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Observation of clustering of ultra-high energy cosmic rays (UHECR) suggests that they
are emitted by compact sources. Assuming small (< 3◦) deflection of UHECR during the
propagation, the statistical analysis of clustering allows to estimate the total number of the
sources S, including those which have not yet been observed directly. When applied to
astrophysical models involving extra-galactic sources, the estimate gives S ∼ 400 inside the
sphere of the radius ∼ 50 Mpc. This is too large for models which associate the production
of UHECR with exceptional galaxies such as AGN, powerful radio-galaxies, dead quasars,
and for models based on gamma ray bursts.

PACS numbers:

I. INTRODUCTION

Recent analysis of arrival directions of ultra-high ener-
gy cosmic rays (UHECR) reveals groups of events (clus-
ters) with arrival directions lying within ∼ 3◦, the typi-
cal angular resolution of the experiment. The set of 92
observed events with energy E > 4 × 1019 eV contains
7 doublets and 2 triplets [1]. The small probability of
chance coincidence, of the order of 10−3 [2,1], suggests
that clustering is a result of the existence of compact
sources. At higher energies, E > 1020 eV, one doublet
out of 14 events is observed.

Compact sources of UHECR are naturally explained
in astrophysical models where they are associated with
possible UHECR production sites, such as AGN [3], hot
spots of powerful radio-galaxies [4], dead quasars [5] and
gamma-ray bursts (GRB) [6]. These models have much
in common. They assume that primary particles are pro-
tons; the sources of the observed UHECR have, there-
fore, to lie within the GZK cutoff [7] sphere. For energies
E > 1020 eV the GZK radius is RGZK ∼ 50 Mpc [8].
In all these models the distribution of sources in space
within the GZK sphere is uniform, while the distribution
in intensity does not depend on space and peaks around
a certain value.

An important common feature of these models is a
small number of sources within the GZK sphere. The
number of dead quasars is estimated as ∼< 40 [5]; the
number of AGN is ∼ 10% of the total number of galaxies;
the latter is ∼ 2500 [9]. Most likely, only a small fraction
of them is capable of producing UHECR with energies
E > 1020 eV. In the case of GRB the relevant number of
sources is determined by the rate γ of GRB and typical
time delay τ of UHECR particles. Taking τ ∼< 105 yr
and the rate γ ∼ 2× 10−10h3 Mpc−3 yr−1 [10] gives the
number of sources ∼< 10.

The purpose of this letter is to show that the observed
clustering favors larger number of sources, provided the

propagation of UHECR with energy E > 1020 eV is not
strongly affected by extra-galactic magnetic fields. The
latter assumption is justified if the existing bound on
extra-galactic magnetic field B ∼< 10−9 G [11] is valid.

II. STATISTICS OF CLUSTERING

The observable quantities which characterize cluster-
ing are N̄m, the expected numbers of clusters of different
multiplicities m (e.g., N̄1 and N̄2 are the expected num-
bers of single and double events, respectively). They de-
pend on the total exposure of the experiment B and the
distribution of sources in the apparent luminosity1 n(L),
which is defined in such a way that the number of sources
with luminosity from L to L+ dL is dS = n(L)dL. Since
the events which come from the same source at different
times are statistically independent, they have the Poisson
distribution. Therefore, the expected number of clusters
is

N̄m =
∫ ∞

0

(LB)m

m!
e−LBn(L)dL. (2.1)

This equation implies that the expected total number of
events Ntot is

N̄tot =
∑
m

mN̄m = B

∫ ∞

0

Ln(L)dL = BLtot, (2.2)

as it should be. The probability to observe k clusters of
multiplicity m is given by the Poisson distribution,

1Here and below we mean the luminosity in cosmic rays with
energies above some energy threshold. It measures the num-
ber of events per unit time per unit area of the detector.
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Pm(k) =
(N̄m)k

k!
e−N̄m . (2.3)

Any model of UHECR can be characterized by the dis-
tribution of sources in space and intensity f(r, j) (which
we assume to be spherically symmetric for simplicity). In
order to express n(L) and N̄m in terms of the distribution
function f(r, j), consider the sources at distances from r
to r + dr. The number of such sources with intensities
from j to j + dj is

dS = f(r, j) 4πr2dr dj. (2.4)

Making use of the relation L = j/4πr2 and integrating
over r one finds dS = n(L)dL, where

n(L) = (4π)2
∫ ∞

0

dr r4f(r, 4πr2L). (2.5)

Here we have neglected the curvature effects since they
are small at distances of order 50 Mpc.

In the case of the astrophysical models, the distribu-
tion function f(r, j) is uniform in space and depends only
on the intensity, f(r, j) = h(j). The GZK effect, howev-
er, makes distant sources fainter by a factor exp(−r/R).
This is taken into account by setting

f(r, j) = er/Rh(jer/R). (2.6)

The exact value of R can be determined by numerical
simulations of UHECR propagation with full account of
the energy dependence. We take a conservative estimate
R ' 50 Mpc.

III. NUMBER OF SOURCES

A key parameter which enters the distribution f(r, j)
is the normalization or, equivalently, the total number of
sources S (the number of sources within the GZK sphere
in the case of astrophysical models). When comparing
particular models to the experimental data, this is one
of the main parameters to be determined. An impor-
tant information about S can be obtained from statisti-
cal analysis of clustering even if the functional form of
the distribution f(r, j) is not known. The idea is to find
the distribution f(r, j) which corresponds to the mini-
mum number of sources S∗ with total number of events
and the number of events in clusters, N̄cl ≡ N̄tot − N̄1,
being fixed. We will show in a moment that in the case
N̄cl � N̄tot the number S∗ is surprisingly large, much
larger than the number of the sources already observed.

It is intuitively clear why in the case N̄cl � N̄tot the
number of sources is much larger than N̄tot. In order to
produce ∼ Ntot single events by ∼ Ntot sources each of
them has to be bright enough. But then a large number of
doublets would be produced as well. Since this is not the
case, i.e. most of the resolved sources are dim and pro-
duce at most one event, one concludes that there is a large

number of sources which have not yet revealed them-
selves. Assuming that all sources have the same luminos-
ity L one finds from Eq. (2.1) N̄1 ∼ Sn̄ and N̄2 ∼ Sn̄2,
where n̄ = LB is the average number of events produced
by one source. Therefore, S ∼ N̄2

1 /N̄2 ∼ N̄2
tot/N̄cl, i.e.

much larger than N̄tot. Using methods described in the
Appendix it is possible to show that the case of equal
luminosities corresponds to the absolute minimum of S.
However, this distribution is unphysical. Many realistic
situations correspond to a homogeneous distribution of
sources in space when more distant sources are fainter;
consequently, their number has to be even larger than
predicted by the above estimate.

In astrophysical models the distribution f(r, j) is given
by Eq. (2.6) containing one unknown function h(j). The
minimum density of sources is determined by minimizing
over h(j). As is shown in the Appendix, the minimum is
reached at the delta-function distribution

h(j) = h∗δ(j − j∗), (3.1)

where j∗ is the intensity of the sources and h∗ is their
spatial density. The unknown parameters h∗ and j∗ can
be related to N̄tot and N̄cl by making use of eqs.(2.1) and
(2.2). Introducing the notations

S∗ = (4π/3)R3h∗ (3.2)

for the number of sources inside the sphere of the radius R
and ν∗ = Bj∗/(4πR2) for the number of events from one
source at the distance R, one has the following equations,

N̄tot = 3S∗ν∗ , (3.3)

N̄1 = 3S∗ν∗
∫ ∞

0

dx exp
(−x− ν∗x−2e−x

)
. (3.4)

These equations can be solved perturbatively at small
N̄cl � N̄tot. One finds

ν∗ ' 1
π

N̄2
cl

N̄2
tot

, (3.5)

S∗ ' π

3
N̄3

tot

N̄2
cl

. (3.6)

If N̄cl � N̄tot, the minimum number of sources S∗ is in-
deed much larger than N̄tot and, therefore, is much larger
than the number of sources already observed. From Eq.
(3.5), each source produces much less than 1 event in
average.

IV. DISCUSSION

Let us apply these arguments to the observed events
with energies E > 1020 eV. In this case, Ntot = 14 and
Ncl = 2. The solution to eqs.(3.3) and (3.4) is
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S∗ ∼ 400. (4.1)

This number is large as compared to the number of
sources expected inside the GZK sphere in most of as-
trophysical models. However, it should be interpreted
with care. One may expect large statistical fluctuations
because both Ntot and Ncl are small.

In order to address this issue quantitatively, let us find
the model which has the largest probability p(S) to repro-
duce the observed clustering at fixed number of sources
S. To this end, consider the set of models which are de-
scribed by eqs.(2.6) and (3.1) and are characterized by
two parameters h∗ and j∗. Fixing S is equivalent to fix-
ing h∗. There remains a freedom of changing j∗. The
probability to reproduce the observed data is maximum
for some j∗; this probability is p(S). By construction,
there are no models with S or smaller number of sources
in which the probability to reproduce the observed data
is larger than p(S).

proba- 14 events 30 events 60 events
bility 1 doublet 1 doublet 1 doublet

p S ν S ν S ν
0.1 15 0.51 210 0.065 2000 0.012
0.01 2.1 5.7 41 0.38 450 0.058
0.001 14 1.3 170 0.15

TABLE I. Minimum number of sources S inside the sphere

of radius R ∼ 50 Mpc and corresponding source intensity in

the units of ν = Bj∗/(4πR2), which are required to repro-

duce the observed clustering with given probability p for the

real experimental data (1 doublet out of 14 events) and for

two hypothetical data sets with larger number of events (one

doublet out of 30 events and one doublet out of 60 events).

There is some ambiguity in defining what is “to repro-
duce the observed data”. In the case at hand we request
that the number of singlets is 12 or larger, the number
of doublets is 1 or smaller, and the number of clusters
with the multiplicity 3 and larger is zero. Eq. (2.3) de-
termines the probability p(h∗, j∗) of such clustering as a
function of two parameters h∗ and j∗. The probability
p(S) is found by maximizing p(h∗, j∗) at fixed S. We
have performed this calculation numerically. The results
are summarized in Table 1 in the form of lower bounds
on the number of sources inside the sphere of the radius
R. We also present the source intensity in the units of
ν = Bj∗/(4πR2), i.e. the number of events from a single
source at the distance R.

The model where observed clustering occurs with the
probability 1% has ∼ 2 sources inside the 50 Mpc sphere.
In this model, most of the observed 14 events are pro-
duced by the sources which are further than 50 Mpc and
thus have to be bright enough. This is reflected in Ta-
ble 1 from which we see that these sources would produce
in average ∼ 6 events each if placed at 50 Mpc in the ab-
sence of the GZK cutoff.

It is worth noting that the numbers of Table 1 cor-
respond to the extreme situation when the distribution
of sources is given by Eq. (3.1) with a particular value
of j∗. In realistic models, the distribution of sources in
intensity is usually spread over an order of magnitude at
least. There may also be constraints on intensity of the
sources. In these cases, the bounds on the number of
sources are stronger than in Table 1.

When the new large-area detectors like the Pierre
Auger array [12] will start operating, the number of ob-
served events will increase and the statistical errors in
determination of the number of sources will go down. At
the same time, the number of directly observed sources
will grow. One may ask if the bounds on S may be-
come statistically significant before astrophysical models
are excluded by direct counting of sources. To show that
the answer is positive, we have performed calculations for
two hypothetical situations, 1 doublet out of 30 events,
and 1 doublet out of 60 events. The results are also list-
ed in Table 1. The bounds obtained from statistics of
clustering grow much faster than the number of events.

To summarize, the statistical analysis of clustering
may provide tight constraints on astrophysical models
of UHECR when the number of clusters is small. In this
situation, a key quantity is the density of sources which
can be bound from below in a model-independent way.
The bound grows very fast with the number of single
events above E = 1020 eV and is potentially dangerous
for astrophysical models which associate production of
UHECR with GRB or exceptional galaxies such as AGN,
powerful radio-galaxies and dead quasars.

Our method equally applies to models in which UHE-
CR are produced in the Galactic halo, or in which pri-
mary particles are immune to the background radiation.
In these cases there is no damping exponent in Eq. (2.6).
The relation (3.6) remains valid with a different numer-
ical coefficient of order one. Detailed analysis of the
first case shows that statistical properties of clustering of
UHECR are compatible with clumpiness of super-heavy
dark matter in decays of which UHECR are produced. It
is interesting to note that in the second case our method
counts the number of UHECR sources within the cosmo-
logical horizon, which is unaccessible by other means.
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APPENDIX: MINIMUM NUMBER OF SOURCES

Consider the problem in general terms. First note that
by changing the integration variable in Eq. (2.5) one can
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show that any distribution is equivalent to a factorazable
one. So, let us take the distribution of sources in the form

f(r, j) = g(r)h(j). (4.2)

Let us fix g(r) and minimize the number of sources

S = 4π

∫ ∞

0

r2g(r)dr

∫ ∞

0

h(j)dj

with respect to the distribution h(j) under the con-
straints fixing N̄tot and N̄1,

B

∫ ∞

0

g(r)dr

∫ ∞

0

jh(j)dj = Ntot, (4.3)

B

∫ ∞

0

drdj jh(j)g(r) exp
(
− Bj

4πr2

)
= N1. (4.4)

This is equivalent to minimizing the functional

W = 4π

∫ ∞

0

djh(j)
∫ ∞

0

g(r)dr

{
r2 + λ

Bj

4π

−µ
Bj

4π
exp

(
− Bj

4πr2

)}
− λNtot + µN1 (4.5)

with respect to h(j). Here λ and µ are the Lagrange
multipliers.

The functional (4.5) is linear in h(j); denote the coef-
ficient by G(j),

G(j) =
∫ ∞

0

g(r)dr

{
r2 + λ

Bj

4π
− µ

Bj

4π
exp

(
− Bj

4πr2

)}
.

At those values of j where G(j) is negative, the mini-
mum of W is at h(j) → ∞. The latter, however, is not
compatible with eqs.(4.3) and (4.4). Therefore, at the
minimum the values of λ and µ have to be such that
G(j) is non-negative.

At those values of j where G(j) is positive, the min-
imum of W is reached at h(j) = 0. If G(j) is positive
at all j, then h(j) is identically zero and eqs.(4.3) and
(4.4) are again violated. Therefore, λ and µ must be
such that G(j) touches zero at some j∗. The function
h(j) is non-zero only at this point. Thus, the minimum
number of sources corresponds to the situation when all
of them have the same intensity j∗, and we arrive at the
delta-function distribution, eq.(3.1).

It remains to show that for a given positive function
g(r) satisfying

∫
g(r)dr < ∞ the Lagrange multipliers λ

and µ can always be chosen in such a way that G(j) is
positive everywhere except an isolated point. To this end
rewrite G(j) in the following form,

G(j) = C + λF (j), (4.6)

where C =
∫

r2g(r)dr is a positive constant and the func-
tion F (j) depends only on the ratio µ/λ,

F (j) =
Bj

4π

∫ ∞

0

g(r)dr

{
1− µ

λ
exp

(
− Bj

4πr2

)}
.

The behavior of the function F (j) is the following. At
j → 0 it goes to zero. At small j it is negative if µ/λ > 1
and positive otherwise. At j →∞ it grows linearly with
j, the coefficient being B/4π

∫
g(r)dr > 0. Therefore, at

µ/λ > 1 the function F (j) must have an absolute mini-
mum at some j∗ > 0 (which is a function of µ/λ). Then it
is clear from eq.(4.6) that by choosing λ = −C/F (j∗) > 0
one can set G(j) to zero in that particular point. The
argument can be easily generalized to the case of infinite
number of sources,

∫
g(r)r2dr =∞.

In order to apply this argument to the case of astro-
physical models, one should find the factorizable distri-
bution f̃(r, j) which produces the same n(L) as eq.(2.6).
This can be done by substituting eq.(2.6) into eq.(2.5)
and changing the integration variable according to

r2 exp(r/R) = x2. (4.7)

The result reads

f̃(x, j) = g(x)h(j),

where

g(x) = (1 + r(x)/2R)−1e−3r(x)/2R

and r(x) is defined by eq.(4.7).
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