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ABSTRACT

It is shown that, in standard parton
models, initial and final state interactions
do not contribute to the leading asymptotic
behaviour of the single particle inclusive
cross-section for +the production of a large
Pp lepton or hadron in hadron-hadron colli-
sions. However, they do have an important
effect on the distribution of accompanying
small Pr hadrons : superimposed on the
large  pp event is a"pionization" distribu-
tion characteristic of ordinary hadron-hadron
collisions. Thus, for example, the cross-
section for massive lepton pair production
is given simply by the Drell-Yan term, though
this does not by itself describe the accom-
panying final state hadrons.
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1. INTRODUCTION

There have been many calculations 1) of the inclusive cross-section
for the production of a large q2 lepton péir in pp collisions. Nearly all
these calculations have been based on the Drell-Yan mechanism, Fig. 1.1, where
the virtual photon that decays into the lepton pair is produced by the simple
fusion of a parton emitted by one of the incident protons and an antiparton
emitted by the other. At asymptotic energies one expects the Drell-Yan
mechanism to produce two jets of accompanying hadrons, separated by a gap in

longitudinal rapidity 2).

It has been known for some time 3) that the Drell-Yan mechanism does
not by itself describe the whole reaction. The inclusion of initial and final
state interactions produces effects that scale asymptotically in the same way

. as the Drell-Yan term, to within possible factors of - log s. There has been
some disagreement about the contribution of these effects to the inclusive
cross-section dc/dq2 ; Henyey and Savit 4 argue that it is negative, while

Cardy and Winbow 5) claim that it is zero.

In this paper we corroborate the latter result : initial and final
state interactions have no net effect on the leading asymptotic behaviour of
the inclusive cross-section do/dq2. However, they do affect the distribution
of the hadrons in the final state. In addition to the two jets expected from
the Drell-Yan term, one should expect also hadrons in the "pionization" region
in the centre of the rapidity plot, as is found in most high energy pp colli-

sions.

Events in which there is pionization need not be considered in the
calculation of the total inclusive cross-section dc/dqz, because their
contribution to this is exactly cancelled by certain interference terms, leaving
only the Drell-Yan term. Let IC > Dbe any final state that is accessible
through the Drell-Yan mechanism (we ignore, for now, the question of the
possible quark quantum numbers of these states). Part of the amplitude for
producing IC > is Ag , calculated from the Drell-Yan term. There is also
a part A} where any number of initial or final state interactions has occurred,
but with no pionization, that is no particle produced in the central region,

Fig. 1.2a. The total amplitude for producing |C > is

DY /
Ac = Ac + Ac. (1.1)
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Let |P > Dbe a final state accessible only through pionization, Fig. 1.2b, so
that there are particles in the centre of the rapidity plot. It is not possible
to give a completely precise experimental prescription for the distiunction
between the states IC > and the states |P >, because of the usual problem

of deciding just how far into the central region of the rapidity plot the
particles in the states IC.> extend ; the precise definition of the set of
states IP > 1is that each is orthogonal to all the states |C > that can be
reached through the Drell-Yan mechanism. If the amplitude for producing

|P > is AP’ the inclusive cross-section do/dq2 is calculated from
S 2
S AN+ Z 1A
c I o

, NL 2
) Z[,A?’|‘+|Ac|‘+zﬁcA’; o] +-PZIA:»'.<1.2>
(o]

We show in Section 3 that, to within possible factors of 1log s, each of the
four contributions to this sum scales in the same way, but in Section 2 we

show that there is destructive interference and

‘ Y Al* 2
Z[IACII»,ZRe » Ac | *%’Af, = 0.

a (1.3)

These results are valid at asymptotic energies in theories of the
conventional type, where initial and final state interactions correspond to
Pomeron exchange and the coupling of the Pomeron to a parton or particle that
is far off-shell is assumed to be small. Further, the Pomeron coupling is
assumed not to have a Preparata essential singularity 6 . The result (1.3)
holds to each order in the Pomeron coupling, that is for the inclusion of any
number of Pomeron in the corresponding Mueller diagram 7). [The first term

" in (1.3) is absent for a single Pomeron].

An obvious question is whether there are similar effects in deep
inelastic electroproduction or ete” annihilation, but it is known 3) that
for the conventional theories the answer is no : in these reactions the
contribution from final states reached through pionization decreases more
rapidly at asymptotic energies than the Bjorken scaling contributions. Thus
the effects do not seem capable of solving the problem of the non-observation
of quark quantum numbers in the final state, and we have nothing to say about

this problem here.



-3 -
1),8
),8) o

resemble the Drell-Yan mechanism : see Fig. 1.3. Each incident proton emits a

Popular models for the production of large hadrons closely
parton or a virtual meson (this varies from model to model), and these then
scatter at wide angle. The effects of initial and final state interactions
between the two outer bunches of hadrons are similar to those discussed above :
they cancel in the single particle distribution Edc/dSp for the production

of a hadron with large transverse momentum p, but affect the distribution in
rapidity of the small Pp hadrons. There are experimental indicatioas 1),9)
that this is at least approximately the case, that is large Pp events have

superimposed on them characteristics of ordinary events.

For definiteness, the discussion in this paper will deal explicitly
with the case of lepton production. In Section 3 we re-examine the arguments
of Cardy and Winbow. This is necessary because they base their analysis on a
supposed analogy with a discussion of the theory of Regge cuts given by
Abramovskii, Gribov and Kancheli 10). However, it is now known 1) that the
latter discussion requires modification. Fortunately, it turns out that this
does not matter here, because the analogy with the Regge cut problem is not
completely accurate.

The Cardy-Winbow discussion deals with only a single Pomeron 12). How-
ever, their result holds also when any number of Pomerons is involved. We
show this in Section 2, where we present an argument that is both simpler and

more general than that of Section 3.

2. THE I[NCLUSIVE CROSS-SECTION

In this Section we argue on rather general grounds that the sum of
all initial and final state interactioas vanishes to leading order in s, and
s0 the Drell-Yan term by itself gives the dominant contribution to the inclusive
cross-section dcr/dq2 for massive lepton pair production. Since we are dis-
cussing the leading term in s, the initial and final state interactions
presumably correspond to Pomeron exchange. Our discussion will apply to the
complete interaction, resulting from the exchange of any number of Pomerons.
The corresponding Mueller diagram 7 is drawn in Fig. 2.1. It encompasses all
possible time orderings, that is both initial and final state interactions, and
cross-interactions between initial and final states ; we illustrate this by
explicit examples below (Fig. 2.3). To calculate the inclusive cross-section
do/dq2 we have to calculate the discontinuity in the missing mass variable of

7)

the amplitude evaluated on the appropriate sheet , with p, =p.' and q = q!'.
P i i
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The asymptotic amplitude is first represented as an integral over
the internal eight-point function T(p1,p2,p{,pé,k1,kz,k{,ké), which we define
to include the parton propagators. We then trace how the expected singularities
of T are translated into singularities in the variables of integration.
Pinally, we show that, in each of the two terms whose difference is the required
discontinuity in the missing-mass variable, the singularities appear in such a
way that it is possible to close at least two of the contours of integration
in a half-plane away from all singularities and hence obtain a zero result for

the coefficient of the leading term in s.

The fundamental assumption that makes this proof possible is that T
has no essential singularities and is sufficiently damped in the variables ki,
k'i, so that the various integrals are uniformly convergent and integration

contours can be closed at infinity without introducing new contributions.

Define variables as follows ) [s = (p1+p2)2]

/e, = %Pt hP/S ¥ K, k,la x"y,+7'.§>,/s + Kk’
(2.1)
kz = ‘sz'/S t Yzfz. LN 'kz,’ lefn/S"' )’z/rz + K/,

' = = y'.p. = u'.D. = ' i
where miePy = %ifPZ, niePy “iPy 0 and so the My my are spacelike
and effectively two-dimensional. Because we want to put q = q! (the primed
external momenta are distinguished from the unprimed ones only because the
corresponding scalar invariants are not necessarily evaluated on the same side

of their branch cuts), we have

/

AE‘ + je bt 4%:’+ léz = ?L 5

2

and so

(2.2)
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The conditions q2 >0, 0<q°< (p1+p2)o give

0 < X, < 1
(2.3)
0 < Y2< 1 .
Of the variables on which the internal eight-point function T
depends, we have
2
2 2 2
’kl ~ LYt XTm® - K,
¢S 2 2 3
s, 2 (p-k) ~ (=-Dy, +(x-0*m® - K,
(2.44a)

Uy = Pk k) ~ pmy v mt o (5=

where m 1is the mass of the external nucleons.

There are analogous expressions
for

k>, kE kL

2

5, = (fz"'k:.)z ’ Sl' = (F:"'k\,)z: 5;-.- (B-{Jt’-‘)z (2.4D)
u, = (P,f-k‘/i'kz)z, b(.:: (P‘ -/(,'l'k,')i u;= (‘Pa-/(lz 4'/!;)2.

The remaining variables in T are unimportant here.

We can write the amplitude described by Fig; 2.1 as
| o0
A( s, 3_'; E) ~ ;}-';" Io dx, d,)lz dxi’ A),;' f d,)l, d!,. J.)I.' AX; ﬁzk' J."Kz ollk,' J‘:Kz/

3(x,-%) 8(y,-yx) 5“’(5, +Ky - K,/ ~K)) 5"’(:(,5 ttKi+G-g)
§(x,y‘_ - 47/8) 8(x,+%.) T

,(2‘5)
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Now we shall show that, on each of the two Riemann sheets on which we need to
evaluate A, either the 4 and X, integrations, or the y; and xé
integrations, vanish. To do this, we have to identify the locations of the

singularities of T in the complex planes of these variables.

Consider, for definiteness, the variable y,. According to (2.4)
1 9

the variables

(2.6)

of T depend on Y0 and the dependence in each case is linear. Thus the
singularities of T in each of the variables (2.6) are reflected in a simple
fashion in the ¥y plane. In order to determine whether each singularity lies
above or below the real 7, axis, we have to decide the correct ie pres-
cription 13) for each of the variables (2.6).

7)

In the usual language of inclusive processes the reaction

pp = "y"X 1is represented by the missing mass discontinuity shown in Fig. 2.2,
where the + and - signs 13 signify that q2 and s = (p1+p2)2 are
evaluated on the upper sides of their cuts, while q'2 and s!' = (p{+pé)2

are evaluated on the lower sides of their cuts. The signs in the centre of the

two right-hand bubbles refer to the singularities in the missing-mass variable
2 2
M= (prr-g) .

In the amplitude of Fig. 2.1 the singularities in these external variables

q2, s, q'2, s!' and M2 are generated 13 in the integration by the singularities

of the internal amplitude T. Singularities in the internal variables (2.4)

generate singularities in the external variables as follows :
(k) + (k') —~ (3%
(u-.) + (u'g) - (S)
(K% + (&)~ (1'2) (2.7)
(W) + ()= ()



(5,) + (5) — (M2)

_ (2.7)
(s9) + (s o -

These results chn be understood most readily by considering simple examples of
Feynman graphs, Fig. 2.3 (in these graphs, the Reggeon can be thought of as an

infinite sum over ladder graphs). In Fig. 2.3a, putting the lines kf and
kg on their mass shells, that is going to the poles of T in these variables,

one generates a normal threshold in q2. Putting the lines a, and a,

their mass shells, that is going to poles of T in s and s,, generates a
1 2

normal threshold in M2. The amplitude T has no dependence on the u and

on

u! variables, so for this simple graph no singularities occur in s or s'.

A more complicated graph, which has singularities in u, and Uy and so also

in s, is drawn in Fig. 2.3b. Here the lines (a1,b1) generate a normal
threshold in the internal variable Sy and the lines (a2,b2) generate a
similar singularity in Sy 3 together, these foug lines generate a normal
threshold singularity in the external variable M . By twisting each cross of

the graph, we can redraw Fig. 2.3b as in Fig. 2.3c. Now we see readily that

the pairs (01,d1), (cz,dz), respectively, generate singularities in the internal
variables Uy Uny and together these generate a singularity in the external

variable s.

From (2.7), and the fact that the ie prescriptions for the external
variables are determined in each of the two terms on the right of Fig. 2.2, the
ie prescriptions for the internal variables are fixed. For the second term on

the right of Pig. 2.2 these are :

2 8
g ) Ra g Uy Uy

2 12 ’ ’ / / ’
1 z)u'u"":)susz,sl;sz. X

+LE

(2.8)

Returning now to the ¥4 integration, we see from (2.3) and (2.4) that ¥4

y 4 but as -8, and -u{. Hence from (2.8),

in the second term on the right-hand side of Fig. 2.2 all the singularities

varies linearly as +k and +u

in the variables (2.6) appear in the lower half of the ¥4 plane. By closing
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the contour of the ¥, 1ntegrat10n in the upper half plane, we obtain a zero

result for the leading term . A similar result applies to the X5 integration.

For the first term on the right of Fig. 2.2, a completely parallel
analysis indicates that the y% and xé integrations now vanish. Hence the
contributions of diagrams with interactions vanish to leading order simply due
to the usual analytiéity properties and our assumption concerning the conver-

gence of the integrals

3, ANALYSIS OF THE DISCONTINUITIES

We have shown in Section 2 that the total discontinuity of Fig. 2.1
in the missing mass vanishes to leading order in s. The total discontinuity
essentially has three separate contributions, corresponding to the three classes
of slicing L1, L2, L3 shown in Fig. 3.1. Included in L1 and I.3 are
partial 4 Pomeron slicings, such as illustrated in the explicit model of
Fig. 3.2. The slicings L and L3 result in the interference term

1

v 2Re ACY At* of (1.3), that is interference between the Drell-Yan amplitude
c

of Fig. 1.1 and contributions of the type of Fig. 1.2a (though with any number
of Pomerons exchanged). The slicing L2 gives the other two terms of (1 3),

that is contributions from either type of mechanism of Fig. 1.2 by itself.

In this Section we show that the separate slicings L1, L2, L3 are

non-zero, but verify that their sum vanishes.

The slicings L1, L2, L3 are constructed by inserting the appro-
priate discontinuity of the internal amplitude T into the integral (2.5) in
_place of T. In terms of the variables defined in (2.4) and the missing mass

M2 = (p1+p2-q)2, these discontinuities are

——-_-—_-_----__-——_-———---—-—-—--—_-—.—--——————-—__-—------—----.—_——_—-——_--—

*
) Although we have argued explicitly only that the normal thresholds in
each of the variables (2.6) dispose themselves in such a way that the
y integration vanishes, it can be shown that the same is true of any
1

other Landau singularities that may appear in these variables.
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» . T( , Mz‘-) /(—))
= 3. d“‘s; 56’ J si

MM’. T( S,',("), M’.’ S('-,(-))

-
[

. (¢)] + /
Ts —'—Ms‘:d&&(-s/—r(sl ) M* p) 5;).
2

Here the superscripted signs denote the appropriate ie prescription for the
corresponding variable. For the reasons explained in Section 2, in each case
the variables ki and u, are assigned a +ie prescription, and k{z and
ui are assigned -ie. The negative sign appears in D3 as a result of the
usual Feynman rules combined with the Cutkosky prescription for discontinuities.
Consider the y4 integration in (2.5). Recall that, from (2.3) and (2.4), ¥4
depends linearly on k1 and Uy and on -84 and -u%. Hence the above 1ie
prescriptions have the consequence that, for the integral of either D2 or D3,
the locations of the possible normal-threshold singularities in the Y4 plane
are as in Fig. 3.3. Because of our assumption that T is sufficiently damped
at large kf,
cut, that is the integrals over D2 and D can be taken over

1 3

discS1 T, as is that over DH. By similarly considering the X5 y{ and xé

we can deform the contour of vy integration so that it encloses

only the s

integrations, we see that each of the three integrals can be taken over the

s!y, s!. Hence instead

discontinuities in each of the four variables s 1 S5

17 S22

of (3.1) we can use

1]

T' A T (s;) MZ.(")’ 5.:!)

8 A dA.A'OMtT (Si, Mz, 5.’,') (3.2a)
j):’ _ -‘AT(Si, Mz(-!-), S;I)

where

A = diacg dhac, duocgs daacg -

(3.2D)
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This is the end of the argument : if we add together the three discontinuities
in (3.2), so as to combine the contributions of the three slicings L1, L2

and L the result is evidently zero.

3’
The contributions do not vanish separately. This is easiest to see

in the case of L2, which has an integrand that is positive definite. If the

asymptotic behaviour of the internal eight-point function is dominated by a

J =1 singularity, the asymptotic behaviour of the contribution of the slicing

L2 is the same as that of the Drell-Yan term up to factors of log s.

For completeness, we must now return to two points that we have not
treated satisfactorily. The first point pertains to the role played by other
channel singularities, corresponding to variables which we have not exhibited
explicitly in (3.2a). For example, the invariant o = (p1-k1+p2)2 may also
have singularities, as in the graph of Fig. 3.4. In terms of the variables of

Section 2,

o= S(-x) * (=x)m* em*- K- (-12y, , (3.3)

so that o 1s of order s. In the Regge limit of the eight-point function the
singularities associated with o appear as singularities in the variable o/s,
as 7) just two branch points at O and o in this variable, and so at *
in Iy Because of the assumed convergence of the Y4 integral the presence
of these singularities does not affect the contour distortions that we have
made (this property was also used implicitly in the argument of Section 2).
Further, when we have made the distortion there is no need to consider which
ie prescription must be applied to the o singularities. This is because we
end up with an integral over the S5 discontinuity, and so the Steinmann‘
relations 15), which apply to simultaneous discontinuities in overlapping
channel variables such as s, and o, mean that the o singularities have

disappeared.

The second point pertains to whether the normal threshold singularities
indicated in Fig. 3.3 are actually present for each of the various slicings
L1, L2, L3.
the discontinuities, some of the branch points are absent in the various slicings.

It may happen that because of the different 1e¢ prescriptions in

If this were true, then again, the cancellation would not necessarily take place.

Indeed, applying De Grand's argument 1) for Mandelstam double Regge graph to
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our case, we would expect that the second term which involves a discontinuity
in M2 would not itself coantain discontinuities in the overlapping variables
Uy u;, u, and ué. Thus these cuts in the lower half plane in Fig. 3.3 would
disappear in the integral over the second term in Eq. (3.1), whereas they would
be present in the first and third. However, the singularities in the parton
propagator remain in all cases and so -prevent the contour from being closed in
the lower half plane. If we consider the usual additive separation of cuts in

S and u which precedes a decomposition of the amplitude into signatured

1 1
amplitudes :

T ~ @0+ £.(u)

then we may make use of the added damping provided by the off-shell parton
propagator to show that the integral over the second term is in any case zero
since it has singularities only in the lower half plane ; therefore it makes
no difference to the asymptotic limit of the integral whether these cuts are
present or not. In the Mandelstam diagram this was not the case because the
additional damping effect of the parton propagator was not there. Thus in the
one case in which we suspect the singularity structure is apt to differ from
term to term, we find that the expected cancellation is unaffected. However,
to complete the discussion, we would need to consider other possible differences,
including Landau singularities of any order. This would carry the argument to
a level of detail which we shall not enter here. It is certainly true that no
normal thresholds cause difficulties other than those in Uy u%, Uy and

u! discussed above. We have not found any higher order singularities which

2
present problems and do not believe they do.

4. CONCLUSION

Let us briefly review the major points. We have studied the contri-
butions of diagrams with explicit initial and final state interactions (Fig. 1.2)
to the process of lepton production at large p, via parton-antiparton
annihilation. Of course our results also apply to parton models for large
VﬁpL hadron production processes which have a similar diagrammatic structure.
We conclude that on quite general grounds these terms with interactions do not
contribute to the leading asymptotic behaviour of the single particle inclusive
cross-section in these large P, processes. However, as we explicitly

indicated in Section 3, this zero results from the cancellation of several
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non-zero terms which correspond to quite different structure for the unobserved
multiparticle final state. Hence the contributions with interactions will, in
fact, be very important when one asks more detailed questions about the structure
of the final state. In particular we expect that a component of these large

pL events will have superimposed on them a multiparticle structure similar to

that of usual low p,, "pionization" events.

These conclusions follow from two fundamental assumptions. We assume
that the amplitudes which describe the emission of partons are sufficiently
damped in the parton invariant masses to insure the convergence of the relevant
integrals and that the complete amplitude displays conventional analytic

structure.
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FIGURE CAPTIONS

Fig. 1.1 The Drell-Yan mechanism for massive lepton pair production

via a large q2 virtual photon.

Fig. 1.2 Final state interactions (a) without pionization, (b) with
pionization. There are similar contributions from initial
state interactions, and from cross interactions between

initial and final states.

Fig. 1.3 Models for the production of large Pp hadrons.

Fig. 2.1 Mueller diagram for the production of a highly virtual photon,
including the exchange of any number of Pomerons (represented
by the doubled zig-zag line). The other internal lines are

partons.

Fig, 2.2 Discontinuity in the missing mass variable needed to describe

the inclusive reaction pp — "y"X.

Fig. 2.3 Feynman graphs that are particular examples of Fig. 2.1.
Here (b) and (c) are the same graph drawn in two different

ways.

Fig., 3.1 Three classes of slicing in Fig. 2.1 that contribute to the

total discontinuity in the missing mass.

Fig. 3.2 A partial Pomeron slicing that is included in L1 in Fig. 3.1.

Fig. 3.3 Singularities in the complex Y, plane for the integrals over
D2 and D3.

Fig. 3.4 Example of a graph producing singularities in overlapping

channels in the eight-point function.
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