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ABSTRACT

The relation between exact and perturbative solutions
in a renormalizable field theory is studied in the case of
all non-overlapping rainbow diagrams contributing to the
self-energy of a scalar field in a Aw2¢2 theory with one
g@wz insertion. The graphs are summed using Bethe-Salpeter
techniques. The exact solution exhibits a singularity on
the light cone of the kind not wusually considered 1in the
Wilson expansion. In renormalized perturbation theory, the
self-energy is determined up to an over-all additive constant
and agrees, to order O0(g2r2), with the exact solution for
small values of the invariant mass q2. At large q2 per-
turbation theory is shown to fail. Because of the @wz in-
sertion, the deep euclidean behaviour of the vacuum polariza-
tion is_found to correspond to that of a four-point function
in §2@ theory, at exceptional momenta. It is argued that
a particular discontinuity p(q2) of this class of graphs
may be relevant to ete- annihilation. p(q2) 1is found to

rise with q° like (q2)"(g)'1 where vy(g) 1is tentatively
associated with the anomalous dimension of the operator §2.
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1. INTRODUCTION
The Bethe-Salpeter ) equation in the ladder approximation has proven
useful in the past for studying bound state problems

2)
of physical scattering amplitudes 3>. In the scattering region the range of

and high energy behaviour

applicability of such approximations has been limited, however, to the special

kinematical regions corresponding to production processes of the multiperiphéral

type 4).

5)

a powerful tool for discuésing the behaviour of vertex functions in the limit

On the other hand, renormalization group techniques have provided
where some or all of the kinematical invariants tend to infinity. In parti-
cular there has been a recent attempt to combine these technigues with Bethe-
Salpeter equations, in order to obtain Wilson type expansions for ete”

annihilation 6).

Renormalization group techniques are, however, intimately connected
with multiplicative renormalizability of the theory, and hence can be applied
only to classes of graphs where the divergences may be absorbed completely into
a mass, coupling constant and wave function renormalization constant. This has
1limited non-perturbative calculations consistent with renormalization group

transformations to fairly simple subclasses of graphs 7).

We shall take here the point of view that some interesting aspects
about renormalizable theories may be learned from the study of non-perturbative
solutions, even if the subclass of graphs considered is not invafiant under a
renormalization group transformation. Thus one may inquire about the relation
existing between the solution to singular integral equations and the corres-
ponding iterations in powers of the coupling constant ; the validity of
asymptotic expansions in renormalized perturbation theory ; the singularity
structure in the coupling constant plane ; the behaviour on the light cone and
the related question concerning anomalous dimensions in non-asymptotically free
theories, wherever such a concept is applicable. These are the main questions
we shall address ourselves to. The class of graphs we consider are the self-

energy diagrams shown in Fig. 1, corresponding to an interaction Lagrangian

2
L. = - 3%/ (2007 - gae® /20



The motivation for considering this class of diagrams is essentially two-fold.

One is a necessary condition : they are summable by standard Bethe-Salpeter
techniques in the case where the rainbows (denoted by dotted lines) correspond

to zero mass fields. The other motivation is a physical one : the discontinuity
corresponding to cutting all dotted lines may be viewed as the cross-section for
the cascade decay of a heavy virtual meson by the continuous emission of pion
pairs. Cascade processes of this type, where the initial (Vector) meson 1is
coupled to a virtual photon, have been suggested by N.S. Craigie and the author 8)
as a possible mechanism for yielding an enhanced ¢Te”™ cross-section as the
result of the continuous opening of new channels. A topology of this kind is
also naturally generated in non-abelian gauge theories including electromagnetic
interactions. Note that the topology of Fig. 1 corresponds to that of a

x@2m2 theory with a single g@mz insertion. Although this insertion has been
motivated by the above physical picture, it has at the same time the effect of
reducing the quadratic divergence of the self-energy graphs in a @2@2 theory,

to a logarithmic one.

The material of the paper is arranged as follows : in Section 2 we
formulate the integral and differential equation corresponding to summing over
the infinite set of graphs shown in Fig. 1, and establish the boundary conditions
to be satisfied by the solution. In Section 3 we then construct the solution
satisfying these boundary conditions using Bethe-Salpeter techniques. In
Section 4 we discuss the analytic properties of the exact solution and its
behaviour as q2 - 0 and q2 - ® . We then compare this behaviour with that
found up %o O(gzxz) in renormalized perturbation theory, with emphasis on
~ the ambiguities involved when performing subtractions. We then rephrase our
results in Section 5, in terms of the Callan-Symanzik equation for the dis-
continuity ﬂ(s). A connection between the exponent in the asymptotic behaviour
of ﬂ(s) and the anomalous dimension of the operator @2 is suggested. We
conclude in Sections 6 and 7 with some remarks concerning ete” annihilation
and a summary of our results. Some of the mathematical details are relegated

to the appendices.

2. EQUATION AND BOUNDARY CONDITIONS

We consider here the graphs shown in Fig. 1, corresponding to the
self -energy of a scalar field of mass m coupled to a massless pseudoscalar

field ¢ via the interaction Lagrangian

T o529 - ke
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The sum over such diagrams is summarized by the integral equation s own in

2
Fig. 2. Specifically one has for the self-energy 2(a%),

1(s) - i5°Lueg) + 6ol |25 __<__2.gz G T, e

where fu(q2) is the (unrenormalized) potential corresponding to the exchange

of a pair of zero-mass fields, and is formally given in terms of the integral,

Bigy - Hfen N
(7) (an)t (kz+4£)[(k+7)3+.4.51 (2.2)

Since the integral diverges logarithmically, we need to renormalize the
potential by performing a subtraction at some (arbitrary) euclidean point
q2 = -, %2 > 0. The result is that A2 IU in Eq. (2.1) is to be replaced

by the renormalized potential (see append1X A

NE(p) = -sdo, b (558) (2.9

with the Fourier transform

2 A= 1
A I(X) (2’[)4 (,tz_to)z (2.3b)

up to an additive term b64(x), where b 1is arbitrary. For the subclass of
graphs which we are considering, there is no need for renormalization of the

2
vertex g9 X.

With the potential (2.3), the kernel of the integral egquation is now
well defined. In order to solve this egquation, we proceed in the standard way J)

- by considering instead the integral equation

bx) = jz_ ,L"/e/'k’G‘(x-x') I(x')}bcx') o ()
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where G(x) 1is the Fourier transform of (q2—m2+ie)-2. In terms of ¥(x),

the self-energy is given by
II(9%) = /a’;z I(x);l'm (2.5)

It is convenient to perform a Wick rotation 9) in Eq. (2.4). The Wick-rotated

solution &(x) = ¥(-it,%), then satisfies the equation

$(x) = jz - /11/0’3' Hx-x)Via') gix) (2.6)
where

Vix) = - 1. 1. , R=
*) (2n)* RY (¢Z='1 ) (2.7)

is the Wick rotated potential (2.3b) and
H(x-x') = K (m/x x ]) (2.8)

In the following we set m = 1. Making use of the expansion

Klie-x1) = 7. [uTnIRl) -1l s (0)]Coene)

n=0

60-%36 =1, n#go
where © is the angle between x and x', and of the potential (2.7),

Eq. (2.6) reduces, on account of O invariance, to

4

0
. (2.9)
#) - g'+ 2 [4E [ 1(R)K(R) - 2 LK) ]|4(r)

0



where

a = _J&f;
( 2x )4

Equation (2.9) is equivalent to the differential equation

2
o2 d a R) = 9°
{(:/—R;Z + %_JE - 1) - 5 } ?5( ) j (2.10)

plus suitable boundary conditions. TFollowing Ref. 3), we may factorize the
left-hand side of Eq. (2.10),

(2.11)

#(0%-1)1% (0%-1)56(/%) = jz

where

1
2 RdJR R* (2.12)
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Performing a Wick rotation in Eq. (2.5) and making use of the expansion 10)

o0
' QRcon 6 . 1
eL - (2;;)11 ¢ med Tnis(QR) Cn (cen®)
n=0 2x? QR
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we have

o0

(2)1')1[('?) iy x)% a’RRzJ;_(R(-iz-zo)*)V(R)qS(R). (2.10)
2o

We next need to examine the boundary conditions which @(R) should

satisfy.

- Boundary conditions :

a) At the origin
From the differential equation (2.11) we immediately deduce that
*y, Ty,
9S(R) ~ R , R .
R- 0

Since Vo >2 for a>=0, a solution behaving like R™Y2 is incompatible

with the integral equation (2.9) and must be discarded. on the other hand

v
17
is purely imaginary. Hence RY1  and R—\"1 oscillate infinitely fast as

R - 0, damping completely the R = 0 singularity of the integrand in Eq. (2.9).

We therefore require in accordance with the desired reality conditions for

3(R),

% -y %
per) ~ [A0RT 2 atw)k "]+ bm)R® (2.15)
-

o) At infinity

The required behaviour at infinity is most easily deduced from the form

(2.9) of the integral equation, from where we find

$R) — 9 21 - 2L, ) . (2.76)

R— ©0
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3. THE SELF-ENERGY

We are now in a position of constructing the appropriate Green's
functions for the problem. Noting that the Bessel functions of imaginary
argument (R), I (R), K (R) and K (R) all are solutions to the
homogeneous part of Eq. (2. 11) and taking due account of the boundary condi-

tions (2.15), (2.16), we have

G, (RR) = Y@[4(Z,R) # L (RKy(m) = I (R) Ky(8))
(3.1)

where

y(a) = __.1_;1 = ____1____ .

2
Wy w1 g

With the aid of the Wronskian

K.(R)L,(R) - I, (RYK,(R) = +

it is a straightforward matter to show that (3.1) is indeed a Green's function
for the differential operator in Eq. (2.11). The solution to the inhomogeneous

equation (2.11) is thus given by

%Y

$(R) = ,?2 JR’R'JG}L(R,R’) . (3.2)
0

From Eq. (3.2) we find 1)

4

o T R ) ol

)
_r(2+ 2 1
(2/"(??,:{) ( ) (v 16)(V ~16) }( 0())

in accordance with the required behaviour (2.15). Moreover, a little algebra

shows that 8(R) in Eq. (3.2) also behaves asymptotically as in Eq. (2.16).
Hence &(R), as given by Bg. (3.2), is in fact the complete solution.
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Substituting the result (3.2) into Eq. (2.14), we have
I(-a*) - %(zz,'(-q*) ¢ IL,(-6%) - IL,(-&) (5.5)

where

1 0
(@0t I, (&%) = - (;ag‘ 9° y@){ f ax x° jJR RAT(@R)K, (R)L, (xR)

"]

\ [ax e jo}/n R‘f,(aR)I,(R)K,(xR)}.

The integral over R at fixed x defines an analytic function of v for

Rev > -2. Performing the integration we find

(er)l’ﬂ: ¢a’) = -(zx)% Ead 9 Y(a.)fdx x Q”‘;’: (=) , Re wy-2,
o (v*- 1)%%

where Qt is the associated Legendre function of the second kind, and

U = / *zaf-Q‘
22

With v = iv1 or v, the remaining x integration converges for a > 0.

Performing a change of variable we find

Y >0 : L
(zn')l'lly(-az)= -2e ? r)"(a,)j‘(lfa‘) Ju 2941 Qs (v Qa)
1 Ju-1 [v*(+a?)-1] /4
(3.4)

= (2x)* g “Ya)(1 +Q%)" z ”(F(f)r'(f) 7“(2*2.,2_,1,» 401),

Continuing this result in Q2 to the physical region, we may write the

1
complete solution in the form ! )



4 2 2 » v
Cx) gy = - §'2x)* [ P2+2)0(2),. (L1515 L
a ?j_(_L1/7+§¢; 21(1+%) (1) (s " z)

 n2- f’)f(f)(, )z F(‘z”’)’ﬁ"" 1oyt (3.‘5)

2r(1-% .

_PCe2)(R) (. %, be 1 1oy
fTV flh) ( ) ( ’ ’

where Vi have been defined in (2.13).
?

~e
~

4. THE EXACT AND PERTURBATIVE SOLUTIONS

A. Properties of the solution :

The following properties may be read off the solution (3.5)

a) It is an even function of Hence the square root branch point
1 P

Ve
at zero coupling constant associatéd with vy is actually absent. The
same applies to the pole at a = O associated with F(v1/2). This pole
is an expression of the logarithmic divergence of the integrals in Eq. (3.4)
at vanishing coupling constant, corresponding to the logarithmic divergence
of the self-energy graphs in perturbation theory remaining after the
coupling constant renormalization. The fuct that this singularity actually
cancels shows that our choice of poundary conditions has already accomplished
the infinite mass renormalization.

b) I(q°) has logarithmic branch points ab q2 =0 and q2 =1
corresponding to the production of an arbitrary number cf soft zero mass
mesons ¢, and the additional production of a rassive quantum %, respec-
tively. The discoatinuity across the logarithmic cut in the region

0 < q2 < 1 is easily computed to be

X(s) = 2 FrIL(3?)
(4.1)

* sl B DE ) () E R 1 29Y)

0 < 9t
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Except for the appropriate flux factor, the result {(4.1) gives the total
cross-section for the production process shown in Fig. 3 in the energy
range 0O < q2 < 1. It is a simple matter to check that ImII(q2) is

indeed a positive definite quantity for all a >0 Zin the range q2 = (0,1),
corresponding to the absolute sgquare of the production amplitudes of Fig. 3
summed over the infinite number of final states. Hence for O < q2 < 1,

our Ii(qZ) satisfies a unitarity relation. Near threshold we have
2
2 Pal 2)* 2,3
7(9}) — L {1 + ‘7-?—2‘(7) * O((7))} ' (4.2)

The renormalized propagator
A~ VA S S

PN SR SN AT NACAIEN]

The renormalized propagator of the ¢ field is given by

{ZL?(7f)1= 2 f a )
9% m - 1(9*)

In the approximation we have considered, this representation makes sense
only in the range O < q2 < 1 where II(qZ) satisfies a kind of unitarity
relatioa. AR(qZ) is complex Ffoxr all q2 > 0, ZorreSponding to the fact
that the ¢ field is unstable and can decay. is not to be identified

with the mass MR of the "& resonance'". We define

2

ﬁtﬂ = 7nz'+ CRG ZZ(/@;)
7= Jm II(Mg)

IL(3%) « I(3*) - L(#p)
so that we may write

z"k(iz). 4; , o0 £9°<1
gz_MR_z/’—ER(r‘) 4

2
provided that M, <M . 1In the small coupling limit, g,a — 0, we find

= N

Mo m*- _Zf)_
- (4%)



- 11 -

r - r~g*
(47)”

the width and mass of the & resonance being determined by the "2m dscay".
Note that the real part for this decay (as given in terms of the subtraction
parameter uz) is uniguely determined in our solution, and is negative, so
that M2 < M.

d) Threshold behaviour

2 o
For q — 0 we find

(4.3)

- A {0t 102)- (- Np) - pe))

() I(g) o 79[ g+ r- 1]
$4-»0

29 [Blpe)e peze)-Hze)- 4]} D)

or expanding in powers of the coupling constant

(4.4)

(Zx)‘tﬂ-.(iz);g? szl{((n(“?z)‘ 1) + 7%(1 + Zr(-?) -21" ?z)}
+ O(dzz’)

where Y denotes Buler's constant and ((z) is the Riemann Zeta function.

e) Asymptotic behaviour

ALV AVAVAV VAV VAV VAV oV oV V]

For q2 - M,

(4.5)

o 1)y - ZL ) gy
() ?){z'_"—z Y1+ & 3/7(,“‘) (i)

rz-2)r-2) 4 0
’ 27(1-%) (2) + Oz )}

Nosing that

"‘/(.,(';2') =]+ L [(_21) _1 ] %)1"‘)'(7&) (%)"‘
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we have to order 0(32),
L) T (1))
- 2[(1+7C)- 6TE)+(1- 5C)out )

(4.6)
-4 67g) ¢ 2B gy] < 0@}

2n+1(_q2)

Note that 1log is the maximum power of 10g(-q2) occuring in a

. n . . - . .
given order a , which is reminiscent of amalogous relations required by

the renormalization group constants in QED 12)0

B. Connection with renormalized perturbation theory

The non-perturbative result Egs. (3.5) and (4.5) show that summation
to all orders in the coupling constant A 1leads to strong oscillations in
the limit q2 > . The asymptotic behaviour, Eq. (4.5), corresponds to a
lignt coae singularity of the type (xz)_2003(51/2 1in x2/4) and
(Xz)_zsin(51/2 1n X2/4), (G1=-iv1), which are non-perturbative in character,
and are usually not considered in arguments relating to the Wilson expansione.
It is unclear whether this feature is a result of restricting ourselves only
to a subclass of graphs, or whether it may in fact be a feature of the full
set of graphs in a non-asymptotically free theory without an ultraviolet
stable fixed point. Nevertheless, the expansions (4.4) and (4.6) in powers
of the coupling coastant exhibit the features expected from renormalized
perturbation theory, and it is instructive to investigate in some detail

this connection.

It is clear from the outset, that due to the regquired renormalization
in perturbation theory, agreemsnt with our unigue solution (3.5) can at best be
achieved up to an arbitrary coustant. The usual normalization conditions
required to define uniquely the Green'!s functious in renormalized perturbation
theory would then be sufficient to remove the remaining ampiguity to each order

in perturbation theory.

The self-energy graphs of Fig. 1 require two types of subtractions :
a subtraction for each of the n-1 poteatials occuring in a 2n'th order
graph, corresponding to a coupling constant renormalization (see appendix a)
an over-all subtraction at each stage of the iteration, corresponding to a mass

renormalization.
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The arbitrary constant associated with the coupling constant renor-
malization is essentially the same as the arbitrary scaling parameter b
occurring in the definition of the Fourier transform of the potential I(X),
Eg. (A.6). As pointed out in Ref. 13), it is related to the dilatation group,
and its arbitrariness is a reflection of the fact that the definition of the
finite part of a singular integral is not invariant under scale transformations.
In perturbation theory this arbitrariness is removed by a coupling constant
renormalization ; in the general case it is removed if we choose a specific
test function. In particular, regarding our solution ¢(x) as a test function
in Eq. (2.5), and comparing the leading term in the expansion (4.4) with that
given by renormalized perturbation theory, Eq. (2.3a), we see that our non-
perturbative treatment has uniquely fixed the value of the subtraction constant
n2 to be %2 = e. Similarly, the arbitrary constant associated with the mass

renormalization has also been unigquely fixed in our non-perturbative approach.

Since we have restricted ourselves to a subclass of graphs, the
divergences remaining after the coupling constant renormalization cannot be
absorbed unambiguously into a mass renormalization. TFor extracting the finite

parts we shall adopt the method of "complex extension" 13)

replacing everywhere
the & propagator by (Mz—kz—ie)—x, and extracting the poles in A at A = 1.

Setting # = e we then have to second order in perturbation theory,

(@) 0@) = 79[ (tregy-1) - B TGV 2 0D

where "Pf" stands for "part finie" in the above sense, and

7;<g*)=-_;t'_zfm{n(_%ﬁ)( 1 b L) .

1 - h*ig)2r

Performing a Wick rotation, and introducing four-dimensional spherical coor-

dinates, we may carry out the angular integration by noting that

x [ tra* ;1 K kicQ*

2 a* ’
a'em-n‘e&(@ﬂk‘-zancme): z
o lok®+ 145 , k>4

2
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We find, after some calculation,

T = | -1 . - 1 __ 1
Z¢4) 2[ (A-1)° - 0—_17]
_ Q,l’[C,Z(Qz) , q"(Q;)((an_ 1) -‘.ZLC;(QZ)]
(4.8)

[ £ag - la(re@) ]
]+Q*

,£(ng‘[1f 1 2&(14@‘2]

1+Q* Q*

2

-%_1%_2 + 0O(a-1)

where

(3 H3 ‘/ ﬁ
cPia) - fylL_Z)_amy)z..

Taking the finite part and combining these results in Eq. (4.7), we find

i I(TY) ;’:3 #jz{(ﬁt(_yz)_ 1) + 2(2-4 71)} ) (4.9)

£(2x)*IL(9*) — It"j"{({};(_ 92)- 1)
g
- %‘ [;‘z-ﬁ*"(*i‘)-éf" (7)*'({"( 7} ] (4.10)

+ 0(@2) }

Upon comparing the perturbation theory results (4.9) and (4.10) with the
corresponding expansions (4.4), (4.6) of the exact solution, we see that the
two results only differ by an over-all adiitive constant for q2 - 0, where

the perturbation series is expected to converzge. This discrepancy is removed
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by imposing the proper normalization condition. For q2 -» m, on the other
hand, the two results only formally agree as regards the powers of lov( -q )
appearing in the expansion, but differ in the coefficients. This illustrates
the failure of perturbation theory when large momenta are involved, a fact
which constitutes the basic motivation for the renormalization group approach

to the deep euclidean region.

5. CALLAN-SYMANZIK EQUATION

The graphs we have considered reguire regularization. However, since
we have restricted ourselves to the particular subclass of graphs shown in Fig. 1,
the infinities cannot be eliminated unambiguously to each order in perturbation
theory, since they cannot be entirely absorbed into a mass and coupling constant
renormalization. Hence this set of graphs does not satisfy a renormalization

group aquation > , nor a Callan-Symanzik equation 14).

If, however, we replace the potential in Eq. (2.1) by its discontinuity
as shown in Fig. 4, this leads to a Volterra integral equation. The perturbation
series generated by iteratioan of this equation is thus finite and requires no
subtractions. The exact solution ﬂ(s) has already been given in Eg. (4.1)
and will be identical with the corresponding power series expansion in A

wherever it converges.

Since =(s) requires no subtractions in any order of perturbation

theory, it satisfies the (trivial) Callan-Symanzik equation

m

3535—7"(;751-,.,57 4)= mzﬂ‘f,z(OS —5—1.}1, a) (5.1)

corresponding to a vanishing anomalous dimension and B function. Here

2
mznég = m"(b/bm2)n is just q(s) with a mass insertion at zero momentum.

ITlow, from the solution (401) we obtain the asymptotic behaviour "

%
7s)—s 4 [ [(v) (3-r0)

530 fx /fg (% )I"(”x 1) .
r-") .5 _¢0) Z }-(ymy
/"(-2!8_1)/”(-.2!'H1)( ) } % )
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Expression (5.2) exhibits two interesting features. It shows that the solution
associated with the potential of Fig. 4 rises faster than p ~ s, v, rather

than v determining now the leading behaviour. Furthermore,

1

m 2 gz?t’(s) — V(&) ¥ O (5.3)
om* S5 20

so that differentiation with respect to the mass m does not lower the
asymptotic behaviour. The right-hand side of the Callan-Symanzik equation
(5.1) thus does not vanish in the deep euclidean region, coatrary to what one
might have expected on the basis of a corollary to Weinberg's theorem 15).

One may in fact easily verify that this is not only a property of the non-
perturbative solution, but also of each diagram in perturbation theory, the
reason being essentially that the flow of large amount of momentum through the
external loop in Fig. 1 does represents one of the dominant momentum configu-
rations for q2 — - . This property of the diagrams in question is due to the
g@2§ insertion occurring once to every order in perturbation theory : 1f viewed
within the framework of a pure x¢2@2 theory, it has the effect of replacing

our vacuum polarization by a four-point function evaluated at the two exceptional

momenta Py =D, = 0.

Making use of the asymptotic expansion (5.2), Eq. (5.1) reads for

s = ®,

°0
(s_g.s_ - ¥(a)-1)T (s) = ©

where

= V -1 ~ a .
V) - -1 ~, &

Noting that n(s) carries the dimensions of g (mass), and keeping in mind
the above remarks concerning the exceptional momenta, it is tempting to
associate vy(a) with the anomalous dimension \7Y: of the operator & in a

Wilson expansion.
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Since the Callan-Symanzik B function is identically zero for the
n(s) under consideration, the asymptotic behaviour of n(s) is given by

y(a)-1 with Y a function of the coupling strength a, rather than

n(s) ~ s
a fixed point of B(a). For this same reason the theory does not become
asymptotically free if we replace a by -a.

6. CONNECTION WITH ete”™ ANNIHILATION

As it was pointed out in the introductiou, the topology of the graphs
we have considered was motivated in part by imagining multipion production in
eTe”™ annihilation to proceed via the "decay" of a virtual, heavy meson
(coupled to a timelike photon) cascading down in energy as it emits pairs of
pions at each stage of the cascade (see Fig. 3). The corresponding cross-

" 2, where Ah are the produc-

section would be given in terms of p(s) =
tion amplitudes shown in Fig. 3. p(s) satisfies the Volterra integral equa-

tion (see appendix B)

P(S)___ _L + .Zt'_ Q/G’S [(51_3'1)4'25’54&(5'/5)] P<SI) (6.1)

S'-mr-LEY( S -m*+LiE
(

obtained from Eq. (2.1) by replacing the potential (2.2) by the appropriate
discontinuity, Eq. (B.1) (Fig. 4). Using Mellin transform techniques (see

appendix B) one can show that (we set again m = 1)

g Ve ) U ‘
P(s);.:,b[,c(vz)s" + -y 2, c(v,)s§+ PAGAL 5](1 +0(§.)) (6.2)

are the solutions to an "eigenvalue equation",

Vo1 -

and are identical with Egs. (2.13)° The asymptotic behaviour of p(s) is

where v
1,2

thus similar to that of n(s) as given by Egq. (5.2), although it is to be
kept in mind that p(s) is a real, positive quantity for all s >0, whereas

n(s) 1is not.

The asymptotic behaviour (6.2) shows that the opening of new channels
as s - o (actually these thresholds all lie at q2 = 0 for the zero-mass
case in question) enhances the high energy behaviour of p(s) and could thus

provide a dynamical mechanism for the observed enhancement in the ete™ cross-
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section, an idea that was already explored in Ref. 8). It is instructive to

examine the origin of this enhancement.

Defining of(s) and h(A) as in Eq. (B.4b), the n'th order term

cn(s) in the iteration of Eq. (B.4a) for s — o is given by
1 1 1
0 (s) = (g_) [ dA () [d22 R(As) - f dAr b(An) @, (.- 3n5)
o o 0

or making the change of wvariable
'?" = )1 32_ b oo A,':

0'/11... dA, = %M ... dn
7¢ 7”

we have

In-1 (6.3)

n T
o) ~ () [ 22 hon[ 2 hez). f 2 ﬁ(—’ff; R A et

In the limit s — o the integral is dominated by the integration region

ﬂ,@/nﬂ_1<< 1, so that

, Tn-
0 (8) ~ (;;)'Zﬂ’ i;a f.,.lziz Cn (1 = 7pa's)

(6.4)

~ -g—"z é_b_’”(.:tﬁ_) + 0(&” s))
32 (9-1)!
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Two interesting pieces of information may be abstracted from Eg. (6.4) :
1) the dominant contribution to the integral in Eq. (6.3) arises

from the integration regions

93 y 39.) "’)(7h

in rapidity y; = ln(si/mz), where s, = A;s are the masses of
the heavy meson in the successive decay stages j
2) the leading log-summation fails to give the correct asymptotic

behaviour, just as one would have expected.

Finally we would like to remark that we do not expect the behaviour
(6.2) to correspond to the asymptotic behaviour in the complete theory, where
the Callan-Symanzik B function is expected to play a crucial role. Moreover,
unitarity corrections will necessarily have to come into play at sufficiently
high energies. That is, the subset of graphs in Fig. 3 can at best dominate

in some intermediate energy region.

7. SUMMARY AND CONCLUSION

It has been our primary aim to study the connection existing between
the solution to integral equations occurring in renormalizable field theories,
and renormalized perturbation theory. As the basis for our investigation we
have chosen the subset of non-overlapping rainbow insertions contributing to
the hadronic vacuum polarization in x§2m2 theory (with one g@mg insertion)
(see Fig. 1). The corresponding integral equation (2.1) was singular in the
sense that a formal iteration leads to (logarithmically) divergent integrals

to each order in Ao

The following interesting points have emerged from our study :

a) the full solution oscillates infinitely fast on the light cone, a feature
which is usually not considered in connection with Wilson expansions in
renormalizable theories. These strong oscillations are precisely the
reason for the existence of the integral in Eq. (2.1) in the non-perturbative
sense. As the coupling constant A tends to zero, these oscillations are
"turned off" ; +the integral in Eq. (2.71) diverges in the limit A = 0,
which manifests itself as a singularity in IIv1(q2), Eq.(3°4), at vanishing
coupling constant [however, no such singularity is present in the full
solution (3.5) !]. This is at the same time the reasoa for the failure of
the iterative solution, in the absence of some (cut-off independent) regu-

larization procedure (peratrization) : a formal power-series expansion of



- 20 -

(XZ)—2COS(;1/2 1n x2/4) in powers of A eliminates the crucial conver-
gence factor coming from these oscillations. It is thus tempting to
conjecture that the divergences remaining in the graphs of Fig. 1 after
performing the coupling constant renormalization [necessary to define the
kernel of the integral equation (2.1)] are a result of choosing the wrong
expansion parameter (A), and are actually absent in the swur over all

graphs 16);

b) for q2 small we have found the expansion of the exact solution in powers
of A to agree, up to an additive constant, with that given by renormalized
perturbatior theory to order gzkz. The additive constant is arbitrary in
the iterative solution, but is uniquely fixed in the non-perturbative case.
The discrepancy is removed, however, by imposing a normalization condition,
or equivalently, by a suitable redefinition of the coupling constant. On

the other hand, at large q2, perturbation theory was shown to fail ;

c) because of the g@zw insertion, differentiation with respect to the bare
mass did not lower the asymptotic behaviour of neither II(qz) nor n(qz).
We tentatively identified the exponent in n(q2)/q2 ~ (qz)\)Z"1 with the
anomalous dimension of the @2 operator. Moreover, in the model under
consideration, nﬁ%/bmz disc II(q2%.: 8), rather than tending to zero as

in a pure @4 theory 6 .

Our study of a simple soluble model has indicated that the connection
between the solution of singular integral equations occurring in renormalizable
field theories and renormalized perturbation theory to arbitrary orders in the
coupling constant may not be a simple one *). It would certainly seem of interest
to extend our study to larger subclasses of graphs also satisfying the renormali-

zation group equations.
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APPENDIX A

With a Pauli-Villars regularization, we have

1
T(q?) = - [dptn| Bla-1)(2440) | .
A 7) (4,,.)’-[p (ﬂ(@-{)(?:#A'O)*AZ/

Hence, to second order in the coupling constant the four-point vertex function

for the corresponding kinematical configuration is given by (Fig. 5)

l’*)

e

[}

-+ A, I(5*)

= ~<Ap - 4-.;:,)z [ ‘gu( 2;;..4__'0_) -2 ]

The physical coupling constant A is usually defined as the value of the
four-point vertex function F(4)(ki) evaluated at the symmetric point

kikj =n /3(46 -1) This definition is not suitable in our case since the
potential 1nvolves zero mass particles. Instead we arbitrarily define the

renormalized coupling constant A by

F"”(—ﬁc;, Jo) = - <A

or to second order in A

‘ A ’Z(ﬂo,%)lzo )

Z(Ao, L) = 1+ (%31(4(%)_,)

Hence, to order Az, the renormalized potential is given by

(A.1)

PIg) - LA () - e
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The Fourier transform of I(qz) may be written in the form

, a _ | ds A /. (A.32)
L(47)*I(x) L_Z_%A (xs)/ ( )

where

A(‘()x 5) = .LS.( H(‘)(V-Sx‘fio) 4 H(‘)(VSX"—LO))
Px 1/_:— f‘z—_
Sx*+40 §x%-¢o

- (9(5)9(—/\") + 9(.-8)9(#)) 257{‘1 K1(V‘$X"L) (A.3b)

;/-sxz

- (9(3)9(1‘) + 9(~s)6(—x‘)).2; Ny (Vs x2 )
Vsxz

N1(z) and K (z ) being the Neumann and modified Bessel functions, respectively.

We define 1(4n) I(x) in terms of the analytic continuation of the integral

a

“)
/ s /s/ . (xs)ﬁz( .5.:&59.)
‘aD
from 0 <v<2X to v=13 thus, using Eqs. (A.3), we have
(T = oy 2 {000 s )+ BCAIT (et )
X

where

f:(/x‘), «*) =

fdz; 2 K'Cz)&<ae V___)

47t / x‘l

sz z”/V(z)ﬂ(‘e WxT)

J’rr /x‘l
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Fv(]x2|,u2) is readily evaluated to be

(o1, ) < 25 P(10 2)P(2)(1 - con (1-3) ) Lo Vi)

/x>

< [Yrex)l(r)_1_ .
2x? (*‘) (2) | x*|

Continuing analytically this result to v =1, we find

Ix) = .1 1 ) (A.4)
(r)* (x*-<o0)*

This result is independent of the renormalization point, a property intimately
related to the specific analytic regularization procedure chosen. It is there-
fore clear that the method of analytic continuation only defines the Fourier
transform up to an arbitrary function whose support is the origin. Conversely,
the Fourier transform of (A.4) is only determined up to an arbitrary constant,

which is essentially our subtraction constant x.

In order to make this more explicit we observe that in the terminology
of Glttinger 13), (X2—i0)—2 is to be regarded as a generalized function with an
algebraic singularity on the light cone. Following Ref. 13), the Fourier

transform of I(x) is given by

e0 =
FI(x?*-io) = - <47*R B 2 9% ¢ 3 22 ,__b:
x*-co) <4n zisc:['ji(-zz-t‘O)i‘odrt .Z'('e‘(i o)l)l'(t(:?g)rz)}

replacing our formula (A.3). The constant b is arbitrary, reflecting the
fact that the definition of the finite part of a singular integral is not
invariant under scale transformations 13)9 In fact, substituting (Ae4) into

Eq. (A.5) one finds 13)

F I(x*-<0) = -—@‘E_.’;_)z[{n (_22(_ 21_,;0)) 24 1] . (4.6)

The Fourier transform of (A.4) is thus defined only up to an arbitrary constant

b, which is essentially our subtraction constant u.
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APPENDIX B

Replacing the potential in Eq. (2.1) by its discontinuity (see

Fig. 4) (to start with we consider the exchange of massive quanta)

2_,a _hY)i 2 (B.1)
,//;zﬁjq-é: (1& /Ac‘)SL ((:7 ‘E) /&Z)
and defining the variables

s=9*, s = (9-%-%)"

we arrive at the Volterra integral equation
(Vs u)*
' ]
p(s) - ps) + Q/,,zs A(s,s") §(sh |
(4]

(s-m2ie )(s-m>+ie) (B.2)

1
fo8) = L2 (17 - w)*
where

(2x)A(5,5") f/% I 0 8, (R 12) 8, (Hip) 8, (0% )8 (9-K-A0)

(s ,a) (r5-p)’
= _4{__2._}:_ ds, ["'5; 9(5 #53-2/;) Jx, Iy G(K(i»xt.x&)lg(j,l#)
£5 zaz Pt ! ﬂ(§,x,‘xz)

with
éF = é;(st(ale
25(Sy #52-5-5") + (5-5, +u*)(5-5204)
VACS, 80, 4%) A (s, 52, 4%)




- 25 _

A(s,s’) is just the three-body phase space associated with particles of mass

ug, u2 and s', respectively. Furthermore, K 1is the Mandelstam K func-

tion

KCx, %, xs) = 12527 2%+ 22332

and A 1is the usual triangle function

A(x,y, 2) « x* y*+ 25-2xy - 252 - 292

For the purpose of studying the high energy behaviour of p(s) and
mz(b/bmz)p(s) we may set y = O. The integrals may then be carried out in

closed form. Setting si/s =X st/s =i, we have

2 2 ! !
(27) 4 . % s/gda,/odal 8(1-2-2:+3)0(A42.-2)

(B.3)

- s[(1-5), why)

In order to deduce the asymptotic behaviour of p(s), it is convenient to
rewrite Eq. (B.2) in terms of o(s) = p(s)/(s-mg)z. After a change of variable

one has (we set o = 0)

0ls) = o(s) + & JA k(a) 0°0s) (5.02)
(1- :gz) [

where

f(a) < (1-2%) + 2ate) (B.4b)

and

Op(s) = L. 1 _
£ (5-m*)*
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To leading order we may neglect the factor (1-m2/s)_2. Taking the Mellin

transform we obtain

o) - %G ) os) - [ sfo‘(j)
2%

7’ Glh@,) C
where
1 ﬁ j
H({) - L
(f) szoa’) ) A
1

P S .

1
76 (J’f{)gu)‘(jd)

o(j) may be rewritten in the form

0'(f) - (j;u)(l-rz.)z(jf.?) 0;(' (B.5)
Y TG lG-a- 2] /)

where have already been defined in Eq. (2.14) ; or taking the inverse

v
1,2
Mellin transform we have

|7 _» Y VY
0(s) ~ [ccvz)sf +C(-%)S 2 ¢ ()8 + C(-%)S Z](1+0(§)). (8.6)

2
Now, 8(s) = mz(b/bm Jo(s) satisfies a Volterra integral equation with the
same kernel as in Eq. (B.4a). It is a straightforward matter to show, using

the above Mellin transform technique that

A ngol o) — T
pes) m? S-»00

with
T o= 6’(42\ g,%
O(1) -
¢4 -

where jo is the location of the zero of 1—aH(j) farthest to the right in
the j plane. The result (B.7) could also have been deduced, of course, from

pure dimensional analysis.
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FIGURE CAPTIONS

Fig. 1 : Non-overlapping rainbow diagrams contributing to the self-energy

of the & field. The dotted lines refer to the zero-mass field
Do

Fig. 2 : Integral equation for the self-energy of the & field,

Fig. 3 : Production of pion pairs in the cascade decay of a virtual &

meson.

Fig. 4 : Discontinuity of the potential T(q).

Fig. 5 : Four-point function to second order in A§2w2 theory.
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