalous couplings (see (38,39))4itoand ¢ production. We have corrected for the
different normalizations used in [226, 227].

Tevatron LHC
Runl Run?2

Vs (TeV) 1.8 20| 140 14.0
L (b 0.1 2 10 100
K9, 0.31 0.057| 0.0097 0.0052
Ky, - —~| 0.020 0.011
K, 0.86 0.18| 0.013 0.0060
Ky - —| 0.037 0.018
lvZ 2 +1]aZ,? | 0.49  0.13| 0.016 0.0078
|2 + |af|? - —| 0.032 0.016
KZ, 1.71  0.43| 0.040 0.018
fsth - —| 0.097 0.046

q > ) : t

g+v+ 272

q > O > t

Fig. 42: Diagram describing like-sign top quark pair production
7.45  Like-signet (¢ t) pair production

Additional evidence for a FCN@tq coupling can be sought through the production of like-sign top pairs
(see Fig. 42).

pp—ttX, pp—waX (56)

The ATLAS collaboration performed a detailed investigation of this reaction for the case of high lumi-
nosity, Lin; = 100 fb~! (see [30] and [220] for details). All the three anomalous couplings contribute to
this process and the kinematics of thepair is almost the same as for the conventignadair production.

An experimentally clean signature of (¢¢) production is the production of like-sign high-
leptons plus two haré-jets. The main sources of background age—ttW andqq—W*¢W*¢'. The
expected cross sections for the signal (with = x}, = [vZ|* + |aZ|* = 1) and background processes
are equal to:

o(tt) — 1920 pb, o(7) — 64 ph,
o(WTtt) = 0.5 pb, o(W~tt) = 0.24 pb,
oc(W*tWtqq) = 0.5 pb, oc(W-W=qq) = 0.23 pb.

CTEQ2L structure functions [115] were used with the evolution paran@ter= m? for the signal
and@? = mj, for the background calculations.YPHIA 5.7 [52] was used for the fragmentation and

all events were passed through the ATLFAST detector simulation. An additional reducible like-sign
di-lepton background is due t@ events with ab semi-leptonic decay. The initial selection required
therefore two like-signsolatedleptons withpr > 15 GeV and|n| < 2.5 as well as at least two jets with

pr > 20 GeV andln| < 2.5. In order to get a better signal/background separation jetspaith 40 GeV

(with at least one tagged asget) were required (see [30, 220] for other cuts). The potential reach of
this study, using thé&/+/S + B > 3 criterion, is given in Table 22.
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Table 22: The limits on anomalous couplings from an improved ATLAS analysis [30, 220] of like-sign top-pair production at
the LHC for the case of high luminosit;,. = 100 fo~'. The contribution from the-** term in theZtq vertex is ignored.

W | wl | AR+ a2 | JIER + a2

[0.078] 0.25] 0.14] 0.32] 085 |

g

g
Kiy

Kie

Table 23: Summary of the LHC sensitivity to the top quark anomalous couplifigs./, and+/|v7, |2 + |aZ,|?. The resulting
constraints are presented in terms of ‘branching rakiét;—¢V") /I'sar (= 1.56 GeV). The results for the Tevatron option are

also given (see text for explanatiord—1, 2—2, tV/, andt ¢ stand for quark-gluon fusion, single top production; v(Z)
production, and like-sign top-pair final states, respectively. The ‘decay’, ‘ATLAS’, and ‘CMS'’ labels denote the results obtained

from the study of top decay channels, documented in Section 8.

Tevatron LHC
Vs(TeV) 1.8 2 2 14 14
L(fb~1) 0.1 2 30 10 100
tug 31x1073 [ 33x107* [ 78x107° [ 1.0x107° | 3.2x 1076 | 2—1 [225]
6.2x 1072 | 6.2x107% | 1.5x107* | 34 x 107 | 1.1 x 107° | 2—2 [142]
1.8x 1071 | 6.0 x 1073 -] 1.7x107% | 5.0 x 107° | tV [226, 227]
—-119x1072|27x1073 - — | decay  [229]
- - —| 1.5x 1072 | 5.6 x 1073 | ¢t [220, 30]
tcg 44x1072 [ 35x1073 [ 83x107%2[65x107° [ 21 x107° | 2—1 [225]
8.8x1072 | 7.8x 1073 | 20x 1073 | 1.6 x 107% | 4.9 x 107° | 2—2 [142]
- - -1 73x107% | 22x107* | tV [226, 227]
-119x1072 | 27x1073 - — | decay  [229]
- - — | 1.6x107! | 5.7 x 1072 | tt [220, 30]
tury 7.9x1072 [ 3.5 x 1073 -] 1.8x107°[3.9%x107C | tV [226, 227]
- - —130x1073 | 1.1 x1073 | tt [220, 30]
- - — | 1.9x107% | 4.8 x10~® | ATLAS [30]
- - -1 86x1075 | 4.0x107° | CMS [230]
tey - - -1 15x107% [ 35x107° | tV [226, 227]
- - —| 1.7x1072 | 5.5 x 1073 | ¢t [220, 30]
- - — | 1.9x107% | 4.8 x10~® | ATLAS [30]
- - — | 86x1075 | 4.0x107° | CMS [230]
tu” 45x1071 [ 32x1072 —-148x107* 1.1 x107% | tV [226, 227]
-1 11x1072|52x107% | 58x107* | 1.9x 10~* | decay  [219]
- - —11.9x107' | 6.8 x1072 | tt [220, 30]
- - —16.5x107* | 1.0x10~* | ATLAS [30]
- - - | 14x107% | 14x10~* | CMS [230]
teZ - - —11.9x1073 | 4.8 x107* | tV [226, 227]
-] 11x1072|52x1072 | 58x107* | 1.9x 10~* | decay  [219]
- - - 1.9 | 6.7x107" | tt [220, 30]
- - —16.5x107* | 1.0x10~* | ATLAS [30]
- - -1 14x1073 | 1.4x107* | CMS [230]
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7.5 Conclusion ontqV anomalous couplings

Table 23 presents a short summary of LHC sensitivities to anomalous FCNC couplings of the top quark.
For comparison, we present also the estimates of the corresponding sensitivities at Tevatron. For com-
pleteness we anticipate and include here the results from rare decays discussed in the next section (see
also [219, 229]). To unify the description of the LHC potential to detect top anomalous couplings from
production and decay processes, all results in Table 23 are expressed in terms of limits on top decay
branching ratios:I'(t—¢V') /T'sm (= 1.56 GeV). The results were obtained usimg, = 175 GeV,

as = 0.1, anda = 1/128. When needed the limits quoted in the table have been rescaled to the different
luminosities and to thé&/v/S + B > 3 criterion by using a simple linear extrapolation of the available
bounds (see [30, 230] and Section 8.). The limits on the top anomalous couplingsifrproduction

in Table 21 were obtained using the FC prescription [200] and have been multiplied by a fagt®y of
which roughly relates this prescription with the statistical criterion adopted in Table 23 [226, 227].

At present, only few cases (like-sign top-pair productiorgZ andt—q~y decays, see [30, 230])
were investigated with a more or less realistic detector simulation (ATLFAST and CMSJET). Other in-
vestigations were done at the parton level (the final quarks were considered as jets and a simple smearing
of lepton, jet and photon energies was applied). Of course, more detailed investigations with a more
realistic simulation of the detector response may change these results.

The most promising way to measure the anomalous FCNC top-gluon coupling seems to be the
investigation of single top production processes, as the sear¢h-fgy decays would be overwhelmed
by background from QCD multi-jet events. At the same time, both top quark production and decay would
provide comparable limits on top quark anomalous FCNC interactions with a photo#-twogon. In
general, the studies shown above indicate that the LHC will improve by a factor of at least 10 the Tevatron
sensitivity to top quark FCNC couplings. Of course, the results presented here are not complete, since
other new kinds of interactions may lead to the appearance of unusual properties of the top quark. For
example, recently proposed theories with large extra-dimensions predict a significant modification of
pair production (see, for example, [231] and references therein). It was found that the exchange of spin-2
Kaluza-Klein gravitons leads to a modification of the tataproduction rate as well as to a noticeable
deviation in thepy and M; distributions with respect to the SM predictions. Naturally, we may expect
also the modifications of spin-spin correlations due to graviton exchange.

It has to be stressed that different types of new interactions may affect the same observable quan-
tity. Only a careful investigation of different aspects of top quark physics may provide a partial separation
of these interactions.

8. RARE DECAYS OF THE TOP QUARK 22

The production ofl0” — 108 top quark pairs per year at LHC will allow to probe the top couplings to

both known and new patrticles involved in possible top decay channels different from the-aidin.

Thanks to the large top mass, there are several decays that can be considered, even involving the presence
of on-shell heavy vector bosons or heavy new particles in the final states. On a purely statistical basis,
one should be able to detect a particular decay channel whenever its branching ratio (BR) is larger than
about10~6 — 1077, In practice, we will see that background problems and systematics will lower this
potential by a few orders of magnitude, the precise reduction being dependent of course on the particular
signature considered. We will see, that the final detection threshold for each channel will not allow the
study of many possible final states predicted in the SM, unless new stronger couplings come into play.

8.1 Standard Model top decays

In this section, we give an overview of the decay channels of the top quark in the framework of the SM.
In the SM the decay—bW is by far the dominant one. The corresponding width has been discussed in

Zgection coordinators: B. Mele, J. Dodd (ATLAS), N. Stepanov (CMS).

73



Section 2.1. The rates for other decay channels are predicted to be smaller by several orders of magnitude
in the SM. The second most likely decays are the Cabibbo-Kobajashi-Maskawa (CKM) non-diagonal
decays—sWandt—dW. Assuming|V;s| ~ 0.04 and|V;4| ~ 0.01, respectively [192], one gets

BR(t—sW) ~ 1.6 x 1073 and BR(t—dW) ~1x 1074 (57)

in the SM with three families. From now on, for a generic decay chafnele define

F(t—>X)

(58)

The two-body tree-level d%égg/lcﬁannb s are the only ones that the LHZ could detect in the framework of
the SM. With the exception of highef-order QED and QCD radiativ decays, the next less rare processes

~6
have rates no larger th 7z

Fig. 43: Feynman graphs for the dedaybW Z (t—bW H).

At tree level, the decay—bW Z (Fig. 43) has some peculiar features, since the process occurs
near the kinematical thresholeh( ~ My + Mz + my) [232, 233, 234, 235]. This fact makes thie
andZ finite-width effects crucial in the theoretical prediction of the corresponding width [233]. Because
theW andZ are unstable and not observed directly, more than one definition 6fth8” Z branching
ratio is possible. If defined according to

) T (t—buv, e,
D(t—bW Z) = (t=buvveve)

= 59
BR(W —uvy,)BR(Z—vere)’ ©9

including a consistent treatment Bf and Z width effects, the branching ratio is to a very good approx-
imation given by the double resonant set of diagrams (shown in Fig. 43), since the background to the
neutrino decay of thZ is negligible. One obtains [235], fon, = 175 GeV,

BR(t—bW Z) = BR,¢s(t—bWZ) = 2.1 x 1075, (60)

However, the signaturéuv,v.v. is not practical from an experimental point of view. In [233], a first
estimate oBR(t—bW Z) was given on the basis of the definition

[(t—b e~
T(t—bWZ) = (t=buvueTer)

~ BR(W—pv,)BR(Z—ete™)’ (61)
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which involves experimentally well-observable decays, but includes contributions to the numerator from
t—bW~ decays (withy—e™e™) and other “background” diagrams. The estimate for the corresponding
branching ratio is

BRey(t—bW Z) ~ 6 x 1077, (62)

for m; = 175 GeV, assuming a minimum cut 6f8 M/, on thee™ e~ -pair invariant mass. This cut tries
to cope with the contribution of background graphs wherecthe  pair comes not from & boson but
from a photon.

If the Higgs boson is light enough, one could also have the deedyV H (Fig. 43), although the
present limits onny strongly suppress its rate. Fory < 100 GeV, one gets [233]:

BR(t—bWH) S 7x 107 (63)

Finally, the decay—cW W is very much suppressed by a GIM fact?é.?é in the amplitude. One then
w
gets [234]:
BR(t—cWW) ~ 10713, (64)

One can also consider the radiative three-body de¢ay8lV’ g andt—bW~. These channels suffer

from infrared divergences and the evaluation of their rate requires a full detector simulation, including
for instance the effects of the detector resolution and the jet isolation algorithm. In an idealised situation
where the rate is computed in theest frame with a minimum cut of 10 GeV on the gluon or photon
energies, one finds [236]:

BR(t—bWg) ~0.3 , BR(t—bWry) ~3.5x 1073 (65)
The FCNC decays—cg, t—cy andt—cZ occur at one loop, and are also GIM suppressed by a
2
factor]C;—g in the amplitude. Hence, the corresponding rates are very small [249]:
w

BR(t—cg) 5 x 10711 | BR(t—ey) ~5x 107 | BR(t—cZ)~13x1071%  (66)

For a light Higgs boson, one can consider also the FCNC deeay{ . A previous evaluation of its
rates [249] has now been corrected. kog ~ 100 (160) GeV, one gets [237]:

BR(t—cH) ~ 0.9 x 10713 (4 x 107%9). (67)

To conclude the discussion of rare SM decays of the top quark, we point out here the existence
of some studies osemi-exclusiveé-quark decays where the interaction of quarks among tiecay
products may lead to final states with one hadron (meson) recoiling against a jet. In [238] decays with
anY meson in the final state and decays of the top through an off-dhelith virtual massiMyy - near
to some resonanck/, like 7+, p™, K, DI, were considered. An estimate for the latter case is

G2 m3
D(t—b M) ~ =T~ i Vog " (68)
The typical values of the corresponding branching ratios are too small to be measured:
BR(t—br) ~4-107% | BR(t—bD,) ~2-107". (69)

In Table 24 we summarize the expected decay rates for the main top decay channels in the SM.

8.2 Beyond the Standard Model decays

The fact that a measurement of the top width is not available and that the branchingRétie-b11)

is a model dependent quantity makes the present experimental constraints on the top decays beyond the
SM quite weak. Hence, the possibility ofdecays into new massive states with branching fraction of
orderBR(t—bW) is not excluded. Apart from the production of new final states with large branching
fractions, we will see that new physics could also give rise to a considerable increase in the rates of many
decay channels that in the SM framework are below the threshold of observability at the LHC.
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Table 24: Branching ratios for the main SM top decay channels.

| channel | BRgm | channel| BRs\ \
bW 1 sW 1.6-1073
dw ~ 1071 N 0.3 (E, > 10 GeV)
bW 3.5-1073 (E, > 10GeV) || (W Z 2.107°
WTW— ~ 10713 VWWTH <1077
Qg 5-10711 qy 5-10713
qZ 1.3-10713 cH < 10713

8.21 4 fermion family

Extending the SM with a’* fermion family can alter considerably a fetdecay channels. First of
all, when adding a' family to the CKM matrix the present constraints on thg,| elements are con-
siderably relaxed. In particulatV;s| and|V;4| can grow up to about 0.5 and 0.1, respectively [192].
Correspondingly, assumirjd;,| ~ 1 for the sake of normalisation, one can have up to :

BRu(t—sW) ~ 0.25 and BRy(t—dW) ~ 0.01, (70)

to be confronted with the SM expectations in (57).

The presence of & fermion family could also show up in thedirect decay into a heavy/
quark with a relatively small massn; ~ 100 GeV) [239]. This channel would contribute to the
t—cWW decay, with a rate:

BR(t—W TV (—W~¢)) ~ 1073 (1077) at my = 100 (300) GeV, (71)

to be confronted with the SM prediction in (64).

8.22 Two Higgs Doublet models (2HDM'’s)

The possibility that the EW symmetry breaking involves more than one Higgs doublet is well motivated
theoretically. In particular, three classes of two Higgs doublet models have been examined in connection
with rare top decays, called model I, Il and lll. The first two are characterised adarocdiscrete
symmetry which forbids tree-level FCNC [240], that are strongly constrained in the lightest quark sector.
In model | and model Il, the up-type quarks and down-type quarks couple to the same scalar doublet
and to two different doublets, respectively (the Higgs sector of the MSSM is an example of model II).
In model Il [241, 242], the above discrete symmetry is dropped and tree-level FCNC are allowed. In
particular, a tree-level coupling:H is predicted with a coupling constarit ,/m;m./v (Wherew is the

Higgs vacuum expectation value).

Since enlarging the Higgs sector automatically implies the presence of charged Higgs bosons in
the spectrum, one major prediction of these new frameworks is the deea#f *, possibly with rates
competitive withBR(t—bW') for my+ < 170 GeV. In the MSSM, one expecBR (t—bH ") ~ 1, both
at small and large values tfn 3. The interaction Lagrangian describing tHe t b-vertex in the MSSM
is [243]:

g
V2 My
wherePr, r = 1/2(1 F 75) are the chiral projector operators.

At tree level the corresponding decay widthg-efb H+, H+—rv, andH+—tb (or, analogously,
of H™—¢35) are equal to [243]

H™ [t (my cot 8 Pr, + mptan 3 Pr) b+ v (mytan 8 Pr)f] + h.c., (72)

Luw =

2 2
D(t—bH") \Vtm”< - m—?) X
t

g
64r M3E,m "m?’ m?
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[(m? + mg — m%{)(m? cot? B+ mg tan? B) + 4m§’m,ﬂ , (73)

2

gmy 9 2
F(HT—7ty) = mz tan” 3, (74)
327TM§V T
- 342 m2  m2
D(HT—th) = —2 |Vyl2AY2 1, =L, —L
(HT—tb) 327TM3VmH| i m%{ m%{ %
[(m%{ — mf — mg)(m? cot? f + mg tan? B) — 4m§m,ﬂ , (75)

wherel(a, b, c) = a® + b? + ¢ — 2(ab + ac + bc), andmpy = my+.

Consequently, ifmg < m; — my, one expectsH +—7Tv (favoured for largetan 3) and/or
H™*—cs (favoured for smalkan 3) to be the dominant decays. Hence, fan3 > 1 and Ht—7"v
dominant, one can look for the channebbH T by studying a possible excess in théepton signature
from thet pair production [244]. On the other handtifn 5 < 2 andmpy > 130 GeV, the large mass
(or coupling) of thet-quark causeBR(H +—t*b— W Tbb) to exceedBR(H+—c3) (Fig. 44, see [245]
for details).
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Fig. 44: Branching fractions for threld+ decay modes for two values of ;4 vs. tan 3.

As a consequence, new interesting signatures at LHC such as leptons plus multi-jet channels with
four b-tags, coming from the gluon-gluon fusion procegs—tbH —, followed by the H ~—#b decay,
have been studied [246]. These processes could provide a viable signature over a limited but interesting
range of the parameter space.

One should recall however that boBBR (t—bH*) and BR(H+—W Thb) are very sensitive to
higher-order corrections, which are highly model dependent [247].

In model llI, the tree-level FCNC decay-ch can occur with branching ratios up to10[242].
In [248], the rate for the channél>ch—cWW (cZZ) has been studied. AccordinglBR (t—cW W)
can be enhanced by several orders of magnitude with respect to its SM value. In particular, for an on-
shell decay wit2 My, < my, < my, one can have up tBR(t—cW W) ~ 10~* from this source. The
same process was considered in a wider range of models, where thet-ded&yl can occur not only
through a scalar exchange but also through a fermion or vector exchange [239]. In this framework, the
fermion exchange too could lead to detectable rates-ferlV 1/, as in (71).
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In 2HDM's, the prediction for the FCNC decays-cg, t—cy andt—cZ can also be altered.
While in models | and Il the corresponding branching fractions cannot approach the detectability thresh-
old [249], in model Il predicts values up BR(t—cg) ~ 107, BR(t—cy) ~ 10~7 andBR(t—cZ) ~
1076 [217].

By further extending the 2HDM'’s Higgs sector and including Higgs triplets, one can give rise to a
vertex HW Z at tree level in a consistent way [250]. Accordingly, thebWW Z decay can be mediated
by a charged Higgs (coupled witty;) that can enhance the corresponding branching fraction up to
BR(t—bW Z) ~ 10~2. Large enhancements can also be expected in similar models for the channels
t—sW Z andt—dW Z.

8.23 Minimal Supersymmetric Standard Model (MSSM)

Supersymmetry could affect thedecays in different ways. (Here, we assume the MSSM frame-
work [26], with (or without, when specified® parity conservation.)

First of all, two-body decays into squarks and gauginos, su¢h-asj, t—b; X7, t—;x?, could
have branching ratios of ord&R (t—bW), if allowed by the phase space (see, i.e. [251] for references).
QCD corrections to the channel-¢; § have been computed in [252] and were found to increase its width
up to values even larger thait—b11"). Three-body decays in supersymmetric particles were surveyed
in [251].

The presence of light top and bottom squarks, charginos and neutralinos in the MSSM spectrum
could also give rise to a CP asymmetry of the ortler? in the partial widths for the decays-bW
andi—bW ~ [140, 253].

Explicit R-parity violating interactions [254] could provide new flavour-changirtgcays, both

at tree-level (as in the channels:7b andt—7by{ [255]) and at one loop (as if—ci [256]), with
observable rates. For instan®R (t—c) ~ 10~* — 10~3 in particularly favourable cases.

Another sector where supersymmetric particles could produce crucial changes concerns the one-
loop FCNC decayg$—cg, t—cv, t—cZ andt—cH , which in the SM are unobservably small. In the
MSSM with universal soft breaking the situation is not much affected, while, by relaxing the universality
with a large flavour mixing between th&®and 3¢ family only, one can reach values such as [257, 258]:

BRussm(t—cg) ~ 1079 | BRussm(t—cy) ~ 1078 | BRussm(t—cZ) ~ 1078, (76)

which, however, are still not observable. The introduction of baryon number violating couplings in
brokenR-parity models could on the other hand give large enhancements [218], and make some of these
channels observable:

BRp(t—cg) ~ 1073, BRpy(t—cy) ~ 107° BRy(t—cZ) ~ 1074 (77)

A particularly promising channel is the FCNC decay:ch in the framework of MSSM, where
h = K0, HY A is any of the supersymmetric neutral Higgs bosons [259]. By including the leading
MSSM contributions to these decays (including gluino-mediated FCNC couplings), one could approach
the detectability threshold, especially in the case of the light CP-even Higgs boson, for which one can
get up to:
BRussm (t—ch®) ~ 1074, (78)

8.24 Anomalous couplings

In the framework of the top anomalous couplings described in Section 7., one can predict large enhance-
ments in different FCNC top decay channels. Whiletthezg, t—cv, andt—cZ processes are analysed
in section 7., here we concentrate on the possible FCNC contributions to the top decays into two gauge
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bosonsi—qV'V, whereV is either alW or aZ andq = ¢, u:
t—gWtZ | t—gW™W~ | t—qZZ. (79)

In the SM, the first two decays occur at tree level, whileqZ Z proceeds only through loop contribu-
tions. We will see that within the present experimental limits on the top anomalous couplings, the rates
for these processes can be large with respect to the SM prediction, but are still below the detectability
threshold at the LHC.

The FCNC contribution to the first channel in (79), for the anomalous coupling 0.3, has a
rate of the the same order of magnitude as thel8M¢—bW Z) [260]:

BRronc (t—cW Z) ~ 107% ~ BRgy (t—bW Z). (80)

Top anomalous FCNC interactions with both a photon ari-laoson contribute to the second
process in eq.(79). Contrary to the SM case this amplitude has no GIM suppression. As a result, the
corresponding branching ratio can have almost the same value as that-ef¢Hé~Z decay [260]:

BRrenc (t—cWTW ™) ~ 1077 > BRgy (t—cWW). (81)

For thet—qZ Z decay mode, a coupling, ~ 0.3 gives a branching ratio much greater than the
corresponding SM one 10~!3 [260]):

BRrone (t—qZZ) ~ 1078 > BRym(t—qZ Z), (82)

but still too small to be detected at LHC.

In summary, the observation of any of these decays at LHC would indicate new physics not con-
nected with the top FCNC interactions (see, for example, [248]).

8.3 ATLAS studies of (rare) top quark decays and couplings

In ATLAS various analyses have been performed on top decays, using thgaPMonte-Carlo inter-
faced to a fast detector simulation (ATLFAST). In the following, the most relevant results are reported.

8.31 BR(t— bX) and measurement 0|

The SM predictiorBR(t— W™b) ~ 1 can be checked by comparing the number of observed (1 or 2)
b-tags in att sample. The firsb-tag is used to identify the event agtaevent, and the secoridtag (if
seen) is used to determine the fraction of top decays produchnguark. Within the three-generation
SM, and assuming unitarity of the CKM matrix, the ratio of doublag to singleh-tag events is given
by:

Rap/16 = BR(t— Wb)/BR(t— Wq) = [Vip|*/(IVis|* + |Vas|* + [Vial®) = [V |? (83)

The CDF collaboration has used the tagging method in leptonievents to obtain the result
Rop/1p = 0.99 4 0.29 [261], which translates to a limit gft;| > 0.76 at the 95% CL assuming three-
generation unitarity. If this constraint is relaxed, a lower bound@ff > 0.048 at the 95% CL is
obtained, implying only thaf/;;| is much larger than eitheV;| or |V;4].

The LHC will yield a much more precise measuremenRgf, ;. For exampleft events in the
single lepton plus jets mode can be selected by requiring an isolated electron or mugn- wit20
GeV, E* > 20 GeV, and at least four jets withy > 20 GeV. Requiring that at least one of the
jets be tagged as lajet produces a clean sample @fevents, withS/B = 18.6, with the remaining
background coming mostly fro’ +jet events [30]. Assuming @&tagging efficiency of 60%, a sample
of 820 000 singlé-tagged events would be selected for an integrated luminosity of 10 10f these,
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276 000 would be expected to have a secbitdg, assuming the SM top quark branching ratios. This
ATLAS study indicates that the statistical precision achievable would correspond to a relative error of
0Rap/15/Rap/1p (Stat) = 0.2% for an integrated luminosity of 10fb The final uncertainty will be
dominated by systematic errors due to the uncertainty in-tlagging efficiency and faketag rates, as

well as correlations affecting the efficiency feitagging two different jets in the same event. Further
study is needed to estimate the size of these systematic uncertainties.

8.32 BR(t— WX)

The measurement of the ratio of di-lepton to single lepton eventstisample can be used to determine
BR(t— W X). In this case, the first lepton tags titeevent, and the presence of a second lepton is used

to determine the fraction of top quark decays producing an isolated lepton, which can be then be related
to the presence of & (or other leptonically decaying states) in the decay. The SM predict®that =

BR(W — fv) ~ 2/9 wherel = (e, ). Deviations from this prediction could be caused by new physics,

for example, the existence of a charged Higgs boson. The domihardecays in such instances are
usually considered to b&™— 7v or HT— c5. In either case, the number of isolated electrons and
muons produced in top decay would be reduced,fang; would be less than the SM prediction.

A study performed by ATLAS [30] shows that with an integrated luminosity of 10 fla clean
sample of about 443 00@ events in the single lepton plus jets mode could be selected by requiring an
isolated electron or muon withy > 20 GeV,E7*** > 20 GeV, and at least twltagged jets withpr
> 20 GeV. To determindy; /;, one then measures how many of these events have a second isolated
electron or muon, again withy > 20 GeV, and of the opposite sign to the first lepton. Assuming the
SM, one would expect a selected sample of about 46 000 di-lepton events with these cuts. Given these
numbers, the statistical precision achievable would correspond to a relative effoy; gf /Ry /1; (stat.)
= 0.5% for an integrated luminosity of 10 fh. Further study is required to estimate the systematic
uncertainty orRy; /1, due to the lepton identification and fake rates.

8.33 Radiative Decays— WbZ,t— WbH

The ‘radiative’ top decay— WbZ has been suggested [233] as a sensitive probe of the top quark mass,
since the measured valuef, is close to the threshold for this decay. For the top mass of {133)

GeV [192], the SM prediction, based on te—ee signature and a cuh.. > 0.8 My (see Section 8.1),

is BR.y(t— WbZ) = (5.4757) x 1077 [233]. Thus, within the current uncertainyn; ~ 5 GeV, the
predicted branching ratio varies by approximately a factor of three. A measuremBRt(of> WbZ7)

could therefore provide a strong constraint on the valugwof Similar arguments have been made for
the decay— WbH, assuming a relatively light SM Higgs boson.

ATLAS has studied the experimental sensitivity to the detay Wb~ [30, 262], with theZ
being reconstructed via the leptonic decéy-il (¢ = e, u), and theW through the hadronic decay
W — jj. The efficiency for exclusively reconstructing> Wb is very low, due to the sofi; spectrum
of the b-jet in thet— WbZ decay. Instead, a semi-inclusive technique was used, whBreZ gpair
close to threshold was searched for as evidence of-théVbZ decay. Since the— WbZ decay is
so close to threshold, the resolution @y~ is not significantly degraded with respect to the exclusive
measurement. The selection Bf— [l candidates required an opposite-sign, same-flavor lepton pair,
each lepton having; > 30 GeV andn| < 2.5. The clear¥ — [ signal allows a wide di-lepton mass
window to be taken (60 GeW¥ my, < 100 GeV) in order to have very high efficiency. Candidates for
W — jj decay were formed by requiring at least two jets, each hawing 30 GeV andy| < 2.5, and
satisfying 70 Ge\< mjj < 90 GeV. Theijj invariant mass resolution wagmy z| = 7.2+ 0.4 GeV,
and the signal efficiency was 4.3%.

The dominant backgrounds come from processes with laoson in the final state, primarily
Z+jet production, and to a much lesser extent fréifiZ and ¢t production. In order to reduce the
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Z+jet background, an additional cut requiring a third lepton with> 30 GeV was made. For the
signal processt — (IWWbZ)(Wb), this cut selects events in which tfi& from the other top decays
leptonically. After this selection, and with a cut emy 7 of £10 GeV around the top mass, the total
expected background was reduced-t.5 events (mostly fromil” Z production) per 10 fb'. Requiring

at least five events for signal observation leads to a branching ratio sensitivity of orderSifice the
background has been reduced essentially to zero, the sensitivity should improve approximately linearly
with integrated luminosity. However, even with a factor of ten improvement for an integrated luminosity
of 100 fb~!, the sensitivity would still lie far above the SM expectation of order™10 10~6.

Given this result, observation of the decay WbH does not look possible. The current LEP
limit on my implies that the Higgs is sufficiently heavy that, in the most optimistic scenario that the
Higgs mass is just above the current iR (t— WbH) < BR(t— WbZ). Asmy increases further,
BR(t— WbH) drops quickly. Assumingny =~ myz, one would have to search for- WbH using
the dominant decay/ — bb. The final state suffers much more from background than in the case of
t— WbZ, where the clea — ¢/~ signature is a key element in suppressing background. Although
BR(H— bb) in this my range is much larger than BR(— ¢/~ ), the large increase in background
will more than compensate for the increased signal acceptance, and so one expects the sensitivity to
BR(t— WbH) to be worse than faBR(t— WbZ). The decay— WbH has therefore not been studied
in further detalil.

8.34 t— H'b

Limits on the mass of the charged Higgs have been obtained from a number of experiments. An indirect
limit obtained from world averages of thebranching ratios excludes at 90% CL any charged Higgs with
mpg+ < 1.5tan 8 GeV [263], wherean S is the ratio of the vacuum expectation values of the two Higgs
doublets. CLEO indirectly excludes;;+ < 244 GeV fortan 8 > 50 at 95% CL, assuming a two-Higgs-
doublet extension to the SM [212], while the LEP experiments directly excluge < 59.5 GeV/c? at
95% CL [264]. Searches at the Tevatron have extended the region of ex¢tagedtan 5] parameter
space, particularly at small and largen 3, and set a limit on the branching rat®R(t— H*b) <
0.45 at 95% CL [265]. Run 2 at the Tevatron will be sensitive to branching fracBd(¢— H*b) >
11% [266].

ATLAS has performed an analysis of the experimental sensitivity te-thé b decay, followed
by HT— 7v, in the context of the MSSM [30, 267]. Since the relevant H b branching ratio is
proportional to(m? cot? 8 + mj tan? 3) (see (73)), for a given value of.;+ the branching ratio for
such decays is large at small and at large 3, but has a pronounced minimumtai 3 ~ \/m;/my ~
7.5. The exact position of this minimum and its depth is sensitive to QCD corrections to the running
b-quark mass.

In the ATLAS analysis, an isolated high- lepton with| n | < 2.5 is required to trigger the ex-
periment, which in signal events originates from the semi-leptonic decay of the second top quark. One
identified hadronic tau is then required, and at least three jetgwith 20 GeV and 7 | < 2.5, of which
two are required to be tagged &gets. This reduces the potentially large backgrounds frigrjet and
bb production to a level well below thg signal itself. These cuts enhance théepton signal fromH*
decays with respect to that frol decay, and select mostly single-prongiecays. After the selection
cuts and the- identification criteria are applied,— H b decays appear as final states with an excess of
events with one isolated-lepton compared to those with an additional isolated electron or muon.

A signal from charged Higgs-boson productiontirdecays would be observed for all values of
my+ belowm; — 20 GeV over most of thean  range. For moderate values tafn 3, for which the
expected signal rates are lowest, the accessible values;efare lower than this value by 20 GeV. The
limit on the sensitivity toBR(t— H™b) is dominated by systematic uncertainties, arising mainly from
imperfect knowledge of the-lepton efficiency and of the number of fakdeptons present in the final
sample. These uncertainties are estimated to limit the achievable sensitiBiR(te~ H"b) = 3%.
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For charged Higgs masses below 150 GeV and for low valuesig$, the H+ — cs and H* — ¢b
decay modes are not negligible. In the same mass range, the three-body off-shell écaysIV *,
H*— AW* andH*— bt*— bbW also have sizeable branching ratios. When the phase-space increases,
for 150 GeV< my+ < 180 GeV, both thébW and thehWW* mode could be enhanced with respect
to therv mode. Decays into the lightest chargiﬂ§ and neutralinoy{ or decays into sleptons would
dominate whenever kinematically allowed. For large valuesanf the importance of these SUSY
decay modes would be reduced. However, for values as largamabs= 50, the decayd*— 7 would
be enhanced, provided it is kinematically allowed and would leadstin the final state. Their transverse
momentum spectrum is, however, expected to be softer than thistfodm the directd *— 7 decays.

The H*— ¢s decay mode has been considered as a complementary oneHd therr channel
by ATLAS for low values oftan 3. In the ATLAS analysis, one isolated higit lepton with| n | <
2.5 is required to trigger the experiment, which in signal events originates from the semi-leptonic decay
of the second top quark. Twetagged jets withpr > 15 GeV and n | < 2.5 are also required, with
no additionalb-jet. Finally, at least two noh-central jets with 7 | < 2.0 are required for th&l*— cs
reconstruction, and no additional jets above 15 GeV in this central region. Evidente-fsr searched
for in the two-jet mass distribution. The mass peak fromi&h decay can be reconstructed with a
resolution ofoc = (5 — 8)GeV if the mass of thé7* is in the range between 110 and 130 GeV. In this
mass range, the peak sits on the tail of the reconstruéted ;j; distribution from¢t background events
which decay via d&Vb instead of aH*b. In the mass range 119 H* < 130 GeV, theH* peak can
be separated from the domindfit— ;j; background, withS/B ~ 4-5% andS/v/B ~ 5. This channel
is complementary to th&*— 7 channel for lowtan 3 values. Whereas thE*— 7 channel allows
only the observation of an excess of events, it is possible to reconstruct a mass peaklif-thes
decay mode.

TheH*— hW*, H¥*— AW* andH*— bt*— bbIW have not been studied so far by ATLAS. With
the expected-tagging efficiency, these multi-jet decay modes are very interesting for a more detailed
investigation.

8.35 t — Zqdecay

The sensitivity to the FCNC decay— Zq (with ¢ = u, c) has been analyzed [268] by searching for a
signal in the channekt — (Wb)(Zq), with the boson being reconstructed via the leptonic detay 1.

The selection cuts required a pair of isolated, opposite sign, same flavor leptons (electrons or muons),
each withpr > 20 GeV andn| < 2.5 and withjm; — mz| < 6 GeV. The dominant backgrounds come

from Z + jet andW Z production. Not only cuts were applied on tHe final state, but also on thé’ b

decay of the other top quark in the event, to further reduce the background. Two different possible decay
chains have been considered: the first (“leptonic mode”) wherélthgecays leptonicallyt’ — (v,

and the second (“hadronic mode”) withh — jj. The hadronid? decay signature has a much larger
branching fraction, but suffers from larger backgrounds. The search in the leptonic mode required, in
addition to the leptons from the Z boson decay, a further leptonpitly 20 GeV andr| < 2.5, Efiss

> 30 GeV, and at least two jets wigly- > 50 GeV andn| < 2.5. Exactly one of the higpy jets was
required to be tagged agget. The invariant mass spectrum of ed¢t combination was then formed

from the Z — [l candidates taken with each of the netagged jets. The/q invariant mass resolution

was 10.1 GeV. Combinations were accepteahjf, agreed with the known top mass within24 GeV.
Assuming an integrated luminosity of 100fh 6.1 signal events survive the cuts with 7 background
events. A value oBR(t— Zq) as low a2 - 10~ could be discovered at therSevel.

The search in the hadronic mode required, in addition tathe /i candidate, at least four jets
with pr > 50 GeV andn| < 2.5. One of the jets was required to be tagged &gea To further reduce
the background, the decay— jjb was first reconstructed. A pair of jets, among those not tagged as a
b-jet, was considered a W candidaterif;; — My | < 16 GeV.W candidates were then combined with
the b-jet, and considered as a top candidatgrif;, — m;| < 8 GeV. For those events with an accepted
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t — jjb candidate, the invariant mass of tHecandidate with the remaining unassigned higtjets was
calculated to look for a signal fromh— Z¢ decays. Combinations were accepted in dasg, — m|

< 24 GeV. Assuming an integrated luminosity of 100 fb one would get 0.4 signal events, with 2
background events.

8.36 t — g decay

The FCNC decay — vq (with ¢ = u,c) can be searched for as a peak in fifg ; spectrum in the
region ofm;. The requirement of a highy isolated photon candidate i — (Wb)(yq) events is

not sufficient to reduce the QCD multi-jet background to a manageable level. Therefote,tH& b
decay of the other top (anti-) quark in the event was reconstructed using the lepforic /v decay
mode, and looking for the& — (Wb)(vq) — (¢vb)(vq) final state. For the event selection, the ATLAS
collaboration [30, 262] required the presence of an isolated photorpwith 40 GeV andn| < 2.5, an
isolated electron or muon withr > 20 GeV andn| < 2.5, and B** > 20 GeV. Exactly 2 jets withpr

> 20 GeV were required, in order to reduce théackground. At least one of the jets was required to
be tagged as &jet with pr > 30 GeV andn| < 2.5. Thet — (vb candidate was first reconstructed.
The combination was accepted as a top quark candidate, jf agreed withm; within £20 GeV. For
these events the— ~q decay was sought by combining the isolated photon with an additional hard jet
with pr > 40 GeV andn| < 2.5. The invariant mass of thgj system was required to agree with the
known value ofn; within 20 GeV. Then,; resolution with the cuts described above was 7.7 GeV, and
the signal efficiency (not counting branching ratios) was 3.3%, includintpgging efficiency of 60%.
The background (155 events for an integrated luminosity of 100)fts dominated by events with a real
W — (v decay and either a real or a fake photon. These processes irt¢/igiegle top production,

W + jets andWbb production. The corresponding Sliscovery limit is

BR(t — vq) = 1.0 x 1074, (84)

8.37 t — gq decay

The search for a FCN&yq coupling (withg = u, ¢) through the decay — gq was analyzed in [229]

for the Tevatron. However, as can be seen from Table 23 in Section 7., the sensitivity for such a coupling
turns our to be much larger in thigoroduction processes than in the de¢ay gq, whose signal will be
overwhelmed by the QCD background. We refer the reader to Section 7. for a detailed discussion of this
point.

8.4 CMS studies of FCNC top quark decays and— H™b

The CMS sensitivity tot — ~(Z)(u,c) decays was studied recently (see [230] for details). The
PYTHIA 5.7 [52] generator was used for the signal and background simulations and the detector re-
sponse was simulated at the fast MC level (CMSJET [177]). Fot they(u, ¢) signal the exac2 — 5

matrix elementsyg(qq) — tt — ~yu(c) + W*b(— fvb) were calculated and included irvPHIA. The

t — v(Z)(u, c) decays would be seen as peaks inMig ;) ;., spectrum in the region ofi;. To separate

the signal from the background one has to exploit the presence of the additional top decaying to the

in the same event. The signature with the hadronic decay of the additional top was found to be hopeless.

8.41 t — ~y(u,c)

In order to separate the/q)(¢vb) final state from the backgrounds several selection criteria were
found to be effective. First, the presence of one isolated photoniyith 75 GeV and|n| > 2.5, one
isolated lepton 4, e) with £, > 15 GeV and|n| > 2.5, and at least two jets witl;, > 30 GeV and
In| > 2.4 is required. One top quark has to be reconstructed from the photon add,jet,(C m; + 15
GeV), the corresponding jet is not allowed to kéagged. On the contrary, the jet with maxinia,
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which is not involved in thé-~, jet) system has to betagged, should havE; > 50 GeV and contribute

to another reconstructed top quak{,; C m;+25GeV). There must be no additional jets with > 50

GeV. Theb-tagging efficiency was assumed toGi¥, for the purity1%(10%) with respect to the gluon

and light quark jetsd-quark jets). After this selection, approximately 270 background events dominated
by thett andWW + jets, includingiV bb, survive for the integrated luminosity of 100fh, while the signal
efficiency is9.1%. The S/ B ratio is about 1 foBR(t — ~(u, c)) = 10~* and the 5 discovery limit is

as low as3.4 x 107 for 100 fo!.

8.42 t— Zg

Thet — Zq signal was searched for in the — (¢£q)¢vb final state. Three isolated leptons with
E, > 15 GeV and|n| < 2.5, and exactly two jets withE, > 30 GeV and|n| < 2.5 are required. The
pair of the opposite-sign same-flavour leptons has to be constrainedAatiass (/,; C Mz +6 GeV)
and one jet, combined with the reconstructed Z, has to form the top system € m; & 15 GeV).
This jet is not allowed to be th&jet, but the last "free” jet in the event has to beéagged. For the
integrated luminosity of 100 fb! just ~ 9 background events coming from théZ, ttZ and Z + jets
processes survive. The signal efficiency is aliogfo which corresponds, however, only 4012 events
for BR(t — Z(u,c)) = 10~%. The indication is that one can reduce the background rate to the nearly
zero level tightening the selection criteria. In particular, requiring in addifigh*s > 30 GeV and a
harder jet involved in the top¢/;) system €; > 50 GeV) one can reduce the background to the level
of ~ 0.6 events still keepingv 3.7% of the signal ¢.6 events forBR(t — Z(u,c)) = 10~* and 100
fb~!). One can conclude that the— Z(u, c) signal should be very clean but, due to the low signal event
rate, only~ 3 x 100fb~! of integrated luminosity would allow one to proB& (¢t — Z(u,c)) as low as
10~*, provided the present background understanding is correct and the detector performance will not
be deteriorated during the long run. Thereach for 100 fo! is ~ 1.9 x 107,

8.43 t— H™b

CMS has investigated the production of the light charged Higgs;: < mq, in tf events using the decay
chaintt— H*bWb—(7%v.b) + (Lvb) [269]. The H* —7v branching ratio is large-98% in this mass
range fortan 8 >2 and only slightly dependent aan 3. Thet— H*b branching ratio is large both at
high and at lomtan § values and has a minimum ef0.8% aroundtan 5 ~6. Since the Higgs mass
cannot be reconstructed in this process the signal can be only inferred from the exega®ddiction
over what is expected from the SM-TWb, W+ 7% decay.

An isolated lepton withp, > 20 GeV is required to identify the top decay and to trigger the
event. Ther’s are searched starting from calorimeter jets with>40 GeV within|n| <2.4. For the
7 identification the tracker information is used, requiring one hard isolated charged hadrgn w30
GeV within the cone ofAR <0.1 inside the calorimeter jet. The algorithm thus selects the one prong
decays.

The main backgrounds are due to ttieevents withtt—WbWb—(rFv,b) + (fvb) and W +
jet events withiW—7v. The tt background is irreducible, but can be suppressed by exploiting the
T polarisation effects [270]. Due to the polarisation the charged pion from—z*v decay has a
harderp; spectrum when coming frofl*—7v than fromW*—7v. The decay matrix elements with
polarisation [271] were implemented iryPHIA [52]. Due to the polarisation, the efficiency of the above
T selection is significantly better fdi *—7v (~19%) than forlV*—rv (~6%).

The events were required to have at least bijet with £, > 30 GeV tagged with an impact
parameter method [272]. Thistagging suppresses efficiently, by a factoraof0, the background from
W +jet events. The efficiency foff events is~35%. The expecteddsdiscovery range for 10 fb'
in the MSSM (n 4, tan ) parameter space was found to bey < 110 GeV for alltan 3 values and
somewhat extendedn(y < 140) fortan 3 < 2.
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8.5 Conclusions on rare top decays

In the framework of the SM, the top rare decays (that is any channel differentfrojfi’) are definitely
below the threshold for an experimental analysis at LHC. On the other hand, LHC experiments will be
able to probe quite a few predictions of possible extensions of the SM.

An extended Higgs sector will be looked for through the tree-level decahyi/ . ATLAS esti-
mates its sensitivity to this channel in the MSSM, through an excess in the tau lepton signal, to be around
BR(t—H'b) = 3% (that is almost 4 times better than what expected from Run 2 at the Tevatron). This
would allow to probe all values afig+ belowm; — 20 GeV over most of thean 3 range. For low
tan 3, the complementary decay modE"—cs has been considered. In the mass ranged18* <
130 GeV, theH* peak can be reconstructed and separated from the doniirianij background.

For CMS, using the excess signature, the expecteddiscovery range for 10 fbo! in the MSSM
(ma,tan §) parameter space is8 4 < 110 GeV, for alltan 8 values, and somewhat extended <
140), fortan 8 < 2.

Other interesting signatures lidg* —hrW*, H* — AW* andH*—bt*—bbW are very promising
in particular parameter ranges, but have not yet been thoroughly investigated.

ATLAS has studied its sensitivity to the radiative de¢ayWbZ. This has been found to be at
most of the order 10, that is insufficient for the study of a SM signat (L0~°), but possibly useful for
exploring the predictions of some extended Higgs-sector model, for iBifi—1W¢Z) < 1072, On
the other hand, the radiative Higgs de¢ayWbH seems out of the reach of LHC in any realistic model.

The LHC reach for the FCNC decays»q~Z, t—qy andt—qg has also been thoroughly in-
vestigated. Apart from the—qg, which is completely overwhelmed by the hadronic background, both
ATLAS and CMS have a sensitivity of aboRitx 10~ to thet—¢Z channel, while the CMS reach for
thet—qy channel is abous.4 x 102, that is slightly better than the ATLAS sensitivity.( x 10™%),
assuming an integrated luminosity of 100 tb These thresholds could be largely sufficient to detect
some manifestation of possible FCNC anomalous couplings in the top sector.

ATLAS has also investigated its sensitivity to a measurement/gf through a determination
of the rateBR(t—bX), by comparing the number of observed (1 orbpgs in att sample. Within
the three-generation SM, the ratio of doubtag to singleb-tag events iRy, /1, = |Vip|2. LHC will
allow a much more precise determinationRy,/,;, with respect to the Tevatron (where, presently, one
gets|Vy;| > 0.76 at the 95% CL). On a purely statistical basis, the expected relative erfog,ap is
0Rap/15/Rap/1p (Stat.) = 0.2% for an integrated luminosity of 10 that would imply a relative error
on|V;| of about $fy . On the other hand, the final uncertainty will be dominated by systematic errors
related to thé-tagging. Further study is needed to estimate the size of these systematic uncertainties.

9. ASSOCIATED TOP PRODUCTION?*

The associated production of a Higgs boson (both SM-like and MSSM) with a top-antitop pair, is one of
the most promising reactions to study both top quark and Higgs boson physics at the LHC.

Thepp — ttH channel can be used in the difficult search for an intermediate mass Higgs:(
100 — 130 GeV), as first proposed in [273]. In this mass region, the associated top production cross
section is quite high but still smaller than the leading — H andqq — Hqq cross sections by two
orders and one order of magnitude, respectively. However, since the finatéfatignature is extremely
distinctive, even such a small signal production rate can become relevant, especially if identifying the
Higgs through its dominanty — bb decay becomes realistic, as will be discussed in the following.
AssociatedtH production will furthermore provide the first direct determination of the top quark

Yukawa coupling, allowing to discriminate, for instance, a SM-like Higgs from a more general MSSM
Higgs. Processes likgg — H or H — ~~ are also sensitive to the top Yukawa coupling, but only

245ection coordinators: A. Belyaev, L. Reina, M. Sapinski (ATLAS), V. Drollinger (CMS).
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through large top loop corrections. Therefore loop contributions from other sources of new physics can
pollute the interpretation of the signal as a measurement of the top Yukawa coupling.

In the following we will concentrate on the case of a SM-like Higgs boson, whose top Yukawa
coupling {y: = 23/4G}/2mt) is enhanced with respect to the corresponding MSSM (scalar Higgs) cou-
pling for tan 8 > 2, the region allowed by LEP data. Predictions for the MSSM case can be easily
obtained by rescaling both theH coupling and any other coupling that appears in the decay of the
Higgs boson.

The cross section fgsp — ttH at LO in QCD has been known for a long time [274] and has
been confirmed independently by many authors. We have recalculated it and found agreement with the
literature. Of the two parton level processeg (— ttH andgg — ttH), gg — ttH dominates at
the LHC due to the enhanced gluon structure function. The complete gauge invariant set of Feynman
diagrams folyg — ttH is presented in Fig. 46. The corresponding analytical results are too involved to
be presented here. The numerical results fer=14 TeV and a few values of the QCD scalare given
in Table 25, and illustrated in Fig. 45 as functionsof;, for u=my. For consistency, we have used the
leading order CTEQA4L PDFs [115] as well as the leading order strong coupling constant (for reference,
a9 (u = Mz) =0.1317 for A(QE%D = 0.181). The cross section, as expected from a LO calculation,
shows a strong scale dependence, as can be see in Table 25 , where regutsfgr, m:, mg + 2m;
and+/3 are presented. In comparison wjih= 2m; + my, for = my we have 80-50% higher cross
sections, when 100 Ge¥ my < 200 GeV. Since the choice of the QCD scale at LO is pretty arbitrary,
and since we expect NLO QCD corrections to enhance the LO cross section, we decidg torugein
Fig. 45 and in the following presentation. These calculations have been performed independently using
the CompHEP software package [275] and MADGRAPH [276]+HELAS [277].

The NLO QCD corrections are expected to enhance the cross section, but their complete evaluation
is still missing at the moment. Associated top production is in fact the only Higgs production mode for
which the exact NLO QCD corrections have not been calculated yet. The task is very demanding, since
it requires the evaluation of several one loop five-point functions for the virtual corrections and the
integration over a four-particle final state (three of which massive) for the real corrections.

For largemy, the cross section fat H has been calculated including a complete resummation
of potentially large logarithms, of ordén(my/m;), to all orders in the strong coupling [278]. These
effects can almost double the cross sectionifgr=1 TeV.
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Table 25: Leading order cross sections faH production at the LHC. The individual parton level channglg  t¢H and

gg — ttH) as well as their sum are given for a few values of the renormalization gcale

my[GeV] | qq[fo] | gglfb] | qg+gg[fb] | qg+gg [fb] qq+gg [fo] qq+gg [fo]
p=mg | p=my | p=mg p=my | p=2my+myg| p=+3
100 348. 990. 1340. 1070. 765. 685.
110 279. 740. 1020. 840. 596. 534.
120 227. 558. 785. 674. 473. 422.
130 186. 428. 613. 542. 370. 338.
140 153. 334. 487. 445, 308. 273.
150 128. 263. 391. 367. 251. 224.
160 107. 210. 317. 306. 207. 184.
170 90.5 169. 260. 257. 173. 152.
180 76.8 139. 216. 218. 145. 128.
190 65.7 115. 181. 187. 124. 108.
200 56.4 97.1 153. 162. 106. 92.4
300 15.0 29.5 445 55.7 332 28.4
400 5.11 15.6 20.7 29.6 16.2 13.8
500 2.04 9.51 115 18.4 9.32 7.98
600 0.909 6.00 6.91 12.1 5.73 4.93
700 0.439 3.86 4.29 8.20 3.63 3.14
800 0.226 2.50 2.72 5.62 2.34 2.04
900 0.122 1.65 1.76 3.90 1.54 1.35
1000 0.0684 | 1.10 1.16 2.73 1.02 0.900

For an intermediate mass Higgs, thefactor cn.o/oro) has been estimated in the Effective
Higgs Approximation (EHA) [279]. The EHA neglects terms @fmy/+/s) and higher and works
extremely well forete™ — ttH already at/s=1 TeV. However, it is a much poorer approximation in
thepp — ttH case, since it does not include th&hannel emission of a Higgs boson far — ttH.
Indicatively, at\/s = 14 TeV, for a SM-like Higgs boson withny ~ 100 — 130 GeV, the EHA gives
K ~1.2 — 1.5, with some uncertainty due to scale and PDF dependence. Only the complete knowledge
of the NLO level of QCD corrections will allow to reduce the strong scale and PDF dependence of the
LO and EHA cross sections. For the following analysis we choose to use the pure LO cross section
with no K-factor, both due to the uncertainty of the result and for consistency with the corresponding
background cross sections. However, one should point out that, due to the choice of a quite low QCD
scale t=mp), a sort ofeffectiveK-factor has been automatically included in our analysis.

In the following subsection we present the analysis and results from the ATLAS collaboration as
well as a discussion of the main backgrounds. The analysis mainly focuses on the search and study
of an intermediate mass Higgs boson. To introduce the study, it is useful to discuss and qualitatively
understand the size of the possible irreducible backgrounds itDthe my < 140 GeV mass region.

Given the relatively small number of events that will be available, one should try to consider all
possible decay channels of the Higgs boson in the intermediate mass rébienbb, 77, vy, WW
andZZ. The corresponding irreducible backgrounds areitt), 2)ttr7, 3)ttyy, 4)ttWW, and 5)
ttZ Z. The number of events expected from signal and background signatures for 1)-5) are presented in
Fig. 47. This figure shows the number of signal and background events in each bin of the corresponding
invariant mass:Myy, M, M., Myw or Mzz. They are obtained multiplying theH cross section
by the respective Higgs boson branching ratios. In order to take into account finite mass resolution
effects, we have chosen 10 GeV bins for fife,, distribution and 50 GeV for the others. The presented
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Table 26: Leading-order cross sections for vario$§ X backgrounds.

ttbb ttrT ttryy tHWW | ttZZ
cuts | <3 -] <3 9] < 2.5
Eb >15GeV | ET. > 15GeV | EJ > 15GeV
myy, > 90 GeV M, > 90 GeV
o [fo] qq 41.2 2.9 2.73 0.50 | 1.11
99 846. 15.7 1.82 1.52 | 0.567
q3+qg 887. 18.6 4.55 253 | 1.68

numbers correspond to 30fhof integrated luminosity. The corresponding total cross sections are given
in Table 26.

Cross sections for backgrounds 1)-3) were calculated with the kinematic cuts shown in Table 26,
while for processes 4) and 5) no cuts were applied. We have used CTEQ4L PRF andi/y x, where
XX isbb, 7777, vy, WHW~ or ZZ depending on the channel. One can see that#litesignature
has the highest signal (and background) event rate. It has been the object of the study of the ATLAS
collaboration and will be discussed in the next section. fhe channel has also been the subject
of [280] where signal as well as reducible and irreducible backgrounds have been studied in details at the
parton level. However, one can see that other signatures could also be interesting and helpful in searching
for the Higgs boson and measuring thé& Yukawa coupling, and should be taken into account in future
studies.

9.1 ttH: Analyses and Results

The ATLAS collaboration has studied several channels in which the discovery of a SM-like Higgs boson
would be possible and obtained a quite complete Higgs discovery potential [30]. One of the most impor-
tant channels for discovery of a low mass Higgs bosd® { 130 GeV) is thettH, H — bb channel,

in which it is possible to obtain quite large signal significance [281] and also to measure the top-Higgs
Yukawa coupling.

The final state of this channel consists of tWobosons and foub—jets: two from the decay of
the top quarks, and two from the decay of the Higgs boson. In order to trigger signal event®, one
boson is required to decay leptonically. The sectiicboson is reconstructed from the decay t¢g@
pair. This channel could be also investigated with bidffbosons decaying leptonically. However, for
this signature the total branching ratio is much smaller and, in addition, it is more difficult to reconstruct
two neutrino momenta from the measured missing energy.

In the analysis both top quarks are fully reconstructed, and this reduces mostBfbets back-
ground. The reconstruction is done using strategies similar to those discussed in Section 3.5 for the
kinematic studies oft production. The main backgrounds for this process are:

e the irreducible continuurtébd background;

e the irreducible resonartZ background, which is not very important for this channel as it has a
very small cross section;

WWbbjj, etc.

After the reconstruction of the two top quarks, it has been found that the most dangerous back-
ground isttbb (56% of all tf+jets background). In Table 27 we give<BR, where BR represents the
product of the branching ratios for — Wb, W, — fv,Wy — qiG2, and H — bb. We also give
the number of events expected after the reconstruction procedure for 3 years of low luminosity oper-
ation (-tagging efficiencye, = 60%; probability to mistage-jet asb-jet . = 10%; probability to
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mistag any other jet akjete; = 1%; p];t > 15 GeV, lepton identification efficiency, = 90%;

p7" > 20 GeV), and after one year of high luminosity operation (for high luminositybstkegging effi-
ciency is degraded tg, = 50% (e., ¢; ande, remain unchanged), the threshold on jet reconstruction is
raised topr > 30 GeV and the electropr threshold is raised tp7 > 30 GeV). Combined results are
also shown.

Figure 48 shows the signal and background shapes:fpe= 120 GeV and 100 fb! of integrated
luminosity obtained with combined detector performance (30 fbith low luminosity and 70 fo'! with
high luminosity). On the other hand, Fig.49 illustrates the signal shape for= 100 GeV, as obtained
by using the full (GEANT) simulation of the detector. In this figure, the shaded area represents the true
signal where both-jets come from the Higgs boson, and the solid line stands for the signal obtained
through the method that we described above. ddrabinatorial backgroundwvhich comes from taking
at least oné-jet from a top instead the one from the Higgs, is quite large and the signal purity is at the
level of 60% for low luminosity.

For the fast simulation then,; peak mass resolution is,,; = 19.0 GeV, while for the full
simulation, including the influence of electronic noise and the threshold on cell energy, a resolution
om,; =20.0 GeV has been obtained.
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Table 27: Cross sections multiplied by branching ratios and numbers of events after all cuts, includifi thg; mass win-
dow cut, for 30 fbr* (low luminosity detector performance), 100fb(high luminosity detector performance) and combined
100 fb~* (30 fb~! with low luminosity and 70 fo* with high luminosity detector performance) of integrated luminosity.

o x BR nr. of
process (pb) reconstructed events
low lumi | high lumi | combined
ttH, my =120 GeV | 0.16 40 62 83
tt + jets 87 120 242 289
Wijjjjj 65200 5 10 12
ttz 0.02 2 5 6
total background - 127 257 307
S/B - 0.32 0.24 0.27
S/\/(B) - 3.6 3.9 4.8
Str_vi/ Stotal - 59% 50% -
oy /y; (Stat.) - 16.2% 14.4% 11.9%

Similar analyses have been performed forthi#, H — ~~ channel. Since the signal rate for this
channel is very small, it will not be useful during the low luminosity period. However, thanks to the high
purity of the signal, it will be possible to obtain between 4 or 5 signal events above 1 eventifrom
background per one year of high luminosity operation [282]. To increase the signdlitaéteand Z H
with H — ~~ channels have been included into the analysis and 14 signal events above 5 background
events W~v, Zvv, ttyy andbby~) are expected for one year of high luminosity operation [30].

The statistical uncertainty in the determination of the top-Higgs Yukawa couplifggiven in
the last row of Table 27. These results assume that the theoretical uncertainty is small, as we expect to
be the case by the time the LHC turns on. Many statistical uncertainties of the direct measurement of
y¢, such as those associated with uncertainties in the integrated luminosity andidrréhenstruction
efficiency, could be controlled by comparing téf rate with thett rate.

To conclude, thetH, H — bb and H — ~~ channels are very useful for Higgs boson discovery
as well as for the measurement the of top-Higgs Yukawa coupling.

9.11 Acloser look at thetbb background: CompHEP versusPHIA

It is necessary to stress that the correct understanding efiih®ackground is one of the main points
of this study. One can simulate this background usivigHPa, by generating events of top pair produc-
tion and emittingbb pairs from the gluon splitting after the initial and final state radiation. In order to
understand how good or bad this approximation is, one needs to calculate and simulate the ¢éhbiplete
process. We have done this using the CompHEP package [275].

In order to compare CompHEP and®IA on the same footing, one should take into account
the effects of the initial and final state radiation in CompHEP. This has been done through a CompHEP-
PYTHIA interface [283]. We use parton level events generated by CompHEP and link therm+ie An
order to include initial and final state radiation effects as well as hadronization effects.

Table 28 presents parton level CompHEP anaHPA cross sections including branching ratios
of the W-boson decay, for the same choice of structure function (CTEQ4L [115]) and QCD géate (
m?+p%(average)). We can see a good agreement for the total cross sections between the exact calculation
and the gluon splitting approximation.

In Fig. 50 we present the distribution éfjet separation inttbb events. One can see a quite
good agreement between CompHEP amaHrA . Figures 51 and 52 compare the transverse momentum
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pairs in fully reconstructedt H signal events and back-

ground events, obtained using the fast
ATLAS detector, formyg =120 GeV and

minosity of 100 fo! (30 fb~! at low plus 70 fb'* at
high luminosity). The points with error bars represent
the result of a single experiment and the dashed line rep-

resents the background distribution.
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Fig. 49:Invariant mass distribution of taggeéeet pairs in

fully reconstructedt H signal events, obtained using a full
(GEANT) simulation of the ATLAS detector, fompg =

100 GeV and low luminosity performance. The shaded area
denotes those events for which the jet assignment in the Higgs
boson reconstruction is correct.

Table 28: Results for thefbb background, assuming an integrated luminoglty, = 30 fb~': CompHEP (ISR and FSR

included) versus PYTHIA (default).

| Selection |  CompHEP | PYTHIA | CompHEP / RTHIA |
4 b-quarks with 92000 events 87600 events 1.05
pr >15GeV/e;|n| < 2.5 oc=3.1pb o=29pb
AR(b,b) > 0.5 54000 events 48900 events 1.10
b-quarks not from top decay 59% of prev. Step 56% of prev. Step

distributions of the most energetiget and of the least energetigjet in t£bb production, as reproduced
using FTHIA and CompHEP respectively. These distributions also confirm thetiR describes well
the ttbb background.

9.2 Summary and conclusions fotttH production

The associated production of a Higgs boson with a top-antitop pair is important for the discovery of an
intermediate mass Higgs bosan § ~ 100 — 130 GeV) and provides a direct determination of the top-
Higgs Yukawa coupling. From studies of the couplings and of the CP-parity of the Higgs boson [284] it
will be possible to discriminate, for instance, a SM-like Higgs boson from a generic MSSM one.

The ATLAS analysis has focused on thg7 , H — bb channel for the low luminosity run of the
LHC (30fb~! of integrated luminosity). The results presented in Section 9.1 are very encouraging and
indicate that a signal significance of 3.6 as well as a precision of 16% in the determination of the Yukawa
coupling can be reached (fat; = 120 GeV). Better results can be obtained from the high luminosity
run of the LHC (100 flr! of integrated luminosity), when also the high purityl, H — ~v~ channel is
available.
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A APPENDIX: b-TAGGING AND JET E-SCALE CALIBRATION IN TOP EVENTS 2°
For the reconstruction of the top events and in particular for the precision measurement of the top mass
two important aspects in the detector performance have to be considered:

e theb-quark jet tagging capabilities and efficiency in top events, and

e the jet energy scale calibration for the light quark jets but in particular fobjeés.
In both experiments ATLAS and CMS several studies have been made on these, highlights of which are
presented here. From the preliminary results available so far, there is confidence that the numbers used
or implied in the analyses presented in this report are realistic. Needless to say that these are preliminary

results and several detailed studies need to be performed with the final detector simulations and the first
LHC data.

#gection coordinator: |. Efthymiopoulos
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Al Db-jettagging in the top events

ATLAS has done extensive studies for théagging performance using jets from the decay of 100 and
400 GeV Higgs bosons ([30], Chapter 10). In Fig. 53 the rejection factors for the light quark jets versus
theb tagging efficiency and the jet. are shown.

Typically in the ATLAS analyses discussed here, and in particular for the fast simulation studies,
an overallb-jet tagging efficiency of 60% (50%) for low (high) luminosity of LHC is used. The mis-
tagging inefficiencies for the-jets (or other light quark jets) were 10% (1%) for therange interesting
for the top physics. Although most of the studies were done with events from the Higgs decays, the
results were verified with the top events themselves and no significant differences were found.

A2 Absolute jet energy scale calibration

Determining the absolute jet energy scale at LHC will be a rather complex issue because it is subject
to both physics (initial-final state radiation, fragmentation, underlying event, jet algorithm etc.) and
detector (calorimeter response over a wide range of energies and over the full acceptance of the detector,
non-linearities at high energies/h ratio etc.) effects. All these have to be understood at the level of a
fraction of a percent in terms of systematic uncertainties as required for the precision measurements of
the top mass.

ATLAS has done an extensive study of the possihlsitu jet scale calibration methods using
specific data samples available at LHC ([30], Chapter 12). In general, good candidate event classes at
LHC will be:

e reconstruction o/ — jj decays within the top events themselves [12] to obtain the light quark
jet calibration and,

e events containing & boson decaying into leptons balanced with one highjet to cross-check
the light quark jet calibration but in addition to calibrate thiets and extend the energy reach to
the TeV range.

In Fig. 54 the results obtained are shown. As can be seen (left plot) for the cise-ofjj events,
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boson and the, of the leading jet as a function of the- of the jet for the sample of + jets events. A cone of DR 0.7 is

used to collect the jet energy.

once the jet 4-vectors are rescaled usingthg constraint the required 1% uncertainty is reached for
jets withp,> 70 GeV up to several hundred GeV. The lower and upper end of this range will depend on
how well residual systematic effects can be controlled in the data and the Monte Carlo simulation [285].

The use of theZ + jets sample in LHC is a bit less straightforward than at the Tevatron [286]
due to the ISR radiation which produces an additional highjet which degrades the quality of the
pr-balance between th& boson and the leading jet. In Fig. 54 (right) the variation of the average
fractional imbalance between the of the leading jet and th& boson as a function of ther of the jet.
Rescaling the jepy to satisfypy balance with theZ boson and applying tight selection criteria (jet veto
and difference in azimuth¢ between the reconstructéfiand the leading jet) the desired goalf%
systematic uncertainty on the absolute jet energy scale can be achieved for jets with0 GeV and
up to the TeV range [287].

However, as shown in Fig. 54 (right), it is possible, taking advantage of the large rate and requiring
tight event selection criteria, to obtain the required precision for jetspyith 40 GeV and up to the TeV
range.

Clearly more studies are needed, and will be done in the years to come, to understand the limita-
tions of the proposed methods and to devise possible improvements.

B APPENDIX: DIRECT MEASUREMENT OF TOP QUANTUM NUMBERS 26
B1 Top spin and experimental tests

Evidence to date is circumstantial that the top events analysed in Tevatron experiments are attributable
to a spin-1/2 parent. The evidence comes primarily from consistency of the distribution in momentum
of the decay products with the pattern expected for the weak deeay + W, with W — £ + v or

W — jets, where the top is assumed to have spin-1/2.

%gection coordinators: E.L. Berger, U. Baur.
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It is valuable to ask whether more definitive evidence for spin-1/2 might be obtained in future
experiments at the Tevatron and LHC. We take one look at this question by studying the differential
cross sectioro /dM,; in the region near production threshold [288]. Hétg is the invariant mass of
the ¢ pair. We contrast the behaviour of production with that expected for production of a pair of
spin-0 objects. We are motivated by the fact that in electron-positron annihilation,e™ — ¢ + ¢,
there is a dramatic difference in energy dependence of the cross section in the near-threshold region for
guark spin assignments of 0 and 1/2.

For definiteness, we compare top quarknd top squark production since a consistent phe-
nomenology exists for top squark pair production, obviating the need to invent a model of scalar quark
production. Moreover, top squark decay may well mimic top quark decay. Indeed, if the chgrgino
is lighter than the light top squark, as is true in many models of supersymmetry breaking, the dominant
decay of the top squark is— b + 7. If there are no sfermions lighter than the chargino, the chargino
decays to &1 and the lightest neutraling®. In another interesting possible decay mode, the chargino
decays into a lepton and sleptoptt — ¢T#. The upshot is that decays of the top squark may be very
similar to those of the top quark, but have larger values of missing energy and softer momenta of the
visible decay products. A recent study for Run Il of the Tevatron [289] concluded that even with 4 fb
of data at the Tevatron, and including the LEP limits on chargino masses, these decay modes remain
open (though constrained) for top squarks with mass close to the top quark mass.

At the energy of the CERN LHC, production tifpairs and ott pairs is dominated byg subpro-
cess, and the threshold behaviours in the two cases do not differ as much as they dgfantident
channel. In Fig. 55(a), we show the partonic cross sectiqnés) as functions of the partonic sub-
energyﬁ for the gg channel. In Fig. 55(b), we display the hadronic cross sectiongpfors ttX and
pp — ttX at proton-proton center-of-mass energy 14 TeV as a function of pair mass. We include the
relatively small contributions from thgj initial state. After convolution with parton densities, the shape
of thett pair mass distribution is remarkably similar to that of thease.

Based on shapes and the normalisation of cross sections, it is difficult to exclude the possibility that
some fraction (on the order of 10%) of top squarks with mass close to 165 GeV is present in the current
Tevatrontt sample. The invariant mass distribution of the produced objééts,is quite different at the
partonic level for theyg initial state (dominant at the Tevatron), but much less so fogthmitial state
(dominant at the LHC). However, after one folds with the parton distribution functions, the difference in
the ¢g channel at the Tevatron is reduced to such an extent that/théistribution is not an effective
means to isolate top squarks from top quarks.

Ironically, the good agreement of the absolute ratetfoproduction with theoretical expecta-
tions [45, 47] would seem to be the best evidence now for the spin-1/2 assignment in the current Tevatron
sample.
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A promising technigue to isolate a top squark with mass close;tavould be a detailed study
of the momentum distribution of the top quark decay products (presumably in the top quark rest frame).
One could look for evidence of a chargino resonance in the missing transverse energy and charged lepton
momentum, or for unusual energy or angular distributions of the decay products owing to the different
decay chains. One could also look for deviations from the expected correlation between angular distri-
butions of decay products and the top spin [167].

As a concrete example of an analysis of this type, in Fig. 56 we present the distribution in the
invariant massX of the bottom quark and charged lepton, wit# = (p, + p,+)?, where the bottom
quark and lepton are decay products of either a top quark wjth= 175 GeV or a top squark —
XTb — W% — 01X, with m; = 165 GeV,mz+ = 130 GeV,my = 40 GeV, andm;, = 5 GeV.
The X distribution is a measure of the degree of polarisation ofithéoson in top quark decay [290],
and the figure shows that the different dynamics responsible for top squark decay result in a very different
distribution, peaked at much lowéf. The areas under the curves are normalised to the incltsared
tt rates at the LHC.

In this simple demonstration potentially important effects are ignored such as cuts to extract the
signal from its backgrounds, detector resolution and efficiency, and ambiguities in identifying the correct
b with the corresponding charged lepton from a single decay. Detailed simulations would be required
to determine explicitly how effective this variable would be in extracting a top squark sample from top
guark events. Nevertheless, such techniques, combined with thedaageples at the Tevatron Run Il
and LHC, should prove fruitful in ruling out the possibility of a top squark with mass close to the top
guark mass, or alternatively, in discovering a top squark hidden in the top sample.

B2 Direct Measurement of the Top Quark Electric Charge

In order to confirm that the electric charge of the top quark is indgggl= 2/3, one can either measure
the charge of thé-jet and W boson, or attempt to directly measure the top quark electro-magnetic
coupling through photon radiation in

pp—ttry, pp—tt, t—Whby. (85)

Since the procegsp—tt~y is dominated by;g fusion at the LHC, one expects that tfte cross section is
approximately proportional t@%op. For radiative top decays the situation is more complicated because
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the photon can also be radiated off thquark or thel¥ line.

The charge of thé-jet can most easily be measured by selecting events wheregbarks are
identified through their semi-leptonic decays;/vc with ¢ = e, . The small semi-leptonic branching
ratio of theb-quark (Bi(b—{vc) =~ 10%) and wrong sign leptons originating frof — B mixing are the
main problems associated with this method. For a quantitative estimate realistic simulations are needed.
Nevertheless, we believe that the enormous number of top quark events produced at the LHC should
make it possible to use semi-leptomitagging to determine the electric charge of the top quark.

In our analysis, we focus on top charge measurement through the photon radiation processes listed
in (85), concentrating on the leptefets mode,

pp—yLvjjbb. (86)

We assume that botlquarks are tagged with a combined efficiency of 40%. Top quarkErdkcays
are treated in the narrow width approximation. Decay correlations are ignored. To simulate detector
response, the following transverse momentum, rapidity and separation cuts are imposed:

pr(b) > 15 GeV, ly(b)] < 2, (87)
pr(€) > 20 GeV, In(0)| < 2.5, (88)
pr(7) > 20 GeV, In(j)| < 2.5, (89)
pr(y) >30GeV,  |n(y)| < 2.5, (90)

pr > 20 GeV, all AR's > 0.4. (91)
In addition, to suppress contributions from radiatiedecays, we require that
m(jjy) > 90 GeV and mp(fy;pr) > 90 GeV, (92)

wheremq is the cluster transverse mass of thesystem.
The events passing the cuts listed in (88) — (92) can then be split into three different subsamples:
1. By selecting events which satisfy

m(bjjy) > 190 GeV and mqp(bly;pr) > 190 GeV, (93)
radiative top quark decays can be suppressed and an almost pure samplewants is obtained
(“tty cuts”).

2. For
mq(bi2lvy;#r) < 190 GeV  and m(ba1757v) > 190 GeV, (94)
the procesgp—tt, t— Wby, W—/{v dominates (t— Wby, W—/v cuts”).
3. Requiring
mq(b120v;#r) > 190 GeV  and 150 GeV < m(be,17j7v) < 190 GeV, (95)

one obtains an event sample where the main contribution originates from the pgcess

t—Wby, W—jj (“t—=Why, W—jj cuts”).
Form, = 175 GeV, Q+op = 2/3, and [ Ldt = 100 fb~!, one expects about 2400, 11000 and 9400 events
in the regions of phase space corresponding to the three sets of cuts. We have not studied any potential
background processes. The main background should originatelffom jets production and should be
manageable in a way similar to th& -+ jets background for reguldt production.

The differential cross section for the photon transverse momentum at the LHC is shown in Fig. 57.
Results are shown for,, = 175 GeV and three “top” quark charge&),, = 2/3, Q:,p, = —4/3, and
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Fig. 57: The differential cross section for the photon transverse momentum in the rgasctiorfvj jbb at the LHC for three
different “top” quark charges.

Qtop = 1/3. ForQu,p = —4/3, the “top” quark decays into &~ and ab-quark instead of —W *b.

If Qiop = 1/3, the “b"-quark originating from the “top” decay is a (exotic) charg€/3 quark. In the
tty region (Eq. (93) and Fig. 57a), the—~£v;j;jbb cross section for a charge4/3 (1/3) “top” quark

is uniformly a factor~ 3.3 larger & 2.3 smaller) than that fof),,, = 2/3, reflecting the dominance
of the gg—tt~ process for which the cross section scales \@?g}]. On the other hand, for thep—tt,
t—Wby, W—/v selection cuts (Eqg. (94) and Fig. 57b), the cross sectio@fgy = —4/3 is a factor 3
to 5 smaller than that for a char@¢3 top quark, due to destructive interference effects intthéV by
matrix element. 11);,, = 1/3, the interference is positive, and the cross section is about a factor 2 to 2.5
larger than foiQ;,, = 2/3. The results for the—W by, W—; selection cuts ((95)) are similar to those
shown in Fig. 57b, and are therefore not shown here. Note that the phptdistribution for radiative
top decays is much softer than that fér production.

From our (simplified) calculation we conclude that the large number of double-taglygdbb
events, together with the significant changes inttheand thett, t— 1 by cross sections should make it
possible to accurately determiag,,, at the LHC.

C APPENDIX: 4" GENERATION QUARKS 2/

For completeness, we present here results for the total cross section of possible heavy quarks above the
top quark mass. The scale and PDF dependences are shown in Fig. 58. The uncertainty due to the choice

of scale is comparable to that of thiecross section, although the effects of the higher order corrections

are more and more important at large masses (see Fig. 59). The uncertainty induced by PDF changes
becomes very large at large masses, in particular if one considers sets such as CTEQ5HJ which have
harder gluons. Notice however that the relative effect due to the resummation corrections depends only

very weakly upon the choice of PDF’s (cf. Section 3.2).

%’Section coordinator: M.L. Mangano
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Fig. 58: Heavy quark total production rates. Left figure: scale dependence at fixed NLO (dashed lines in the lower inset), and

at NLO+NLL (solid lines). Right figure: PDF dependence. See the Section 3.2 for details.
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Fig. 59: Heavy quark total production rates. Left figure: fractional contribution induced by resummation contributions of order
O(az"). Right figure: initial state composition.

D APPENDIX;: MONTE CARLO TOOLS 28
D1 Parton shower Monte Carlos

General purpose Monte Carlo event generators HE®RWIG, PYTHIA and ISAJET are essential tools

for measuring the top quark cross section, mass and other production and decay properties. They are
complementary to the QCD tools described in Section 3.1 since, although they are less reliable for
inclusive quantities like the total cross section, they provide a fully exclusive description of individual
events at the hadron level. These can be analysed in exactly the same way as experimental data and can be
put through full or fast detector simulations to estimate experimental systematics. In certain kinematic
regions, particularly the quasi-elastic limit in which accompanying radiation is suppressed, they give
more reliable QCD predictions than the available calculations. They include approximate treatments of
higher order perturbative effects, hadronisation, secondary decays and underlying events.

The three programs we discuss have the same basic structure, although the precise details vary
enormously. Events are generated by starting with the hardest (highest momentum scale) interaction,
described by exact QCD (or EW) matrix elements. This is usually only done to leading order so describes

Z3ection coordinators: M.L. Mangano, M. Seymour.
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a 2—2 scattering process. The production of multi-parton final states is described as the emission of
additional partons from the incoming and outgoing partons of the hard process. This is simulated by a
parton shower algorithm in which the partons evolve downwards in some energy-like scale according to
perturbatively-calculable probabilistic distributions. When the evolution scale becomes small the running
coupling grows, phase space fills with (mostly soft) partons and perturbation theory breaks down. At this
point a model of the non-perturbative physics is needed: the perturbative emission is cutoff by a fixed
infrared cutoff and the system of partons is confined into hadrons. Having treated all outgoing partons
we are left with the remnants of the incoming protons, stripped of the partons that participated in the hard
process. These remnants can interact with each other, to produce additional soft hadrons in the event,
known as the underlying event.

Parton shower algorithms are developed by studying the amplitude to emit an additional parton
into a given process. This is enhanced in two kinematic regions: collinear, where two massless partons
are much closer to each other than any others or where a massless parton is close to the incoming proton
direction; and soft, where a gluon is much softer than any other parton. In both cases the enhanced terms
are universal, allowing a factorisation of emission by a system of partons from the process that produced
them. In the collinear case, this factorisation works at the level of cross sections, so it is not surprising
that a probabilistic approach can be set up. In the soft case however, the factorisation theorem is valid
at amplitude level and it turns out that in any given configuration, many different amplitudes contribute
equally. It therefore seems impossible to avoid quantum mechanical interference and so to set up the
evolution in a probabilistic way. The remarkable result though is that, due to coherence between all the
coloured partons in an event, the interference is entirely destructive outside angular-ordered regions of
phase space. This means that the soft emission can be incorporated into a collinear algorithm, simply
by choosing the emission angle as its evolution variable, as is doHERWIG. The most important
effects of coherence can be approximately incorporated by using some other evolution variable, like
virtuality, and vetoing non-angular-ordered emission, as is doneiR. If the colour-coherence is
not treated at all, one obtains the wrong energy-dependence of jet properties. Such modsk)tike
are completely ruled out by"e~ annihilation data. Colour coherence effects are also important in
determining the initial conditions for the parton evolution, resulting in physically-measurable inter-jet
effects [292], which are also in disagreement WRAJET.

Since the top quark decays faster than the typical hadronisation time, its width cuts off the parton
shower before the infrared cutoff. Its decay then acts as an additional hard process and the resulting
bottom quark (and two more partons if the W decays hadronically) continue to evolve. Additional coher-
ence effects mean that radiation from the top quark is suppressed in the forward direction (the dead cone
effect), as is radiation in the W direction in the top decay. These effects are again includEEWIG,
partially included in RTHIA and not included iInSAJET. Since the top quark is coloured, theguark in
its decay is colour-connected to the rest of the event, meaning that its properties are not necessarily the
same as in a ‘standard’production event. As mentioned in Section 4.6 and as discussed in more detail
in [64], such non-universal effects are small.

Although parton showers are reliable for the bulk of emission, which is soft and/or collinear, it is
sometimes the rare hard emissions that are most important in determining experimental systematics and
biases. Such non-soft non-collinear emission should be well described by NLO perturbation theory, since
it is far from all divergences. However, it is not straightforward to combine the advantages of the parton
shower and NLO calculation, so it has only been done for a few specific cases. Most notable for hadron-
hadron collisions are the Drell-Yan process, for which matrix element corrections are included in both
HERWIG and FYTHIA, and top decay, which is included HERWIG and discussed earlier in Section 4.62
in this report. The corrections to Drell-Yan events are particularly important at high transverse momenta,
where the uncorrected algorithms predict far too few events. It is likely that implementing corrections to
tt pair production would cure the analogous deficit at hifjiseen in Fig. 7.

Hadronisation models describe the confinement of partons into hadrons. Although this process
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is not well understood from first principles, it is severely constrained by the excellent data from LEP,
SLD and HERA. The string model, used by 1A, and the cluster model, used B\ERWIG, both

take account of the colour structure of the perturbative phase of evolution, with colour-connected pairs
producing non-perturbative singlet structures that decay to hadrons. The biggest difference between these
models is in how local these colour-singlet structures are. In the string model they stretch from a quark
(or anti-di-quark) via a series of colour-connected gluons to an antiquark (or di-quark). In the cluster
model each gluon decays non-perturbatively to a quark-antiquark pair and each resulting quark-antiquark
singlet (coming one from each of two colour-connected gluons) decays to hadrons. The independent
fragmentation model, used B$AJET, on the other hand, treats each parton as an independent source of
hadrons and is strongly ruled out bye~ data, for example on inter-jet effects in three-jet events, the
so-called string effect. Of the other two models;TRIA gives the better description ef e~ data, but
HERWIG also gives an adequate description, despite having a lot fewer adjustable parameters.

Models of the underlying event are not strongly constrained by either theoretical understanding or
experimental data. Two extreme models are available and the truth is likely to lie between them. In the
soft model, used IHERWIG, the collision of the two proton remnants is assumed to be like a minimum
bias hadron-hadron collision at the same energy. A simple parametrisation of minimum bias data (from
UA5 [293]) is used with little additional physics input. In the mini-jet model, used YmHPA and
available as an additional package HERWIG, on the other hand, the remnant-remnant collisions act as
a new source of perturbative scattering, which ultimately produce the hadrons of the underlying event.
To avoid regions of unstable perturbative predictions and problems with unitarity, a cutoff must be used,
Pr.min ~ 1 GeV. Presumably for a complete description, some soft model should describe the physics
below p; .min such that the results do not depend critically on its value. Unfortunately no such model
exists at present. Although the two models give rather similar predictions for average properties of the
underlying event, they give very different probabilities for the rare fluctuations that can be most important
in determining jet uncertainties. This is an area that needs to be improved before LHC running begins.

D2 Parton-level Monte Carlos

With few exceptions (e.g. 3 or 4-jet final stategine— collisions) multi-jet final states are not accurately
described by the shower MC'’s described above. This is because emission of several hard and widely sep-
arated partons is poorly approximated by the shower evolution algorithms, and exact (although perhaps
limited to the tree level) matrix elements need to be used to properly evaluate quantum correlations.
Parton-level Monte Carlos are event generators for multi-parton final states, which incorporate the exact
tree-level matrix elements. They can be used for parton-level simulations of multi-jet processes, under
the assumption that each hard parton will be identified with a final-state physical jet with momentum
equal to the momentum of the parent parton. Selection and analysis cuts can be applied directly to the
partons. In some cases, the partonic final states can be used as a starting point for the shower evolution
performed using a shower MC suchBRWIG, PYTHIA, or ISAJET. For a discussion of the problems
involved in ensuring the colour-coherence of the shower evolution when dealing with multi-parton final
states, see [294].

In the following, we collect some information on the most frequently used parton-level MCs used
in connection with top quark studies.

D21 VECBO%®

VECBOS[150] is a Monte Carlo for inclusive production ofl& -boson plus up to 4 jets or &-boson

plus up to 3 jets. VECBOS s therefore a standard tool used in the simulation of backgrounds to
production. The matrix elements are calculated exactly at the tree level, and include the spin correlations
of the vector boson decay fermions with the rest of the event. Various parton density functions are

2YECBOSauthors: F.A. Berends, H. Kuijf, B. Tausk and W.T. Giele. Contacts: giele@fnal.gov
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available and distributions can be obtained by using the kinematics of the final state, available on an
event-by-event basis together with the corresponding event weight. The code and its documentation can
be obtained from:

http://www-theory.fnal.gov/people/giele/vecbos.html
Documentation on the use of VECBOS within ATLAS can be found in [295].

D22 CompHER®

CompHEP is a package for the calculation of elementary particle decay and collision properties in the
lowest order of perturbation theory (the tree approximation). The main purpose of CompHEP is to gener-
ate automatically transition probabilities from a given Lagrangian, followed by the automatic evaluation
of the phase-space integrals and of arbitrary distributions. The present version has 4 built-in physical
models. Two of them are the versions of the Standard Model (SU(3)xSU(2)xU(1)) in the unitary and
t'Hooft-Feynman gauges. The user can change the models or even create new ones.

The symbolic part of CompHEP allows the user to perform the following operations:

1. to select a process by specifying incoming and outgoing particles for the dedays 2f...,1 —
5 types and the collisions &f — 2,...,2 — 4 types,

2. to generate Feynman diagrams, calculating the analytical expressions for the squared matrix ele-
ments,

3. to save the algebraic symbolic results and to generate the optifizédn andC codes for the
squared matrix elements for further numerical calculations.

The numerical part of CompHEP allows to convolute the squared matrix element with structure functions
and beam spectra, to introduce various kinematic cuts, to introduce a phase space mapping in order to
smooth sharp peaks of a squared matrix element, to perform a Monte Carlo phase space integration by
VEGAS, to generate events and to display distributions for various kinematic variables. Recently, an
interface with FTHIA has been created [283]. This allows to perform realistic simulations of the process
including hadronisation effects as well as the effects of the initial and final state radiation.

The CompHEP codes and manual are available from the following Web sites:
http://theory.npi.msu.su/"comphep
http://www.ifh.de/"pukhov

D23 ALPHAY

ALPHA is an algorithm introduced in [296] for the evaluation of arbitrary multi-parton EW matrix el-
ements. This algorithm determines the matrix elements from a (numerical) Legendre transform of the
effective action, using a recursive procedure which does not make explicit use of Feynman diagrams. The
algorithm has a complexity growing like a power in the number of particles, compared to the factorial-
like growth that one expects from naive diagram counting. This is a necessary feature of any attempt
to evaluate matrix elements for processes with large numbers of external particles, since the number of
Feynman diagrams grows very quickly beyond any reasonable value.

An implementation oALPHA for hadronic collisions was introduced in [294], where the algorithm
was extended to the case of QCD amplitudes (see also [297]). The main aim of the hadronic version of
ALPHA is to allow the QCD parton-shower evolution of the multi-parton final state, in a way consistent
with the colour-coherence properties of the soft gluon emission dynamics. This is achieved by evaluating
the QCD amplitudes in an appropriate colour basis [294], such that the assignement of a specific colour
flow configuration on an event-by-event basis. The pattern of colour flow defines the colour currents

30CompHEP authors: A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. llyin, D. Kovalenko, A. Kryukov, V. Savrin,
S. Shichanin, A. Semenov. Contacts: pukhov@theory.npi.msu.su, ilyin@theory.npi.msu.su

SLALPHA authors: F. Caravaglios, M. Moretti. The version for hadronic collisions received additional contributions from
M.L. Mangano and R. Pittau. Contact: moretti@fe.infn.it
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required to implement the angular ordering prescription which embodies, at the leading orddr/iNthe
expansion, the quantum coherence properties of soft-gluon radiation, as discussed in Appendix D1. A
version of the code is being completed [298], which incorporates the evaluati@iiof n jets (v < 4),
with all b-mass effects included. This program will allow a complete evaluation ofithe multijet
backgrounds to single top amtiproduction. The code contains 3 modules: the first for the generation
of parton-level events, with the assignement of partonic flavours, helicities and colour flows. The second
for the unweigthing of the events, and the third for the parton-shower evolution of the initial and final
states, done using ttHERWIG MC. The code will soon be available from the URL:

http://home.cern.ch/ mim/alpha
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