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1. INTRODUCTION

For many years neutrino physics has been avery important branch of elementary particle physics. In the
last few years the interest in neutrinos has increased. This is connected, first of al, with the success of
the Super-K amiokande experiment in which very convincing evidence in favour of oscillations of atmo-
spheric neutrinos was obtained.

Itisplausible that tiny neutrino masses and neutrino mixing are connected with the new large scale
in physics. This scale determines the smallness of neutrino masses with respect to the masses of charged
leptons and quarks. In such a scenario neutrinos with definite masses are truly neutral Majorana particles
(quarks and leptons have charges and are Dirac particles). It is evident, however, that many new experi-
ments are necessary to reveal the real origin of neutrino masses and mixing.

Experimental neutrino physicsisavery difficult and exciting field of research, and many new ideas
and methods are being proposed. At CERN and other |aboratories projects of new neutrino experiments
are developing. The possibility of a new neutrino facility, a neutrino factory, is being investigated in dif-
ferent laboratories. It istherefore avery appropriate time to discuss neutrino physics at the CERN-JINR
School.

I will consider different possibilities of neutrino mixing. Then | will discuss, in some detail, neu-
trino oscillations in vacuum and in matter. In the last part of the lectures | will consider the present ex-
perimental situation.

| havetried to give someimportant results and details of the derivation of some results. | hope that
they will be useful for those who wish to study the physics of massive neutrinos. More results and details
can be found in Refs. [1]-[5] (books) and [6]—[17] (reviews).

Most references to original papers can be found in Ref. [17].

2. NEUTRINO MIXING

According to the Standard Model of electroweak interaction the Lagrangian of theinteraction of neutrinos
with other particlesis given by the Charged Current (CC) and the Neutral Current (NC) Lagrangians:
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Here g is the electroweak interaction constant, 6y is the weak (Weinberg) angle, and W< and Z* are
thefields of the W+~ and Z" vector bosons. If neutrino masses are equal to zero, in this case the CC and
NC interactions conserve electron L., muon L,,, and tauon L lepton numbers

Z L. = const, Z L,, = const, Z L, = const . 3

The values of the lepton numbers of charged leptons, neutrinos, and other particles are given in Table 1.
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Table 1: Lepton numbers of neutrinos and charged leptons.
Lepton numbers of all other particles are equal to zero.

L. L, L,
(Ve, €7) +1 0
(Vs 1) 0 +1 0
(v, 77) 0 0 +1

According to the neutrino mixing hypothesis, masses of neutrinos are different from zero, and the
neutrino mass term does not conserve lepton numbers. For the fields of v, that enter into CC and NC
Lagrangians (1) and (2) we have, in this case,

v = Z Ui vir, » (4)

where v; isthe field of the neutrino with mass m; and U isthe unitary mixing matrix.

The relation (4) leads to aviolation of the lepton numbers due to small neutrino mass differences
and neutrino mixing. To reveal such effects specia experiments (neutrino oscillation experiments, neu-
trinoless doubl e 3-decay experiments, and others) are necessary. We will discuss these experiments | ater.
Now we shall consider different possibilities of neutrino mixing.

Let us note first of all that relation (4) is similar to the analogous relation in the quark case. The
standard CC current of quarks have the form

3SY = 2T yadl, + TryasT, + tLyabl) - (5)
Here
dlL = Z quQL 5 SIL = Z chqu s blL = Z VtiL s (6)
q=d,s,b q=d,s,b q=d,s,b

where V' isthe Cabibbo—K obayashi—M askawa quark mixing matrix. There can be, however, afundamen-
tal difference between the mixing of quarks and neutrino mixing. Quarks are charged four-component
Dirac particles: quarks and antiquarks have different charges.

For neutrinos with definite masses there are two possibilities:

1. If the total lepton number . = L. + L, + L isconserved, neutrinos with definite masses v; are
four-component Dirac particles (neutrinos and antineutrinos differ by the sign of L);

2. If there are no conserved lepton numbers, neutrinos with definite masses v; are two-component
Majorana particles(there are no quantum numbersin this casethat allow usto distinguish neutrinos
from antineutrinos).

The nature of the neutrino masses and the character of the neutrino mixing is determined by the
neutrino mass term.

2.1 Dirac neutrinos

If the neutrino mass term is generated by the same standard Higgs mechanism, which is responsible for
the mass generation of quarks and charged leptons, then for the neutrino mass term we have

LR =— Z 7R MP v +he. 7
1,1
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where M P isthe complex 3 x 3 matrix and v, is the right-handed singlet. In the case of the mass term
(7) the total Lagrangian isinvariant under global gauge invariance

L — ey, Vr — € VR, [ — e, (8)

where « isaconstant that does not depend on the flavour index {. Theinvariance under the transformation
(8) means that the total lepton number . = L. + L, + L. is conserved

Z L = const . 9)

Now let us diagonalize the mass term (7). The complex matrix M can be diagonalized by biunitary
transformation
MP = vmUT, (10)
WhereVTV:1,UTU:1,andmZk:mL51k, m; > 0.
With the help of (10), from (7) for the neutrino mass term we obtain the standard expression

3
rP — —ZWW/imi(UT)il v +he = _Zmil/_iyi ) (11)
Ul i1

Here
Vi = V[ T ViR (1=1,2,3)
and
vir = (UM ane
vir = S1(VDavig .
For the neutrino mixing we have
VL = Z Ul vir, - (12)

Processesinwhich thetotal lepton number isconserved, like . — e+ and others, are, inprinciple,
allowed in the case of mixing Dirac massive neutrinos. It can be shown, however, that the probabilities
of such processes are much smaller than the experimental upper bounds.

The neutrinoless double 5—decay,
(A Z) = (A, Z+2)+e +e,

due to the conservation of the total lepton number, is forbidden in the case of Dirac massive neutrinos.

2.2 Majorananeutrinos

Neutrino mass terms that are generated in the framework of the models beyond the Standard Model, like
the Grand Unified SO(10) Model, do not conserve lepton numbers L., L, and L. Let us build the most
general neutrino mass term that does not conserve L., L, and L.

The neutrino mass term is a linear combination of the products of |eft-handed and right-handed
components of neutrinofields. Noticethat (v7)¢ = C(71)? istheright-handed component and (vg)¢ =
C(vg)" istheleft-handed component. Here C isthe charge conjugation matrix that satisfies the relations
Cng_l = —Ya CT=_C,andCTC =1.1

Ynfact, Land R components satisfy the relations
1+ 11—
2 7 2
From thefirst of these relationswe have 71, (1 — v5) /2 = 0. Furthermore, from this last relation we obtain [(1 —v5)/2]7 7% =
0. Multiplying this relation by the matrix C' from the left, and taking into account that C+TC~ = ~°, we have [(1 —
v5)/2](ve)€ = 0. Thus, (v1.)€ isthe right-handed component. Analogously we can show that (vr)€ is the left-handed com-
ponent.

L =20

ZIR:O.
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The most general Lorentz-invariant neutrino mass term in which flavour neutrino fields v, and
right-handed singlet fields vz enter has the following form

1—
LM = —i(nL)C Mny, + h.c. (13)
Here
iy VeL VeR
ny = < Lo > with v, = | v and vp=| wvur |, (14)
(VR) VrL VrR

M isacomplex 6 x 6 matrix. Taking into account that (v7,)¢ = —vLC~! we have

1 ..
LP™M = Eni C*Mny +he. . (15)

From this expression it is obvious that there is no global gauge invariance in the case of the mass term
(13), i.e. the mass term (13) does not conserve lepton numbers.

The matrix M is symmetric. In fact, taking into account the commutation properties of fermion
fields, we have
nfctMnp = -nt ()T M np=ntc M ng. (16)

From thisrelation it follows that
MT =M.

The symmetric 6 x 6 matrix can be presented in the form

_( My (Mp)"
M_<M]§ ]\;R) (17)

where My, = M}, Mg = M}, and M are3 x 3 matrices. With the help of (17) for the massterm (15)
we have

LPM— Mo Dy oM (18)
Here £P isthe Dirac mass term that we considered before, and the new terms
1 -
M b Z (Vl’L)C Ml%l vy, + hee., (19)
vl
1 [
ﬁl\é{ = —5 Z (Ijl/R)C ]\/[l]/zl VIR + h.C. ) (20)

]
which do not conserve lepton numbers are called left-handed and right-handed M gjorana massterms, re-
spectively. The massterm (13) is called the Dirac—Majorana mass term.

A symmetrical matrix can be diagonalized with the help of unitary transformation

M= UN'mUT.

Here U isthe unitary matrix and m;x = m;d;, m; > 0. Using the relation (11) we can write the mass
term (15) in the standard form

6
3 1 —— 1_ 1 _
DM _ _E(UTnL)C mU n;, + h.c. = —grmy = —3 E m;v;v; (21)
i=1
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where
140

v
v=U"n, +Utny)® = :2 . (22)

V6

Thusthefields v; (i=1,2...6) are the fields of neutrinos with mass m;. From (22) it follows that the fields
v; satisfy the Majorana condition
vl =, (23)

L et usnow obtain therelation that connectstheleft-handed flavour fields v, with the massivefields
v;1,. From (22) for the left-handed components we have

np =Uvg . (24

From this relation for the flavour field v, it follows that

6
vp =Y Ui, (I=eprT). (25)
i=1

Thus, in the case of the Dirac-Majorana mass term, the flavour fields are linear combinations of left-
handed components of six massive Mgjoranafields. From (25) it followsthat thefields ul% are orthogonal
linear combinations of the same massive Majoranafields

6
(vir)® = Z Uy viL - (26)
i1

In the case of Mgjoranafield particles and antiparticles, the quanta of the field are identical. In fact, for
fermion fields v(z) we have, in general

1 1 , ,
_ - r —ipx T —r T ipx| 33
@)= [ Gayn T (O OO ] d, @)
where ¢,.(p) (dl (p)) is the operator of the absorption of the particle (creation of antiparticle) with mo-
mentum p and helicity r. If thefield v(z) satisfies the Majorana condition (23), then we have

cr(p) = dr(p) - (28)

Let us stress that it is natural for the neutrinos with definite masses in the case of the Dirac-Majorana
mass term to be Majorana neutrinos. in fact, there are no conserved quantum numbers that could allow
us to distinguish particles from antiparticles.

2.3 Thesimplest case of one generation (M ajorana neutrinos)

Itisinstructiveto consider in detail the Dirac—-Mgjoranamassterm in the simplest case of one generation.
We have

LM % mp, (Ur) v —mpVRrvL — % mrVR (V)" + h.c.
- % (7)) M ng + hec. (29)
where
nL:<(VVI§)C>, M:(gg Zg>. (30)
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L et us assume that the parameters my,, mpg, and mp arerea (the case of CP invariance). In order

to diagonalize the mass term (29) let us write the matrix M in the form
1
M= TeM+M

where Tr M = my, +mp and

For the symmetrical real matrix we have
M =0mo’.

cos?¥ sind
0= ( —sind  cos?d >

is an orthogona matrix, and m;;, = m;d;,, where

Here

1
M2 = F5 \/(mR —myp)? +4m3,

are eigenvalues of the matrix M.

(31)

(32)

(33)

(34)

(35)

From (33), (34), and (35) for the parameters cos ¢ and sin 9 weeasily find thefollowing expressions

— 2
cos 21 = MR _ ML , tan29 = __“mb__
\/(memL)2+4m% (mp —mr)
For the matrix M from (33) and (35) we have
M = O0m'oT

where

1
my g = §(mR+mL):F \/(mR—mL)2+4m2D )

The eigenvalues m, can be positive or negative. Let uswrite
m; = mn;
where m; = |m;| and n; isthe sign of thei-eigenvalue. With the help of (33) and (38) we have
M = (UNHYTmUT .
Here
Ut =,mo",
where /7 takesthe values 1 and i.
Now using the general formulas (21) and (22) for the mass term we have

_ 1
LP—M — —§ E m;v;v; .
=12

(36)

(37)

(38)

(39)

Herev; = I/Z»C isthefield of the Majorana particles with massm;. Thefields v, and (VR)C are connected

with massive fields by the relation

vr VL
prm— U )
( (vr)® ) < (var )
where U = O(,/n)* isa2 x 2 mixing matrix.

Let us consider now three special cases.
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1. Nomixing
Assumemp =0. Inthiscase§ = 0, m; = mp, mo = mpg,andn = 1 (assuming that m; and mp
are positive). From (40) we have

v =uvir  (vr)’ =rar . (41)

Thus, if mp = 0 thereisno mixing. For the Magjoranafields v; and v, we have
v =vp + (vg)° (42)
vy =vp + (vg)©. (43)

2. Maxima mixing
Let usassumethat mr = mz, mp # 0. From Egs. (36), (37), and (40) we have
m

GZZ, mi2 =mpF+ mp, (44)
(assuming |mp| < my) and
1 1 o 1 1
vy = —=ViL + —=WorL ; v =——w + —=oL . 45
L=l t G (vr) N RV (45)

Thusif the diagonal elements of the mass matrix A are equal, then we have maximal mixing.

3. See-saw mechanism of neutrino mass generation
Let us assume that m;, = 0 and

mp < Mg . (46)
From (35) and (37) we have, in this case,
m2 m
mlz—D, mo X mp, QE—D (771:—1,772:1). (47)
mpg mp

Neglecting termslinear inmp/mp < 1, from (40) we have
v ~ —ig, (I/R)C ~ o . (48)
For the Mgjoranafields we have
v ~ vy —i(v)©, vy = vp + (vg)© . (49)

Thusif the condition (46) is satisfied, in the spectrum of masses of Majorana particles there is one
light particle with the mass m; << mp, and one heavy particle with the mass m; >> mp.
The condition m;, = 0 means that the lepton number is violated only by the right-handed term
—3mpvr(vr)© Which is characterized by the large mass mp. It is natural to assume that the
parameter m p which characterizes the Dirac term —m pT vy, is of the order of lepton or quark
masses. The mass of the light Majorana neutrino m; will in this case be much smaller than the
mass of the lepton or the quark. Thisisthe famous see-saw mechanism. This mechanism connects
the smallness of the neutrino masses with respect to the masses of other fundamental fermionswith
the violation of the lepton numbers at very large scale (usually mp ~ Mgy ~ 1016 GeV.
With the see-saw for three familiesin the spectrum of masses of M gjorana particlesthere are three
light masses m1, mo, ms (masses of neutrinos) and three very heavy masses M7, Mo, Ms. Masses
of neutrinos are connected with the masses of heavy Majorana particles by the see-saw relation
2\2

miz%<<m}: (i=1,23), (50)
where m% isthe mass of the lepton or quark in the i-family. The see-saw mechanism isaplausible
explanation of the experimentally observed smallness of neutrino masses. Let us stressthat if neu-
trino masses are of the see-saw origin then
a. neutrinos with definite masses are Mgjorana particles;
b. there are three massive neutrinos;
c. there must be a hierarchy of neutrino masses m; < mq < ms.
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3. NEUTRINO OSCILLATIONS

The most important consequences of neutrino mixing are so-called neutrino oscillations. Neutrino oscil-
lationswerefirst considered by B. Pontecorvo many years ago in 1957-58. Only onetype of neutrino was
known at that time and there was a general belief that the neutrino is a massless two-component particle.
B. Pontecorvo drew attention to the fact that there is no known principle that requires the neutrino to be
massless (like gauge invariance for the photon) and that the investigation of neutrino oscillationsisavery
sensitive method for searching for effects of small neutrino masses. We will consider here in detail the
phenomenon of neutrino oscillations.

Let us assume that there is neutrino mixing

vor = » Ui viL, (51)

whereUTU = 1 and v; isthefield of the neutrino (Dirac or Majorana) with themassm,;. Thefieldsv,z, in
(51) areflavour fields (o« = e, u, 7) and in general also sterile ones (o = sy, ...). Let usassume that neu-
trino mass differences are small and different neutrino masses cannot be resolved in neutrino production
and detection processes.

For the state of the neutrino with momentum ' we have
Vo) = Z D) (52)

where |;) isthe vector of the state of the neutrino W|th momentum p, energy

2
m*
EiZ\/p2+m?§p+2—; (p>my), (53)

and (up to theterms m? /p?) helicity isequal to —1. If at theinitial time ¢ = 0 the state of the neutrino is
|va), @ thetimet for the neutrino state we have

Vel = Z S|y (54)

Thevector |v,,) isthe superposition of the states of al typesof neutrino. Infact, from (52), using unitarity
of the mixing matrix, we have

|Vi> = Z ‘Va’>Ua’i . (55)
From (54) and (55) we have
Vo)t = Z ‘Va’>~’4u{1;l/a (t) . (56)
where
Z Ui PP (57)

is the amplitude of the transition v, — v, at the t| me ¢. The transition amplitude A, ., (¢) hasasimple
meaning: the term U, is the amplitude of the transition from the state |v,,) to the state |;); the term
e~ *Eit describes the evol ution in the state with energy E;; theterm U,; isthe transition amplitude from
the state |v;) to the state |v/),).

The different |v;) gives a coherent contribution to the amplitude A, ., (t). From (57) it fol-
lows that the transitions between the different states can take place only if: i) at least two neutrino
masses are different; ii) the mixing matrix is non-diagonal. In fact, if al neutrino masses are equal we
have a(t) = e S U, Uk = e *Et5,,. If the mixing matrix is diagona (no mixing), we have
AV&;VQ (t) = 67iEat5a’o¢-

L et us numerate the neutrino masses in such away that m; < me < ... < m,. For the transition
probability, from (57), we have the following expression:
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2

Proy = |> Uus [(e*“Ei*El)L 1) +1} Uz, (58)

2

. L
= {Sar + D Ui Uy (€7 20 — 1)
7

where Am?, = m? — m? and L ~ t is the distance between the neutrino source and the neutrino de-

tector. Thus the neutrino transition probability depends on theratio L/ F, the range of values of whichis
determined by the conditions of an experiment.

It follows from Eq. (58) that the transition probability usually depends on (n — 1) the neutrino
mass squared differences, and parameters that characterize the mixing matrix U. Then x n matrix U
is characterized by ng = n(n —1)/2 angles. The number of phases for Dirac and Majorana cases is
different. If the neutrino with definite masses v; are Dirac particlesthe number of phasesisequal to n(f =
(n—1)(n — 2)/2. If the v; are Mgjorana particles the number of phasesis equal to nfj =n(n—1)/2.

It should be noted that from (58) it follows that the transition probability is invariant under the
transformation ‘ _

Uni — e B, et (59)
where G, and «; are arbitrary real phases. From (59) it follows that the number of phases that enter into
the transition probability is equal to n, = (n — 1)(n — 2)/2 in both the Dirac and Mé&jorana cases. We
come to the conclusion that additional Majorana phases do not enter into the transition probability. Thus,
by investigating neutrino oscillationsit isimpossible to distinguish between Dirac neutrinosand Majorana
neutrinos.

Let usnow consider oscillations of antineutrinos. For the vector of the state of the antineutrino with
momentum p from (51) we have

Vo) = Z Uail7s) (Dirac case) , (60)
Vo) = Z Uailvi) (Majorana case) , (61)

where |77;) (|v;)) isthe state of the antineutrino (neutrino) with momentum g, energy E; = y/p? + m? ~
p +m?2/2p, and helicity equal to +1 ( up to m?/p? terms).

In analogy with (57), for the amplitude of the transition v, — 7, in both the Dirac and Mgorana
cases we have

Az 5, (t) =Y Use "FilU,; (62)
If we compare (57) and (62) we come to the conclusion that
Av 50 (t) = Ava, (1) - (63)
Thus for the transition probabilities we have the following relation
Py = vy) =Py — 7). (64)
This relation is the consequence of CPT invariance. If CP invariance in the lepton sector takes

place, then for Dirac neutrinos we have
Ui = Uai (65)
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whilst for Majorana neutrinos, from CP invariance, we have

Uaini = U},

(66)

where n; = +i isthe CP parity of the Majorana neutrino with mass m;. From (57), (63), (65), and (66)
it follows that in the case of CP invariance we have

P(va = 1,) = P(Va = 7). (67)

Let usgo back to Eq. (58). It is obvious from this equation that if the conditions of an experiment
are such that Am%% < 1 for all ¢, then neutrino oscillations cannot be observed. To observe neutrino

oscillationsit is necessary for at least one neutrino mass squared difference the condition AmQ% >1to
be satisfied. We will discuss this condition later.

3.1 Two neutrino oscillations

Let us consider in detail the simplest case of oscillations between two neutrinos v, S vy (@ # a;a,d’
areequal to i, eor 7, u,...). Theindex i in EQ. (58) takesthe values 1 and 2, and for the transition prob-
ability we have

P(va — ) = [Sara + Uny Uy (e 740025 1|2 (68)
For o/ # o we have from (68)
/ 1 2 L
Pva = v,) =Py —va) = §Aa/a(1 — cos Am 2—) . (69)
p

Here the amplitude of oscillationsis equal to
Apro = HUpro|*|Una? (70)
and Am? = m2 — m?2. Owing to the unitarity of the mixing matrix
Ua2l* + [Ua2l* =1 (o' #0). (72)
L et usintroduce the mixing angle ¢
|Uno|? = sin? @ |Unra]? = cos? 6. (72)
Thus the oscillation amplitude A, is equal to
Ay = sin? 20 (73)

The surviva probabilities P(v, — v,) and P(v, — v,/) can be obtained from (68) or from (the condi-
tion of) the conservation of the total probability P(v, — v4) + P(va — vo) = 1. We have

Am?2L

1
Plvg = va) =Plvgy —»vy)=1— 5 sin? 20(1 — cos ) - (74)
Thusin the case of two neutrinos the transition probabilities are characterized by two parameters, sin? 260
and Am?2.

It should be noted that in the case of transitions between two neutrinos only moduli of the elements
of the mixing matrix enter into the expressions for the transition probabilities. This means that in this
case the CP relation (64) is satisfied automatically. Thus, in order to observe effects of CP violation in
the lepton sector transitions between three neutrinos must take place (thisis similar to the quark case: for
two families of quarks CP is conserved because of unitarity of the mixing matrix).
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We also note that the expression (69) for the transition probability can be written in the form

1 L
P(vy — Vo) = =sin®20 | 1 — cos 2m— | , (75)
2 Lo
where 5
Ly =4mr— 76
0 =dr— (76)

isthe oscillation length. The expression (69) iswrittenintheunitsi = ¢ = 1. We canwriteitintheform
1 . 2 2E
P(vg — Vo) = 5 sin 20 | 1 —cos 2.54Am 7)) (77)

where Am? is the neutrino mass squared difference in eV2, L is the distance in m (km), and E is the
neutrino energy in MeV (GeV). For the oscillation length we have

E(MeV)

Lo =247 ™ (78)
Equations (69) and (74) describe periodical transitions (oscillations) between different types of

neutrinos due to the difference of neutrino masses and neutrino mixing. The transition probability

depends periodicaly on L/E. At the values of L/E at which the condition 2.54 Am?(L/E) =

7(2n+1) (n=0,1,..)issatisfied, the transition probability is equal to the maximal valuesin? 26. If

the condition 2.54 Am?(L/E) = 2mn is satisfied, the transition probability is equal to zero.

In order to see neutrino oscillations the parameter Am? must be large enough for the condition
Am?(L/E) > 1 to be satisfied. This condition allows us to estimate the minimal value of the param-
eter Am? which can be revealed in an experiment when searching for neutrino oscillations. For short
and long baseline experiments with accelerator (reactor) neutrinos for Am? . we have, respectively,
10~ ev?,1072-10 3 ev? (10 1-10? eV?, 10 2-10 2 eV?). For atmospheric and solar neutrinos for
Am?2. wehave 1072-102 eV?2 and 10~1°-10-!! eV?, respectively. It should be noted that in the case
of Am?(L/E) < 1, dueto averaging over the neutrino spectrum and over distances between neutrino
production and detection points, theterm cos Am?(L /2p) in thetransition probability disappears, and the
averaged transition probabilitiesaregivenby P(v, — v4) = 3 sin? 20 and P (v, — v,) = 1—3 sin? 20,
3.2 Threeneutrino oscillationsin the case of neutrino

mass hierarchy

Two neutrino transition probabilities (69) and (74) are usually used for the analysis of experimental data.
Let us now consider the case of the transitions between three flavour neutrinos.

General expressions for transition probabilities between three neutrino types are characterized by
six parameters and have arather complicated form. Wewill consider the case of the hierarchy of neutrino
masses

mq < me9 < ms,

which corresponds to the oscillations of solar and atmospheric neutrinos [bearing in mind that Am3; can
be relevant for oscillations of solar neutrinos and Am3, can be relevant for oscillations of atmospheric
neutrinos, from the analysis of the experimental datait followsthat Am?2, ~ 1075 eV? (or 10710 eVv?)

solar
and Am?2,  ~ 1073 eV? (described later)]. We will see that transition probabilities have, in this case,

atm —

the rather simple two-neutrino form.

Let us consider neutrino oscillations in experiments for which the largest neutrino mass squared
difference Am3, isrelevant. For such experiments

L
Am%% <1, (79)
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and for the probability of the transition v, — v, from (58) we obtain the following expression

—iAm2, L 2
Sorer + UnrsUs (e e 1)] . (80)

Pvg — vo) =
For the transition probability v, — v, (&’ # «) from (80) we have
Py, — V) = lAo/;a <1 — cos Am3, £> , (81)
2 2p
where the amplititude of oscillationsis given by

Apria = A U3 Uns)? . (82)

Using unitarity of the mixing matrix, for the survival probability we obtain, from (81) and (82),

1 L
Plvg —ve) =1— Z P(vg = vy)=1— §Ba;a <1 — Cos Am§12—p> , (83)
o' #a
where
Ba;a = 4‘Ua3‘2(1 - ‘Uu3|2) . (84)

It is natural that Egs. (81) and (82) have the same dependence on the parameter L/ E' as the standard
two-neutrino formulae (68) and (74): only the largest Am? is relevant for the oscillations. The oscilla-
tion amplitudes A, and B,,,, depend on the moduli squared of the mixing matrix elements that connect
neutrino flavours with the heaviest neutrino 3. Furthermore, from the unitarity of the mixing matrix it
follows that
|Ues|” + [Ups|* + [Urs* = 1. (85)
Thus, in the three-neutrino case with hierarchy of the neutrino masses, the transition probabilities in ex-
periments for which Am3, is relevant are described by three parameters: Am3,, |Ues|?, and |U,,3|? (re-
member that in the two-neutrino case there are two parameters, Am? and sin? 26 ).
Since only the moduli of the elements of the mixing matrix enter into the transition probabilities,
the relation
P(I/a — I/a/) = P(va — ﬁa/) (86)
holds (asin the two-neutrino case). Thusthe violation of the CP invariance in the lepton sector cannot be
revealed in the case of three neutrinos with mass hierarchy. Notice that the relation

P(vg = va) = P(Ve — Vo), 87)

which takes place in the case of two-neutrino oscillations, is not valid in the three-neutrino case.

Let us now consider neutrino oscillations in the case of experiments for which Am3, is relevant
(Am3, % > 1). From (57) for the survival probability we obtain, in this case, the following expression

2

. L . L
P(Va — Va) = Z |Uai‘2€—zAm§1ﬂ 4+ ‘Ua3‘26—zAm§12—p ‘ (88)
i=1,2

Due to averaging over neutrino spectra and source—detector distances, the interference term
cos Am32; (L/2p) in Eq. (88) disappears and for the probability we have

—iAm2, L
P(va —va) = | Y [Uaile AME 5512 4 [Ung|* . (89)
i=1,2
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Furthermore, from the unitarity relation Z?:l |Uwil? = 1 we have

Z |Uai|4 = (1 - |Ua3|2)2 - 2|Ua1|2|Ua2|2 . (90)
1=1,2

Using (90) we can present the survival probability in the form

P(vg — Vo) = (1 — [Uas))?PE2 (v — vy) + |Uas|* - (92)

Here . I
PL2D(yy —vy) =1 — 5 sin? 2015(1 — cos? Am3, 2—) (92)

p

and the angle ,, is determined by the relations
27 |Ual|2 - 27 |U042|2
cos2hrg = =12 n2F = 222 (93)
Zi:lg ‘Uai|2 Zi:l,Q |Uai|2

The probability 13(1’2)(1/e — 1,) has the two-neutrino form and it is characterized by two parameters:
Am3, andsin? 20;,. We have derived the expression (92) for the case of oscillationsin vacuum. It should
be noted that asimilar expression is valid for the case of neutrino transitions in matter.

The expressions (81), (83), and (92) can be used to describe neutrino oscillations in atmospheric
and long baseline neutrino experiments (LBL), as well as in solar neutrino experiments. In the frame-
work of neutrino mass hierarchy, the transition of atmospheric (LBL) and solar neutrinos are defined by
different Am?s(Am3; and Amj ,, respectively) and the only element that connects oscillations of atmo-
spheric (LBL) and solar neutrinos is |U.3|?. From the LBL reactor experiment CHOOZ and the Super-
Kamiokande experiment it follows that this element is small (described later). This means that oscilla-
tions of atmospheric (LBL) and solar neutrinos are described by different elements of the neutrino mixing
matrix.

4. NEUTRINOIN MATTER

So far we have considered oscillations of neutrinos in vacuum. If there is neutrino mixing the effects of
the matter can significantly enhance the probability of the transitions between different types of neutrinos
(MSW effect). We will consider here this effect in some detail.

Let us consider neutrinos with momentum p. The equation of the motion for a free neutrino has

the form Bl()
i — Holw (1)) (94)
Let us develop the state |(t)) over states of neutrinos with definite flavour |v,) (o = e, u, 7). We have
1P(t) = Z [va)aa(t) , (95)

where a,,(t) is the wave function of the neutrino in the flavour representation. From (94) for a,(t) we

obtain the equation

Oay(t)
ot

1

= (valHo|var)ae(t) . (96)

a/

Now we will develop the state |v,) over the eigenstates |v;) of the free Hamiltonian Hy:

Hylv;) = Ei|v;) (97)
2
o2 2 my
E; =\/p*+mi ~p+ o (98)
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We have;

Vo) = Z Vi) (Vilva) - (99)
If we compare (99) and (52) we find Z
(vilva) =Usi  (valvi) = Udi - (100)
Furthermore, we have
(Vo Holvar) = > (valvi)(vil Ho i) (vivar) Z Um UL+ Do - (101)

Thelast term of 101, which is proportional to the unit matrix, cannot change the flavour state of the neu-
trino. Thisterm can be excluded from the equation of motion by redefining the phase of thefunction a(t).
We obtain:
.Oal(t)
ot
Thisequation can beeasily solved. Let usmultiply (102) by thematrix U on theleft. Takinginto account
unitarity of the mixing matrix we have:

2

m
=U—Ua(t). 102
o a(t) (102)

Oa'(t)  m?
5 Za (1), (103)

where a’(t) = UTa(t). The solution of equation (103) has the form

d(t) = e—iATffa'(O) : (104)

For the function a(t) in the flavour representation, from (103) and (104), we find

-Am2
a(t) =Ue "2 'Uta(0), (105)

and for the amplitude of the v, — v, transition in vacuum from (105) we obtain the expression
_4 Am
Ay ZUa e e U::Z : (106)

which (up to the irrelevant factor e~?*) coincides with (57).

Let us now introduce the effective Hamiltonian of the interaction of the flavour neutrino with mat-
ter. Due to coherent scattering of the neutrino in matter, the refraction index of the neutrino is given by
the following classical expression:

n(@) =1+ i—gf(())p(x) . (107)

Here £(0) is the amplitude of elastic neutrino scattering in the forward direction, and p(x) is the number
density of matter (the axis x is the direction of p). The effective interaction of neutrinos with matter is
determined by the second term of Eq. (107):

27
Hi(z) = pln(z) —1] = ;f(o)p(w) : (108)
NC scattering of neutrinos on electrons and nucleons (due to the Z-exchange) cannot change the
flavour state of neutrinos. Thisis connected with v, v, v, universality of NC: the corresponding effec-
tive Hamiltonian is proportional to the unit matrix?.

2|t should be noted that if there are flavour and sterile neutrinos, NC interactions with matter must be taken into account.
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CC interaction (due to the W-exchange) only contributes to the amplitude of the elastic v, -e scat-
tering

Vet+e—v,+e. (109)
For the corresponding effective Hamiltonian we have
Hi(x) = @2ﬁ “Ver€¥a(l —5)e + h.c (110)

The amplitude of process (109) is given by

1
f,e=—G 111
e \/577' Fp ( )
and, from (108) and (111), for the effective Hamiltonian in flavour representation we have
Hi(x) = V2Grpe(2)3 (112)

where (3),.., = 1, whilst al the other elements of thematrix 5 are equal to zero and p. () isthe electron
number density at the point z.

The effective Hamiltonian of the neutrino interaction with matter can also be obtained by calcu-
lating the average value of the Hamiltonian (110) in the state which describes matter and neutrino with
momentum 7 and negative helicity. Taking into account that for non-polarized media

(mat |e(Z)y%e(Z)| mat) = pe(Z)dao » (113)
(mat|e(Z)y*yse(Z)|mat) = 0 (114)

from (110) we obtain (112).

The evolution equation of neutrino in matter can be written, from (102) and (112), in thefollowing
form (t = z):

Ba(z) . m? t
i~ U5, U+ V2Grpe(x)B)a(z) . (115)
Let consider in detail the simplest case of two-flavour neutrinos (say, v. and v,,). In this case we

have

costd sind
U= ( —sind cos?V ) ’ (116)

where 6 isthe mixing angle. Furthermore it is convenient to write the Hamiltonian in the form
1
H= 5TrHJr H™ | (117)

whereTr H = % (m? +m3) +v2G rp.. Thefirst term of (117), which is proportional to the unit matrix,
can be omitted. For the Hamiltonian we then have

my 1 —Am?cos29 + A(x) Am? sin 20
H™(z) = 4p < Am? sin 20 Am?cos29 — A(x) )’ (118)
where Am? = m32 — m? and A(z) = 2v/2G rp.(z)p. The effect of matter is described by the quantity
A(z). Notice that this quantity enters only into the diagonal elements of the Hamiltonian and has the
dimensions of M?2.

Let usfirst consider the case of constant density. In order to solve the equation of motion we will
diagonalize the Hamiltonian. We have:

H™ =UmE™U™ (119)
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where E/" isthe eigenvalue of the matrix ™ and

m cos¥™  sind™
Ut = ( —sind™  cosVY™ ) ’ (120)

Itiseasy to seethat

1
E = ;4—p¢ (Am?2 cos 20 — A)2 4 (Am?2sin 20)2 . (121)
Now, with the help of Egs. (119)—121), for the angle 6™ we have
Am?sin 2 Am?cos20 — A
tan 20" = 2m sin 20 : cos 20 = m” cos 20 . (122)
Am?=cos20 — A V/(Am2cos20 — A)2 + (Am?sin 20)2

The states of the flavour neutrinos are given by
|Ve) = cos 0™ |vi,) + sin 0™ |vay,); |vp) = —sin 0™ |v1y,) + cos 0™ |vay,) | (123)

where |v;,,) (i = 1, 2) are eigenvectors of the Hamiltonian of the neutrino in matter and 6™ isthe mixing
angle of the neutrino in matter.

The solution of the evolution equation

Oa(x)
. = Hpa(z) (124)
can now easily be found. With the help of (119) we have
0d/ (z) /
) gm
5 a(z), (125)
where
d(z) = (U™ a(z) . (126)
Equation (125) has the following solution:
d(z) = e P E=20) g/ () (127)

where x is the point where the neutrino was produced. Finaly, from (126) and (127), we have
a(z) = UMe B @=m0) (rmyfg (z) . (128)
The amplitude of the v, — v, transition in matter turns out to be

Apva = Y Uthe B @m0y, (129)
i=1,2

and, from (129) and (120), we obtain the following transition probabilities, in full analogy with the two-
neutrino vacuum case:

1
P"(ve = vy) = P™ (v, — v,) = 3 sin?20™(1 — cos AE™L), (130)
P™"(ve = ve) =P (v, —vy) = (1= P"(ve — 1) . (131)

Here AE™ = E5' — By = 55+/(Am? cos 20 — A)? + (Am?sin 20)2 and L = = — z, isthe distance
that the neutrino passes in matter.
For the oscillation length of the neutrino in matter with constant density we have

p
=4 . 132
0 " v/ (Am? cos 20 — A)? + (Am?2sin 20)2 (132
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The mixing angle and oscillation length in matter can differ significantly from the vacuum values. It fol-
lows from (122) that if the condition®

Am?cos20 = A = 2V2G ppep (133)

is satisfied, the mixing in matter is maximal (¢ = 7 /4), independent of the value of the vacuum mix-
ing angle #. Notice also that if the condition (133) is satisfied, the distance between the energy levels of
neutrinos in matter is minimal and the oscillation length in matter is maximal. We have

m_ Lo
0 sin 20’

where Ly = 4mp/(Am) istheoscillationlengthinvacuum. If thedistance L inthetransition probabilities
(131) islarge (aswith the Sun), the effect of . — v, transitionsislargeeveninthe case of asmall vacuum
mixing angle 0. Therelation (133) is called the resonance condition.

The density of electronsin the Sun is not constant. It is maximal in the centre of the Sun and de-
creases practically exponentially to its periphery. Studying the dependence of p. on = madeit possibleto
discover the effects that the transitions of solar v,.’sinto other states had on matter (MSW effect).

Let us consider the evolution equation when the Hamiltonian depends on the distance x that the
neutrino passes in matter

(134)

Zﬁa(x)
ox
The Hermitian Hamiltonian H™ (x) can be diagonalized by a unitary transformation

= H™(z)a(x) . (135)

H™(x) = U™(2) E™(x)U™(2) , (136)
where U™ (2)U™ (z) = 1 and E"(x) are eigenvalues of H™(x). From (135) and (136) we have

Ut (@)i %8 — gyl (137
where .
d(z) = U™ (x)a(z) . (138)
Furthermore, by taking into account that

oum(z)

Um(z)i 9 ' os +1iU (m)gax a'(zx), (139)
we have the following equation for o/ (z):
0a'(z) m rmt aum(z)\ ,
iy = <E (x) — U™ (x) 5 > a(z). (140)

When p. = const Eq. (140) coincides with (125).
Let us now assume that the function p.(z) depends weakly on z and the second term in Eq. (138)
can be dropped (adiabatic approximation). It is evident that the solution of the equation

Oag(x)
iy — = B (2)a;(2) (141)
has the form .
—i/ E"(z)dx
aj(z) =e o a;(zo) (142)

3Equation (131) isthe condition at which the diagonal elements of the Hamiltonian of neutrino in matter vanish. It isevident
that in such a case the mixing is maximal.

203



(zo being the initial point).

It followsfrom (141) and (142) that, in the adiabatic approximation, aneutrino on the way from the
point x to the point x remains at the same energy level. From (138) and (142) we obtain the following
solution of the evolution equation in the flavour representation:

a(z) = U™ (z)e e B"@ & rmt 0y A(X,) | (143)
Moreover, the amplitude of the v, — v, transition in the adiabatic approximation is given by

1/ o Ve Z zo B (e )degZ*(IO) . (144)

Thelatter issimilar to expressions (106) and (129) for the amplitudes of transition in vacuum and in matter
with p, = const.

For the two-flavour neutrinos

myoN cos9™(x) sind™(x)
U™(z) = ( —sind™(z) cosVI™(x) (145)
and tan 20™ () and cos 20™ (z) are given by Eq. (122) in which
A(z) = 2V2G ppe()p . (146)
The eigenvalues of the Hamiltonian H™ () are given by Eq. (121). From (145) we have
00™ ()
oU™ (x) 0
mT . o)
U™(z) o = | @ 0:6 (147)
Oz
and the exact equation (140) takes the form
8 m
/ P —g— /
i2 < “ ) | gm0 < “ ) . (148)
Ox \ ay 20 pm as
oz 2
The Hamiltonian H™ on the right-hand side of this equation can be written in the form
1 f%AEm 72@
Hy= (Bl +E5)+ | “ggm o | (149)
2 LY lAEm
! ox 2

where AE™ = E3" — E7". Aswe have already stressed several times, the term of the Hamiltonian which
is proportional to the unit matrix is not important for flavour evolution.

From Eq. (149) it follows that the adiabatic approximation isvalid if the condition
m 1
o < gamm (150)
is satisfied. With the help of (122) it is easy to show that (150) can be written in the form

[((Am? cos 20 — A)? + (Am? sin 20)?] 82, (151)

4\/§Gpp2 Am? sin 20 36,06 <

T

If the resonance condition
Am? cos 20 = A(xRg) (152)
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issatisfied at the point x = x r, the condition of validity of the adiabatic approximation can be written in
the form
2p cos 26 |8% In pe(mn)|
Am? sin® 20
From Eq. (144) we obtain the following probability for the v, — v, transition in the adiabatic
approximation:

P(va = Vo) ZZIUZfi(w)IQIUQ}(xo)\2+ (154)

<1. (153)

+2Re > Ui(@)Uzy e oo CF I U (a0 U (w)
i<k

For solar neutrinos the second term on ther.h.s. of this expression disappears due to averaging over the
energy and the region in which the neutrinos are produced. Hence for the averaged transition probability
we have _
P(va = var) = Y U