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ABSTRACT

New differential cross-section data
for K'n-> k% and Kp - R°n at 4 GeV/c are
studied. The SU(3) octet sum rule is well
satisfied and the p quantum number exchange
is shown separately +to obey SU(B) well. The
observed breaking of line-reversal equality is
shown to be too big to be accounted for by the
s channel helicity mnon-flip amplitudes alone,
and a possible mechanism of exchange-degeneracy

breaking in the flip amplitude 1is pointed out.
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Counter measurements of differential cross-sections G(Ki) for the
Kiﬁ charge-exchange (KiCEX) reactions K'n - Kop and K p — Kon at
Py = 3,4,6 GeV/c have become available recently 1>. The KibEX processes
are connected by line-reversal and proceed by exchange of p and A2 quantum
numbers. The new data represent the first detailed study of both reactions in
one experiment. Consequently they offer the possibility of a realistic analysis
of exchange-degeneracy (EXD) breaking and related questions - an analysis less
plagued than usual by doubts about relative normalizations.

The majority by a factor of more than two of the KiCEX events 1)

is at 4 GeV/c, and so we concentrate at this energy. Figure 1 shows
O:E - K ) 0-<P< ) (1)

as a function of +t. Measurements at two of the t values are adjusted within
their errors to make them more consistent with smooth extrapolations through
neighbouring values ; the results are not sensitive to-this.

2)

Also shown in Fig. 1 is the well-known combination

S,z = {a(r)+ 30‘(7}) (2)

of differential cross-sections for T p — ﬂon, nn  interpolated from data at

3) 4) 5)

3.7 , 4.0 , 3.67, 3.8, and 4.83 GeV/c. The good agreement

0"_"_:0; (3)

is evidence that at this energy, whatever combination of Regge poles and cuts
constitute p and A2 exchange, each obeys SU(B) octet symmetry in coupling

to two pseudoscalar mesons .
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)2 satisfaction of Eq. (3)

In fact for -0.052> 1t > -0.4 (Gev/c
tests SU(3) for only the dominant flip amplitude. Figure 2(a) illustrates

this point, showing the decomposition
()= Ont o (4)

of the T p CEX cross-section into s channel helicity flip (OF) and non-
flip (ON) components according to a typical analysis of T p > m™°n  with

finite-energy sum rule (FESR) constraints 6 .

For the p exchange a more detailed test of su(3) is possible.
The prediction for the amplitudes is that

PN = = p(TN/T (5)

and on this basis Fig. 2(b) compares an effective pole parametrization of
+
p(ﬂN) 6) with recent K N TFESR integrals, evaluated at cut-off

1.5 GeV/c 7). The agreement is excellent in the region of interest,

ALl

Py,
2
-t < 1.1 (GeV/c)“.

A model of EXD p and A2 Regge poles predicts line-reversal
symmetry, O = 0. TLet us now consider the origin of the breaking of the
line-reversal equality (LRB) illustrated in Fig. 1, and seen similarly at
Py, = 3 and 6 GeV/c at a comparable level - i.e., about 30%, measured by
%]c_|/c+ 1). Recall that IRB is observed also in hypercharge exchange (HCEX)
reactions at these energies and apparently up to 14 GeV/c & , although

+
bubble-chamber data for K CEX at 12 GeV/c are consistent with o =0 9).

In each case, at any rate at smaller |tl, we have

T(Reat) > o (Rotating) (6)

in the EXD Regge pole language, which here means O < 0.



A widely-advocated model of amplitude systematics generates LRB
through effects in s channel helicity non-flip amplitudes. Single flip
amplitudes are supposed to be correctly described by simple EXD Regge poles,
or equivalent dual absorptive terms [for reviews and references, see, e€.g.,

Ref. 10)]. The origin is the empirical features of TN scattering where the
flips amplitude p+_(ﬂN) is accurately Regge pole-like at current energies 11).
The success of SU(B) [Eqs. (3) and (5)] strongly suggests similar Regge

behaviour for p+_(KN).

However, evidence fir the state of the A2 single flip is unclear.
Model fits to older data on K CEX and to related processes [reviewed in,
e.g., Refs. 10) and 12)] are consistent with Regge pole-like, EXD, SU(3)
symmetric flip amplitudes. But the FESR for KiN, while as we see [Fig. 2(b) ]
giving impressive confirmation for the p, predict an A2 exchange which is
completely different - at any rate near the upper end of the phase-shift region,
Py R 1.5 GeV/c 7). For the SU(3) related K%,T exchanges the available FESR
results are not completely consistent 13), but (with some symmetry breaking)
the LRB in the non-flip-dominated HCEX reactions is naturally accommodated

within the scheme 8 .

In resonance production reactions where single-flip dominance is
indicated, Fox and Quigg 10 have emphasized the lack of evidence for smaller

LRB in flip than in non-flip, but here relative normalization is a big difficulty.

A feature of the newer and more accurate KiCEX data in Fig. 1 is
the large size of 0 with its suggestion of a turnover near t = 0. With
over-all flip dominance expected, the immediate suspicion is that, contrary to
the above popular model, LRB here is not confined solely to the non-flip ampli-

tude. Confirmation of this suspicion is immediate, as follows.

+
Using the SU(3) relation Eq. (5) established by the X N FESR
to calculate p(KN) (both flip and non-flip), the data O, determine the A,

non-flip amplitude T in modulus and phase, under the model assumption that

the A2 flip amplitude is a simple Regge pole-like term, EXD with p+_.

If the common p-A, EXD Regge pole trajectory is o(t), we obtain

the equations

0o, - |TI"+ $0 * G'F/(,{-mm() ) (7)



O = @C_‘;~[T,'W9’ ()

where ON and OF are T p CEX non-flip and flip cross-sections as in Eq. (4).

By hypothesis, p and Agd.are orthogonal in s channel helicity flip and so

do not contribute to o . Through Eq. (7, o, determines |T|. Then from
Eq. (8) the LRB ©_ gives the projection of T onto p  , measured by

cos®. There is a two-fold ambiguity in the solution since cos8 = cos(-e).

Figure 3(a) shows |T| as a function of + for two typical choices
of olt) 6)’”)’14). The solution is sensitive to o(t) which vanishes near
t = -0.55 (GeV/c)z. This is the only place where possible p' terms are
important in the flip amplitude. As a result, we find large uncertainties
at t = -0.45 (GeV/c)2 and -0.55 (GeV/c)2, although the solution on each
side interpolates smoothly. In Figure 3(a) [as in Fig. 2(a)] oy and oy are
calculated from the fit of Ref. 6) but other comparable fits [e.g., 14)] to
m p CEX give almost identical results. Thé error bars correspond to those on

+
the K CEX data 1). The dip-bump structure near t = -0.1 to -0.2 (GeV/c)2

and rapid rise of O with increasing 't

is caused by the rapid drop of © 7

.

N

In Fig. B(b), where cos® 1is plotted, the failure of the model is
evident - over a range of 1, |cosel is bigger than unity. The SU(B)

assumption is tested, and credible minor adjustments to ON and © and

’
indeed to a(t), do not save the situation *). The LRB shown by tie data is
too big to be explained by the model, i.e., by non-flip amplitudes alone.
Moreover, the discrepancy in Fig. B(b) is largest where the flip amplitudes
are largest [compare, e.g., Fig. Z(a)]. Therefore, it is reasonable to infer

+
that in K CEX at 4 GeV/c, contrary to popular belief, there is a substan-

tial breaking of EXD between the p and A2 in the s channel helicity flip
amplitude.

*)

E.g., at t = -0.25 (GeV/c)z, for o(t) = 0.55 + t, to reduce |cos9|
from 2.4 to 1.0 requires ]le > 0+ ; or else an increase of oy by a

factor of about 6 to 8.
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The present analysis offers no direct clues to the mechanism of
flip EXD breaking. The size of flip correction necessary between
t o -0.1 (GeV/c)® and t m -0.4 (Gev/c)2 can be bounded by assuming it to
be (anti) parallel to the EXD term, when an effect of order 15% in amplitude

is estimated.

)

show standard Regge pole energy-dependences for the dominant flip amplitudes

and () 16)

One notes that high-energy measurements of U(H) 15
in 0>t z -0.5 (GeV/c)2, consistent with parallel p and A2 trajectories
in this region, where the A2 is displaced downward by Ao x~ 0.1 or so.

Such an "o breaking" of pole EXD gives the obtuse angle between p and
A flip components necessary for O _ < 0, and gives the order of magnitude

2
about right 17).

With this mechanism the flip part of the LRB ¢_ then vanishes
at t =0 and t x~ -0.55 (GeV/c)Q. It is interesting to note here that,
according to Fig. 1, @_(t=0) is roughly the same size as
o (t x -0.55 (GeV/c)Z). The mechanism also predicts a persistent effect at
nigh energies in 'S CEX, and, with a phase for T closer to EXD (& > 0)
it contributes to polarizations small and negative in K p — Kon, and larger

and positive in K'n - Kop. This agrees with available data 18) and other

19)

indications

. +
To summarize, some immediate features of accurate new K CEX

data at p; = 4 GeV/c are as follows.,

(i) They are consistent with Su(3) octet symmetry for helicity flip p
and A2 quantum number exchange. There is new separate evidence from
FESR for SU(3) couplings of the p quantum number in both flip and
non-flip.

(ii) The sizeable breaking of line-reversal symmetry is not consistent with
the standard model which blames the s channel helicity non-flip ampli-
tude while supposing that the flip amplitude is EXD and Regge pole-like.
A model of o broken EXD poles may work for the flip amplitude.

1)

statistics and larger errors rendering conclusions correspondingly less
certain. The satisfaction of the SU(3) sum rule Eq. (3) 2 is good at
6 GeV/c but poorer at 3 GeV/c. The success of Eq. (5) points to the A,

Data at 3 and 6 GeV/c from the same experiment have lower
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as the culprit, consistent with the anomalous A2 FESR results 7). A

o)_

detailed analysis of A2 exchange will be presented elsewhere
We conclude with the traditional plea for more accurate data.

+
K CEX polarizations near 4 GeV/c to complement the cross-sections are

obviously of prime interest.
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FIGURE CAPTIONS

Fig. 1 : Cross-section combinations o4 defined in Egs. (1) and (2)
plotted on a linear scale against t.
As described in the text the data are smoothed : at
t = -0.04 (C—eV/c)2 the value of o(K~) 1is decreased to the
limit of its quoted experimental error, and G(K+) is similarly
increased ; at 1t = -0.45 (GeV/c)2 o(K+) is increased to its
upper error limit. Included are values of o defined in Eq. (2)

to test the Barger-Cline sum rule, Eq. (3).

Pig. 2 : (a) Cross-section components oy and o, defined in Eq. (4),

plotted on a linear scale. From Ref. 6).

(v) Comparison between FESR integrals (bands) for p quantum
number exchange in KiN scattering [from Ref. 7)] and the
high-energy contribution (dashed line) of Regge p ampli-
tudes for mN scattering [from Ref. 6)] scaled by the SU(3)
factor -1/4/2 as in Eq. (5). Precisely, the amplitudes
whose imaginary parts are integrated are (in the usual nota-

tion) LI A+ VB, p, ~ A, and units are # =c = GeV = 1.

+ -
See Ref. 7) for full details.

Fig. 3 : (a) Values of |T| for two choices of o(t). The trajectory
a(t) = 0.5 + 0.9 t reproduces well the phase of P, at
P, = 6 GeV/c [see Fig. 4 of Michael's Oxford Conference
talk, Ref. 10)], and aft) = 0.55 + t is the p pole

trajectory used in FESR fits, Refs. 6) aad 14).

(b) Values of cos® Tor the same two choices of o).

In both cases, points are joined by hand-drawn curves.
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