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ABSTRACT

We propose a few general empirical laws summarizing
our knowledge on two-body hadronic amplitudes. The se
systematics lead to a simple analytic parametrization
of these amplitudes, allowing the reproduction of all
the prominent features of the non-vacuum exchange data
from 6 to 50 GeV/ec. The obtained results, and in par-
ticular the ability of describing 1in a consistent way
both meson and baryon exchanges, are encouraging and
suggest that a framework may be found for new dynamical
approaches.
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INTRODUCTION

The situatior of twc-body phenomenology is far from being entirely
sstisfactory. One cannot say that a unique well-determined phenomenology
may exist which would permit describing all the existing data sbout high-
energy, nesr forward and backward twc-body and quasi-twc-body scattering.
A1l the existing models (including the elaborate Regge cut models1)) en-
counter some difficulties in describing scme amplitudes or categories of

amplitudes.

What we intend to do here, is not to try to improve such or such a
model, but to make a balance of all that has been learnt from phenomenology
and amplitude analysis. We extract from the availatle information some
general empirical laws leading to systematics of twc-body reactions. By
this, we mean a parametrization of non-Pomeron exchange scattering ampli-
tudes which is universal, simple, and atle to fit the d=sta with enough
accuracy. The compariscn of the analytic form of our amplitudes with the
one obtained in dynamical models should allow the pointing out of the diffi-

culties of these models, and rerhaps s better theoretical understanding.

We first show the derivation of the rarametrization (Section 2) then

apply the systematics to p, A NW, and ", exchanges (section 3), and

2’
finally discuss the results, pointing out the open problems (Section 4).

DERIVATION

In order to derive the empirical laws which define our systematics,
we first have to analyse what has been learnt (for sure) from all the

attempts to describe the data.

2.1 General statements from the current models

2.17.1 Regge rules have something to do
with the scattering amplitudes

The energy dependence, the phese, the position of the zeros are well
described (in a first approximatior) in terms of Regge pole exchanrges.

Such a statement is particularly well established by a few experimental

analyses [Ggff(t> for © exchange in ™ p — n%n d), high-energy behaviour
g :
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2.1.2 ILxchange degeneracy is a
good first approximation

The position of resonances on the Chew-Frautschi plot and the approxi-
mate flatness of exotic cross-sections implies exchange degeneracy of Regge
trajectories and residues as a good first approximation. Indeed there exists
strong evidence of violation of exchange degeneracy, but qualitatively one
can say that exchange degeneracy is a symmetry law for the Regge pole con-

tribution.

2.1.3 Corrections to Regge pole exchanges
are necessary '

The corspiracy problem in pion exchange, the cross-over phenomenon, the
non-vanishing of mN chsrge exchange polarization, are well-known indications
of the necessity of correction to Regge pole exchange, including corrections

to describe the breaking of exchange degeneracy.

2.17.4 The existing mcdels are not
entirely satisfactory

The models which introduce corrections to Regge pole exchange
(essentially the models based on absorptive cuts) all encounter some diffi-
culty somewhere. Sometimee these difficulties can be overcome through some
improvement of the model (e.g. introduction of secordary cuts like in the
RPR model1 to explain the "N charge exchange polarization puzzle). Other
difficulties seer very severe like the persistence of shrinkage at large t
for p exchange, wrhereas all the cut models predict essentially no shrink-
age4). Another puzzling question concerns the strength of the correction
szccording to the amplitude in which it is applied: it seems, for instance,
thet in absorption models the spin-flip contribution of the p Regge pole is
too much corrected, whereas the exchange degeneracy breaking corrections

are too small in high helicity flip amplitudess).

2.2 Dominant features of two-body amplitudes

ftmplitude analyses allow the extraction of some rather model-independent

information from data, which we now try to summarize.

2.2.1 s-channel helicity amplitudes
have simple dynamical features

In order to detect general feztures of high-energy scattering, s-channel
helicity amplitudes seem to be the most suitable ones. In particular the

zeros, which are one of the most characteristic properties, can well be



classified according to the net s-channel helicity flip n = ]Ai - Ap
These zeros appear to be, in general, at some values of t (close to the
real axis) which do not depend on the energy (or depend very slowly). As

examples of these zeros let us quote:

) . : ' 6
- the cross-over zero in the non-flip vector exchange around t =~ -0.2 );

- the near backward zero in the non-flip N, exchange &t
7)

u' = u -u_ . <~ -0.2 H
min

8),

- the zero at t ~ 0.6 in the o flip amplitude ’;

- a possible zero at t ~ -1.71 in the A2 flip amplitudeg);

- a possible zero at u' =u - uoin ™ -1 in *» exchange from dip in

backward m p differential cross-section1O .

2.2.2 Zeros of the amplitudes

It has been remarked since a long time thet the properties cf these
zeros lezd to a geometrical interpretation for their appzarance. First of
all, it is remarkable that they coincide with the first zeros of FEHessel
functions J (R=t) where R is approximately equal to 1 fermi (see Takle 1).
This coincidence strongly suggests that the impact parameter representation

is well suited to find simple properties:

M“cs,b) = a,o;‘“J BABJ,,(\,W) ﬁn(s, %) - (a)

M., (s, b= .Ean?ﬁ'Aﬁ’In(bﬂ') M. .0 (15)

where t' = t - tmin and q is the c.m. momentum. These relatiorns which are
nothing but two-dimensional Fourier transforms in the transverse plane,
approximate, in the semi-classical approximation limit, the partial wave

expansion (la) and inversion (1b).

The gecmetrical properties of the zeros of the amplitudes are trans-
lated into simple properties of the profile functions ﬁn(s,b) which are
supposed to describe the '"geometry', or the distribution of matter in the
interacting particles. Ve know, at least, two simple geometries which

imply zeros analogous to the observed ones:

a) the "6" gecmetry or "ring" geometry

M“cs,b)o( b %(b‘—%‘) = Mn<%t>°< jn(P‘\F*’) 2a)
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b) the "O" geometry or "disk" geometry
~N n ,
M“(S,\:D o b 9();‘- P\‘\) =» M“(S)\')O(Jnt._({‘\f*) (2b)
-‘,)

These two forms exhibit an important property: one given geometry leads to
a series of zeros varying with n, whereas the geometry is entirely described

by a helicity independent distribution.

We note that the factor b in (2b) is essential in the definition of
the profile function in order to get the corresponding form Mn(s,b). It is
a purely kinematical factor, completely analogous to the —t'™ factor which
eppears in Mn(s,t). It corresponds to the small b behaviour of ﬁn

obtained from formula (1b) [provided Mn(s,t) has a good behaviour at large

6]

We may give a generalization of formulae (2)

M 00 o b £ cs b

where f(s,b) gives the geometry of all helicity amplitudes. This
relat on -- we may call it b wuniversality -- seems to be approximately

verified in several cases where one could reach different helicity ampli-

5)

dues such as A production processes”’. This property has already been pro-

posed for mN charge exchange, and has something to do with nuclear physics11).

2.% DBasic idees of our systematics

Prom these geometrical properties, it is possible to understand the

successes and difficulties of the models based on Regge singularities.

In some cases Regge pole exchanges fit with a simple geometry. This
has been observed first for p exchange: the trajectory ap(t) vanishes at
t ~ -0.6 which is the first zero of J1(RV—t), (R ~ 1 fermi). The signature

factor 1 - e-inap(t)

gives a nonsense wrong signature zero at wn(t) = 0.

It is thus expected that in the n = 1 amplitude, the p exchange corresponds
to a peripheral (or "¢", or "ring") geometry. Indeed such a geometry can be
obtained only in the n = 1 amplitude [in the n = 0 amplitude, the standard

p exchange would give rather a central (or "disk" or rgM) geometry]. Now,
what is observed is that the p contribution is periphera112) in both ampli-
tudes (in the n = 1, because it has been said that a pure pole amplitude

works, and in n = O, because a peripheral zero -- the cross-over one -- is
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actually observed). One can now understand the basis of our approach. We
would say that it is not the Regge phase or zeros which are universal, but
rather the geometry (b universality). We would say furthermore that the
Regge pole phase is present in that amplitude for which it describes the uni-
versal geometry. As we will show later, this statement leads to simple
systematics. Such a statement differs from the so-called dual absorption
models12> because it is valid for the whole amplitude (imaginary and real

parts) and can be applied whatever the geometry is.

13)

Since this question is in discussion about even signature exchanges )
we have to understand how cur approach can be applied to them (the qualita-
tive reasoning which we have done on the ¢ exchange works as well on vector
exchanges like w and K* exchanges). Our present knowledge about even signa-
ture exchanges is less precise than that about odd signature exchanges (the
cross-section for the m p — nn reaction which is the prototype reaction to
study A2 exchange is ten times smaller than the one of “p — non, the P' or
fo exchange is always mixed up with the Pomeron exchange, etc.). We are
thus obliged to make more assumptions to extend eventual systematics to
tensor exchanges. The key argument concerns exchange degeneracy and its

13) that exchange degeneracy is essentially

breaking. It has been observed
valid at the periphery (1arge b), whereas it is strongly violated in the
centre (small b). Such a situation can be understood in terms of simple
physical arguments. With Regge poles satisfying exchange degeneracy, it is
normel that the large b region, associated with light particle exchanges,
satisfies it. On the contrary, in the small b region associated with heavy
éxchanges including Regge cuts, one expects strong exchange degeneracy to
fail, as in a dual scheme for Regge cuts1 . Thus our conjecture is that
exchange degeneracy is violated bty the difference of the two georetries
corresponding to vector and tensor exchange: 1if we assignate the 6 geometry
to vector exchanges, we are led to assignate the © geometiry to tensor
exchanges. But we have to check that they coincide at large b, owing to

exchange degeneracy.

Such a prescription preserving the Regge phase for tensor exchange in
one helicity amplitude can be obtained by assuming the "no compensation
mechanism" for A2, P', and K** exchanges in the n = O amplitude, that is
with a zero at @ = O corresponding to the J, zero in Eq. (2b). Actually
this conjecture is supported by some phenomenological analysis14). The re-
sults we have obtained and which will be displayed below, give another

piece of support.
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2.4 Formulation of "Reggeometry'

We are now able to formulate the rules of our systematics.

2.4.7 "b universality"

For a given reaction, with well-defined t-channel quantum numbers, we

assume b universality, that is

~Y
n
Mats®) = g 3 b £ es,b) (5)

where gn(s) is a normalization function independent of b, b" the kinematical

factor, and f(s,b) a universal, indepéndent of n, profile function.

This assumption is very constraining since, at a given energy, it re-
duces the arbitrariness to one complex amplitude and to normalization con-
stants. We first note that since we allow the functions gn(s) to depend on
s, they can be complex. It is also interesting to show how b universality
allows the relation of two helicity amplitudes with different n. From (3)
and the derivative relations between Bessel functions, one derives easily

o J n’-n
-}’ —— S, ¢
Mn’ (S,Q’) = An;n(S) ﬂ [Ft, Aﬁ) _M;T;-T(;ﬁ_g_ (4)

where An,‘n(s) is a complex function depending only on s.
’

Equation (4) would be very useful if one only wants to test b univer-
sality. For instance in the case of a O + 3 = O + % reaction, like np>7°n,
M= )(S)V—t; dMo/dt. An amplitude analysis could thus be done, just
knowing the differential cross-section and the polarization, by solving

differential equations.

2.4.2 TExistence of a pure Regge pole amplitude

For any reaction with well-defined %-channel gquantum numbers, we assume
that there exists one helicity amplitude MnF which is described by a pure
Regge pole exchange. For this amplitude we assume, up to adequate modifica-

tions for baryon exchanges, the following parametrization:

ng () 4§ ~inal (¥
Mo = P (s ¢ 4 (5)
nk Se :
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1
where o(t) (or o + %) is the trajectory and ¢ = (—)J [or £ = (->J+2] the
¥
signature of the meson (or baryon) exchange ‘. In this equation we see the
nonsense wrong signature zero at o = O for € = -1, and the no compensation

mechanism zero at « = 0 for &€ = +1.

2.4.3 Determination of np

The pure Regge pole behaviour is attributed to that amplitude for
which the first nonsense zero is compatible with the chosen geometry. We
thus constrain the trajectory to take their first nonsense value at a
value of t corresponding to the first zero of a Bessel function of argument
R/-t', R = 1 fermi. This constraint can easily be satisfied for all trajec-
tories satisfying exchange degeneracy, approximately linear and extrapola-

*
tigg known particles and resonances. The trajectories of p, A2, w, P', K,

K , can coincide at zero and t ~ -0.6 (first zero of Ji). The Na trajec-

1

tory goes to o + + = 0 at u' ~ -0.2 (first zero of Jo)and the A, trajectory

$

to o + % = 0 at u' ~ -0.6 (first zero of J1).

According to our conjecture about violation of exchange degeneracy

through the difference of geometries, we can now decide the value of np for

each exchange. We assume the peripheral geometry if the first nonsense zero
*
is at a wrong signature position (p,w,K ’Nw)’ and the central geometry in the
*% :
other cases (P',A2,K ,Ny,Aé). From Egs. (Za), (Zb), and the nonsense

values of the trajectories, we deduce the values of n_ for each Regge pole.

R

Thebproperties of the trajectories, the value of n and the shape of the

R’
Regge pole amplitudes are displayed in Table 2.

2.4.4 TForm of the norn-Regge pole amplitudes

Equation (4) allows the computing of all the helicity amplitudes witih
n £ Npe. Assuming linear trajectories, the derivations and integrations can
be performed analytically. Before shewing the results, we discuss briefly
the erergy behaviour of the functions gn(s). £11 the functions which appear
in Table 1 are exponential in t with log s/so or log s/s0 - im slopes. Thus
the behaviour of M (s,t) will be of the type | log s/soln’nR (s/so)“(t). If
we want all amplitudes to be dominated by a Regge pole term (plus eventually

Regge cut terms), we are led to give gp(s) a behaviour of the tyrpe
ng-n N

|log s . If furthermore we want to keep the correct sigrature proper-
ties (symmetry or sntisymmetry on the change s — —s), we have to symmetrize
log s, that is, to use 3[log (s) + log (-s)] = log s - im/2. Thus all

helicity amplitudes are written as:

——— - — 1

J+z .
*) Note that for btaryon exchange, we use £ = (-)°"2, instead of the usual
definition (-)J-z.



QWR

M“ (S")_ A ‘Rh‘.(sl')e() (62)
P)HI)K*t

Mn (s,t) = Lkan,o (s, \-)).() (6D)

N

M. 6,6 - E R,)Jo(s,u.’,i') (6e)
A
M“s(S,{'): anvg—s: ‘Rn)o (s, u")a) (6d)

where @ = o + 2, A, are real constants and

R,,,;:A‘ 4)_ -+ (53%_.%3“'&9 ﬁ(z'&%:'\ he C.'?“log? m) }(7)

From these formulae we can easily obtain the corresponding profile functions

obviously exhibiting b universality

VASAY 'ﬁ
3
Mh (s,b) = LAY G, b,y ) (60)
v
~J P R,_)K‘“

v‘" (s,b)= :»t‘n R“’oc S, b:“°)°(\) (8b)

~ N ~ _
v\n““*” = Q\“ Jss_g P\mo (s, b, e, ) (8c)
~v ~

L} ""—' -
wns ‘s) b>= E’Q\h 'SEE Rh)b (s) b)“O)",)

(8d)

where o, and o' are intercept and slope cf linear trajectories. (&C = oy + %),

n, are real ccrnstants, including powers of o' and ﬁn,np are
~ :
; o -b - by
R 000, (53 gy ) i _ g Vi
) T\ Se i 2 Nori el
2 (5% Q%f“ﬂ

(9)
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From formula (7) one can easily extract the complex zeros of the different

amplitudes in the t-plane. The first zeros have to satisfy

ot (te) = i (_“___;t“ﬂ Log (Loy %%,/ Logs -m) (10)

In Fig. 1 we have drawn the complex zeros of po and A;, together with the

signature ones of p1 and Ag, in agreement with the expected geometrical

zeros (see Table 1)

Note that these complex zeros of the full amplitude do not command
exactly the zeros ¢f real and imaginary parts, which depend also on the
extra factors [log s/s1 - i(ﬂ/2)]nR-n: see formula (7). Nevertheless, they
are related to the structures of the differential cross-sections and polar-
izations, provided they are not far from the real t-axis. This can give

important direct tests of the proposed geometries.

APPLICATION TO MESON AND BARYON EXCHANGES

3.1 Parametrization

We want to apply our systematics to p, A2, Na’ and A& exchanges in

order to describe the following processes:

a) J'L'F—)ﬂon

€

1A
“%; Q

%(gﬁ'ﬁg)

LR 2

b) T['P"”l_n

c) K*n—’\«‘,‘)

43-
e) ntp — nr A
p— p ENARYN

LN J

a) K'F»-\{'r;

£) P> pT Ag
g) TC'P-’ nn° . g(N-&"Asy

Each of these reactions i1s described by the two usual s-channel helicity

amplitudes. For a given exchange, one amplitude only is of pure Regge form,
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the remaining one being obtained, up to a kinematical factor and a coupling
constant, by differentiating (for Na’ Dgs and Ag) or integrating (p) the
pure Regge amplitude with respect to the transfer variable. The correspond-

ing analytical forms are given in Fgs. (6).

Apart from the well-known linear trajectorieé, the parameters to be de-
termined are only four for each Regge exchange: +two coupling constants x?
and k?, and two scale parameters si and s?, the role of which will be dis-
cussed later. Moreover, K-induced reactions (c) and (d) are related to (a)
and (b) by imposing exact SU(B) symmetry. This permits expressing directly
the amplitudes of feactions (c) and (d) in terms of the parameters of (a)
and (b). [Results for n,production take into account the branching ratio

r(m - 2y)/I'(n— all modes) which is known to be 0.38.]

Results of our fit are summarized in Figs. (é) to (15). Our calcula-
tions have been performed without any minimization procedure. In fact, a

given differential cross-section at one energy allows the calculation of

R R

parareters xi, A1, and S, of the correspording exchange. For instance, the

shape of do/dt(n p - 7°n) at, say, Piap = © GeV/c,; determines xg, xq, and
sg: the flip amplitude being dominant xq, is fixéd; then the ‘forward point

p

gives easily xg. As one inferesting feature of the model, the parameter S,

is strongly constrained. It must give the form of the differential cross-

section, but also fixes, once Ag is known, the depth of the dip.

An analogue situation is encountered for the nucleon exchange and the

corresponding differential cross-section:

‘! - 150- % vy : | - ° -
S = 3 ( (ST uvpmpn) 442 Lvpnat)
- g_{ ‘(""P" P.ﬂ') v (cf. Fig. 14)

the A, exchange and do/at(="p » m) (ef. Fig. 3), the 4, exchange and
do/du(~"p = p7~) (ef. Pig. 9). For these two last contributions, the
strength of the flip amzplitude is fixed at the right signature zero of the

non-flip amplitude near It -t . | ~ 0.6.
min

This now leaves us mainly to determine the scale factor s? from one

polarization at a given energy for each exchange. In fact, the sensibility

of polarizations to this parameter is easily explained by the fact that,
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apart from the energy dependence, it induces a constant phase shift between

the two s-channel amplitudes of the concerned exchange.

Proceeding along these lines, we have obtained the values of our 16
parameters as shown in Table 3. The resulting o, A2, NO, and Aé amplitudes
are shown at a given erergy (plab =6 GeV/c) on Figs. 16-19. We also give

their impact parameter profiles (Figs. 20-23).

3.2 Results and discussions

From an inspection of our results, we can infer the following:

i) Essential features of data can be seen to be both qualitatively and
quantitatively reproduced. The fit seems very satisfactory, in
particular with regard to the small number of parameters and the
energy range considered. We must emphasize how well the p exchange

is described both in s and t.

ii) Note how excellently the strength and the shape of cross-sections
and polarizations of the charge-exchange reactions Kp~ Kon and
K+n - Kop are reproduced by our prediction. This indicates a
remarkalble agreement between SU(B) prediction and our parametriza-

tione.

iii) Backward elastic differential cross-sections and polarizations are
adequately described at small transfer. However, some discrepancies
appear for |u| > 0.6 (GeV/c)z. For instance, the large values
obtained for the m p — prm  polarization (Fig. 11) disagree with the
trend suggested by the data. Some aspects of the w+p - pw+ polar-

ization are not reproduced very well (Fig. 10).

The charge-exchange reaction is roughly described, but the fit is

certainly less good than for elastic scattering.

iv) Our parametrization predicts a pronounced dip in the m production
near |t| =1 (GeV/c)2

the data, as can easily be seen at all incident momenta where meas-

. Such a structure is not clearly exhibited by

urements extend to large momentum transfers. In particular, the

15)

recent Serpukhov data at 40 GeV/c contradict this prediction.

But this dip is seen in the analogous case of T p -~ pm (ef. Pig. 9).

Let us now discuss more precisely the prominant features of our

results and the corresponding structures of the amplitudes.
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3.2.1 7w p = n°n polarization

8)

to reproduce the correct shape of the polarization is that the real part of

It is well known from amplitude analysis that a condition necessary
the non-flip amplitude must have no zero before the imaginary part. This
typical feature is well given by our parametrization, as can be seen on

Fig. 16.

We must outline that the factor 1og(s/s1) - i(n/2), necessary to main-
tain asymptotic Regge behaviour and correct signature properties, also
allows a particular satisfactory polarization at large t (cf. Fig. 4).

This factor is equally essential to give the correct change of sign of

polarizations given by A2 and A, exchanges (cf. Figs. 5 and 11).

)

3.2.2 Line-reversal breaking and
p-Ao exchange degeneracy

Tt is well known that line reversal crossing symmetry between K p — K°n
and K'n - Kop is not verified below p, . = 6 GeV/c where the exotic differ-
ential cross-section is larger in the very forward direction (cf. Fig. 6).
This quite general feature of two-body line reversal reactions is obtained
in our scheme, together with a natural mechanism of exchange degeneracy

violation between p and A_ exchanges: the geometry giving the shape of the

2
amplitudes is different, as discussed in Section 2, although the trajectories
are the same. :

Furthermore, a comparison between p and A amplitude profiles (cf.

2
Fig. 21) shows that exchange degeneracy is approximately verified by our
amplitudes at large o (b > 1 fermi). We then obtain phenomenologically

this expected property of the amplitudes11).

It is instructive to note that we predict that the '"real" process will
have a bigger crossdsection than the "rotating" oné, even at very high

energies (cf. Pig. 6).

3.2.3 N,-As_interference

The main drawback of all Regge models of backward scattering is the

positive interference between N and A exchanges16). An amplitude analy-

sis17) shows that, in order to obtain this feature, the real part of the
flip amplitude Moa must possess a single zero near the signature point

ln| ~ 0.15 (GeV/c)z. By contrast, Regge models predict two nearby zeros.
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Reggeometry provides us with a mechanism for this zero; it ébrfeéﬁéﬂdsifb””
the derivative of the double zero in the Na non-flip amplitude (see Fig. 18)
with a small shift given by the over-all factor [1og s/s1 - i(n/Q)]. In
fact the interference thus obtained is not good enough to explain entirely
the charge-exchange differential cross-section (éf. Fig. 12); Although the
correct sign is obtained, the minimum is displaced by comparison to the

experimental one (ef. Fig. 15).

3.3 Concluding remarks on the fit

Reggeometry works reasonably well for péripheral exchanges p and Na'
More detailed parametrization of the Regge input would probably improve the
results. We can also easily guess that it will also work for other vector
{rajectories (such as K and ).

The situation, though satisfactory, is not so clear for A, and A2, and

|

! )
H X%
perhaps for P' and K exchanges. A comparison with the amplitude analysis

df Ferro Fontan17)

shows that the main discrepancy with our A& parametriza-
ﬁion comes from the real éart of the non-flip amplitude (cf. Fig. 19). A

i . .

similar defect seems to be shared by our A2 amplitudes. Though our imaginary

8)

ﬁarts are not far from recent A, amplitude analysis1 (double zero in the

nbn-flip amplitude, singlé zerozin the flip amplitude at the signature point),
r%al parts are quite différent. In particular, a double zero would be pre-
s;nt in the real part of the non-flip amplitude and a single zero in the
fhip one. This is not in disagreement with b-universality, but does not
c;rrespond to the zero structure of a usual Reggeized amplitude. Is
R%ggeometry in qﬁestion? £Or does the choice of the tensor exchange geometry
hgve to be revised? A seﬁarate test of these two independent assumptions
w;uld be necessary to diséuss this problem in more detail

Finally, let us consider the energy dependence of our amplitudes. The
dip in 7 p - 7°n remains present at very high energies (ef. Fig. 2) in agree-
mint with Serpukhov resulﬁs2 . Our parametrization gives an effective p
t

Polarization is predicted not to change drastically with energy (cf. Fig. 4)

ajectory in good agreemeht with expériment from 6 GeV/c to 48 GeV/c.
in contradiction to some models1 .

DISCUSSION AND OUTLOOK

The results which have been displayed in the preceding section are
rather encouraging. With a very simple and economical parametrization we

have been able to reproduce the main features of the data and to propose
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a solution to the puzzles which put difficulties to the current models
(polarization in n p — non, exchange degeneracy breaking in line reversed

reactions, consistent description of meson and baryon exchangeS).

Indeed there remain some discrepancies. We think that it is possible
to overcome these difficulties without alterating the simplicity of the
parametrization. Using curved trajectories should allow us to get rid of
the difficulties at large t. In the backward region, we have not intro-
duced any N contribution. Now, there exist no reasons to claim that this
contribution is strictly zero. Introducing it could permit the improvement

of the interference between I = % and I = 2 contributions.

Another step consists in applying the systematics to many more reactions:
in particular, high spin particle production reactions (vectors, tensbrs,
nuclear isobars), in order to test the validity of the systematics for high
n amplitudes. It is interesting to note that Reggeometry provides a natural
mechanism to explain the filling of the dips when the number of helicity
amplitudes involved in the reaction increases. For instance, this phenomena
has been experimentally observed in backward production, whereas a pronounced
dip occurs in the backward n+p - pw+ cross-section near u ~ -0.15 (GeV/c)2

this minimum is no longer present in backward pion photoproduction19) and

perhaps in p and £° productionQO). However, the same u-channel exchanges

’

are allowed in the four reactions and the filling of the dip is hard to
understand from a conventional Regge framework. On the other hand, since in
the Reggeometry scheme one helicity amplitude only must possess this dip, the
disappearance of such structures when the number of amplitudes increases is

then expected.

The same kind of remarks can be made about the extrapolation in the
mass, for high mass exclusive, inclusive and semi-inclusive reactions.
In the multi-Regge formalism, the scale parameter S, is, in a natural way,
equal to the square of the produced mass. Thus in such reactions we would
know the scale parameter. When the missing mass squared M2 increases, one
expects the produced spin to increase also as well as the number of helicity
amplitudes. Tor instance, Reggeometry has been applied successfully to
ntp = =%(p=") and allows explaining the filling of the dips for high (=)
mass and the relation between the slope of the cross-section and this missing

mass21 ) .

Before going into the discussion of the more theoretical aspects of

Reggeometry, we have to say a few words on the limitations and drawbacks.
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The first limitation concerns the Pomeron. The behaviour of total cross-
sections at high energy shows that the Pomeron is more complicated than a
simple Regge pole. We do not know yet whether Reggeometry could apply to
the Pomeron also. There exist some indications that the Pomeron contribu-
tions satisfy b-universalityzz), but one does not know whether there exists
any helicity amplitude which can be described by a pure pole exchange.
Indeed we could extend our analyses to elastic and diffractive reactions by
putting a standard phenomenological contribution to account for the Pomeron.
More interesting could be to amplitude analyse the Pomefon contribution from
elastic data and from a description based on Reggeometry for the non-Pomeron

contributions.

The most severe limitation of Reggeometry concerns the t-channel singu-
larities. In our parametrization, it can be remarked that we have omitted
the particle poles in the t-channel. This ommission was useful for techni-
cal interest; in fact the existence of t-channel poles [factors like
1 _‘@(t)],1/sin ma(t) or 1/t - m2] complicates the calculations when one
has to integrate with respect to t. Indeed the consequence of this ommis-
sion is not very important when the nearest pole in the t-channel is rather
far from the physical region. Nevertheless, it is a drawback, since for
instance we are not able to extrapolate our nlN backward amplitude to the

nucleon pole as there is no nucleon polel

Actually the difficulty of taking poles into account is more than
simply technical. One can easily be convinced that t-channel poles are in-
compatible with b-universality: a pole at t = m2 gives profile functions
which, at large b, behave like e_mb/Vb‘for all n. So if one has a pole in
the Regge amplitude (n =‘nR), in all other amplitudes the b? factor will
alterate the behaviour at large b and thus change the nature of the singu-
larity at t = m2. This difficulty is particularly clear in the case of
pion exchange, for which we know that the most striking features of the
data are explained by the nearby pion physical pole. That is why we expect

Reggeometry to fail in describing pion exchange.

In order to conclude we wish to list the theoretical teachings which

one can draw from Reggeometry and its first applications.

1. The strongest statement on which this approach relies seems to be b=
universality. This property, which is quite familiar in low-energy nuclear

physics, is probably the key to a classical or semiclassical interpretation
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cf our approach. It is interesting to note that t-universality also>under-

23)

lies the s-channel approack of Schrempp and Schrempp who have reached
results quite similar to ours. We think that systeratical tests of this

assumption would be very interesting.

The incompatibility of t-channel poles snd b-universality suggests a
picture in which the '"core" that is the region up to, say, 2 fermis sstis-
fies essentially b-universelity, whereazs the large b-tail dces not. A
piece-wise zpproach cf these twc regions with a smooth ccnnection between

them could lead to an improved description.

2. The other empiricsl laws of Reggecmetry, like the existence of iwo

geonme tries, or the existence of one Regge pole-like amplitude, or the
assignation of a geometry to a Regge exchange éccording to the signature at
the first nonsense point, are more or less conjectural. Indeed, the coin-
cidence of nonsense zeros and geometrical zeros is striking. But, whereas
the derivation of the systematics was very natural for p, w, K* and Na
exchanges, its extersion to tensor and Ag exchanges is muck more ccnjectural.
The first results obtained are ercouraging, but further careful studies are

certainly needed.

3. It is straightforward to analyse our amplitudes in terms of t-channel
Regge singularities. Expanding the smplitudes in power of 1/log s, one gets
a pole + cut expansion (the cut contribution obviously vanishes for n = nR).
Comparisor with the gbsorption models shows the following differences

between the two types of cuts:

i) in our spproack the tranch point trajectory coincides with the pole
trajectory, whereas the absorptive branch points lie on the AFS tra-

jectories which are much flatter;

ii) the variation with respect to n of the strength of the cut cortribu-

tions is ccmpletely differert in the two approaches;

iii) the phase of the cuts are also different: in the n = 0O p amplitude,
the cut we get absorbs the imaginary part and anti-abscrbs the rezl
part of the pole term; the absorptive cut absorbs both rezl and

imaginary parts.

It is interesting.to note that systematically the differences' between
the twc types of cuts exist about features which, as we mentiored zt the

beginning, put severe difficulties for absorption models. Somehow the
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results we have obtained allow us to spot the difficulties c¢f standard Regge
cut models. We think that Regge cuts exist and are important. We even
think that the branch points lie on AFS trajectories (the discontinuities
scross the cuts would be very small near the branch point and would be
rather concentrated near the asscciated Regge poles). We think that the
whole Eeggeor calculus (computatibn of Regge euts) should be revised:
evaluation of the cut discontinuities, in particular in the vicinity of the
pole, of the strength and the phase of the cut contributions according to

the helicity, should be re-examined.
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Table 1
Order of First zero Observed structure
Bessel functiorn (R =1 f) :
n =0 t = -0.25 GeV2 "ecross-over zero'
L + +
dip in m™m p — pr
2 L - o]
n =1 t = -C.585 GeV dip inm p 2> T ™n
n =2 t = -1.05 GeVQ dip or shoulder
in 7 p~ mn and 7 p — pT
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Table 3

Adjustable parameters and linear trajectories used in the fit

Exchanged A A s s Trajectories
. . o 1 o 1
trajectories
0 13.7 -39.0 0.32 0.32 0.5 + 0.9%
Ay -18.2 +80.0 0.3 2.0 C.5 + 0.9%
Nw -122.4 -55.0 0.85 0.2 -0.35 + u
Ag -5.4 -8.56 2.8 1.5 u
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FIGURE CAPTIONS

Complex zeros of p and A2 "Reggecmetric" amplitudes:

variation with the energye.

Charge-exchange differential cross-sections for Piap varying
from 6 GeV/c to 48 GeV/c [data from Refs. 2) and 24)].

Differential cross-sections for m p — mm from Pigp = 6 GeV/c
up to py,, = 48 GeV/c [data taken from Refs. 9), 13), and

25)]-

Polarizations for m p — mon at 5 GeV/c and 8 GeV/c [Ref. 26) ]
with our prediction at 40 GeV/c.

Polarization for = p = mn at 5 GeV/c and 8 GeV/c [Ref. 26)]
with our prediction at 40 GeV/c. '

Differential cross-sections for K p — En and k*n - X% at
6 and 12 GeV/c [data from Ref. 27)] with our predictions at
40 GeV/c and with a comparison of the two reactions (dashed

lines for K+n,* k°p in the K p - K°n results).

Polarizations for K'p — R°n [Ref. 28)] and K'n — K°p at
plab = 8 GeV/c with our predictions at 40 GeV/c.

do/du for n'p » pn’ at 5.9 GeV/c and 9.85 GeV/c [data from
Ref. 9)] and our prediction at 40 GeV/ec.

do/du for m™p = pr_ at 5.9 GeV/c and 9.85 GeV/c [data from
Ref. 10)] and our predictions at 40 GeV/c.

Polarization for n'p = pn' at 5.9 GeV/c [data from Ref. 29)]
(the dashed line gives a solution with a smaller scale

N
factor s1a ~ 0.001).

Polarization for = p = pn_ at 6 GeV/c [data from Ref. 29)7]-

do/du for = p — m° at 5.9 GeV/c and 10.1 GeV/c and predicted
curve at 40 GeV/c [data from Ref. 30) 7.
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Predicted charge-exchange polarization in the backward direction

at Piap = 6 GeV/c.

at 5.9 GeV/c

The modulus squared of the isospin + amplitude on

[data quoted in Ref. 16)].

N , b, interference at 5.9 GeV/c [data quoted in Ref. 16)].
(03

The t-dependence of our amplitudes for = p - =°n (0 exchange)
at py_, = 6 GeV/c. Solid (dashed) curves for real (imaginary)

parts.

The t-dependence of our amplitudes for m p — m (A2 exchange)
and py_, =6 GeV/c. Solid (dashed) curves for real (imaginary)
part.

Na s-channel heiicity amplitudes evaluated at 6 GeV/c. Solid

(dashed) curves for real (imaginary) parts.

Ag s-channel helicity amplitudes evaluated at 6 GeV/c. Solid
(dashed) curves represent real (imaginary) parts. The solid

points represent Re Mﬁ obtained by Ferro Fontan17).

Hankel transform of p amplitudes in arbitrary units versus the
impact parameter in fm. The solid (dashed) lines represent

the real (imaginary) parts.

Hankel transform of A2 amplitudes versus the impact parameter
in fm. The solid (dashed) lines represent the real (imaginary)

parts. The solid points are the imaginary parts of p amplitudes.

Hankel transform of N amplitudes. Solid (dashed) lines repre-
(¢4 .
sent real (imaginary) parts.

Same as Fig. 22, but for A, amplitudes.
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