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Abstract. Hadron colliders can provide important tests of BFKL ‘small-x’ dynamics.
We discuss two examples of such tests, the inclusive dijet jet cross section at large
rapidity separation and the number of associated ‘mini-jets’ in Higgs boson production.

1. Introduction

There has been considerable interest in recent years in QCD scattering processes in the

so-called ‘high-energy limit’, i.e. processes in which s� |t| � ΛQCD. The corresponding

cross sections are controlled by BFKL dynamics [1, 2], in which large ln(s/|t|) logarithms

arising from soft and virtual gluon emissions are resummed to all orders in perturbation

theory. In the leading logarithm approximation, the energy dependence of the cross

section is controlled by the (hard) BFKL pomeron: σ ∼ sλ with λ = αs12 ln 2/π.

The paradigm BFKL process is deep inelastic scattering at small Bjorken x, for

which t ∼ −Q2, s ∼ Q2/x. Resummation of the leading αs ln(1/x) logarithms leads to

the characteristic F2 ∼ x−λ behaviour for the structure function as x → 0. However

it has proved difficult in practice to disentangle BFKL and ordinary DGLAP physics

at currently accessible x and Q2 values. One is then led to consider whether hadron

colliders such as the Tevatron and LHC can offer a more definitive test of BFKL small-x

dynamics.
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It was first pointed out by Mueller and Navelet [3] that production of jet pairs

with modest transverse momentum pT and large rapidity separation ∆y at hadron

colliders would be a particularly clean environment in which to study BFKL dynamics.

At asymptotic separations the subprocess cross section is predicted to increase as

σ̂jj ∼ exp (λ∆y).

To understand the special features of BFKL dynamics, it will be essential not

only to study such fully inclusive cross sections, but also to investigate the structure

of the associated final states. For the large ∆y dijet cross section, for example, one

expects an increasingly large number of ‘mini-jets’, with transverse momenta of order

pT , produced in the central region. More generally, one can use BFKL dynamics to

predict the expected number of such mini-jets in any small-x hard scattering process at

hadron colliders.

In this note we discuss two tests of BFKL dynamics at hadron colliders: the inclusive

dijet cross section and the associated multiplicity of mini-jets in Higgs production.

2. Dijet cross sections at large rapidity separation

We wish to describe events in hadron collisions containing two jets with relatively small

transverse momenta pT1, pT2 and large rapidity separation ∆y ≡ y1−y2. Defining ∆φ ≡
|φ1 − φ2| − π to be the relative azimuthal angle between the jets, the leading-logarithm

BFKL prediction for the (gg) subprocess cross section integrated over pT1, pT2 > pT is

dσ̂gg

d∆φ
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where ψ is the digamma function. The total subprocess cross section, and its

corresponding asymptotic behaviour, is then [3]

σ̂gg =
9α2

sπ

2p2
T

C0(t) , C0(t)




= 1 for t = 0

∼
[

1
2
π7ζ(3)t

]−1/2
exp(4 ln 2 t) for t→∞ (3)

from which we see the characteristic BFKL prediction of an exponential increase in the

cross section with large ∆y. It can also be seen from (1) that the average cosine of the

azimuthal angle difference ∆φ defined above is proportional to C1(t). In fact we have

〈cos ∆φ〉 =
C1(t)

C0(t)
(4)

and as we shall see below, this falls off with increasing t.

Unfortunately the increase of σ̂ with ∆y disappears when the subprocess cross

section is convoluted with parton distribution functions (pdfs), which decrease with
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Figure 1. BFKL and asymptotic QCD leading-order dijet production cross sections
at the LHC (

√
s = 14 TeV) as a function of the dijet rapidity separation ∆ ≡ ∆y.

The three curves at each transverse momentum threshold use: (i) improved BFKL
MC with running αs (solid lines), (ii) leading-order BFKL (dashed lines), and (iii) the
asymptotic (∆y � 1) form of QCD leading order (dotted lines).

∆y more rapidly than σ̂ increases. This is illustrated in fig. 1. The subprocess cross

section rise at large ∆y becomes a shoulder in the hadron-level cross section, whose

exact shape depends on the (large-x) form of the pdfs. To avoid this pdf sensitivity, one

can study [4, 5] the decorrelation in ∆φ that arises from emission of gluons between the

jets; BFKL predicts (see eq. (4)) a stronger decorrelation than does fixed-order QCD,

and this prediction should be relatively insensitive to the pdfs.

In practice it is not useful to compare analytic asymptotic BFKL predictions

directly with experiment because nonleading corrections can be large. In particular,

in the analytic BFKL calculation that leads to (1,2) above, gluons can be emitted

arbitrarily, with no kinematic cost, and energy and momentum are not conserved. In

Ref. [6] (see also [7]) a Monte Carlo approach is used in which the emitted gluons are

subject to kinematic constraints (i.e. overall energy and momentum are conserved), and

other nonleading effects such as the running of αs are included. Kinematic constraints

are seen to have a significant effect, suppressing the emission of large numbers of

energetic gluons. The effect is clearly visible in fig. 1 (solid lines) [8], where the

‘improved’ BFKL calculation actually gives a smaller cross section than that at lowest

order. This is due to the sizeable increase in ŝ, and hence in the large ∆y pdf suppression,

due to the emitted BFKL gluons.

The azimuthal decorrelation is also weaker in the more realistic BFKL calculation.

This is illustrated in fig. 2, where we show [8] the mean value of cos ∆φ in dijet production

in the improved BFKL MC approach (upper curves). The jets are completely correlated
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Figure 2. The azimuthal angle decorrelation in dijet production at the Tevatron
(
√

s = 1.8 GeV) and LHC (
√

s = 14 TeV) as a function of dijet rapidity difference ∆y.
The upper curves are computed using the improved BFKL MC with running αs; they
are: (i) Tevatron, pT > 20 GeV (dotted curve), (ii) LHC, pT > 20 GeV (solid curve),
and (iii) LHC, pT > 50 GeV (dashed curve). The lower curves are for dijet production
in the process qq → qqH for pT > 20 GeV (solid curve) and pT > 50 GeV (dashed
curve).

(i.e. back-to-back in the transverse plane) at ∆y = 0, and as ∆y increases we see the

characteristic BFKL decorrelation, followed by a flattening out and then an increase

in 〈cos ∆φ〉 as the kinematic limit is approached. Not surprisingly, the kinematic

constraints have a much stronger effect when the pT threshold is set at 50 GeV (dashed

curve) than at 20 GeV (solid curve); in the latter case more phase space is available to

radiate gluons. We also show for comparison the decorrelation for dijet production at the

Tevatron for pT > 20 GeV. There we see that the lower collision energy (1.8 TeV) limits

the allowed rapidity difference and substantially suppresses the decorrelation at large

∆y. Recent measurements of the dijet decorrelation by the D0 collaboration [9] at the

Tevatron are in reasonable agreement with the improved BFKL parton-level predictions.

Note that the larger centre-of-mass energy compared to transverse momentum threshold

at the LHC would seem to give it a significant advantage as far as observing BFKL effects

is concerned.

The lower set of curves in fig. 2 refer to Higgs production via the WW, ZZ fusion

process qq → qqH , and are included for comparison [8]. This process automatically

provides a ‘BFKL-like’ dijet sample with large rapidity separation, although evidently

the jets are significantly less correlated in azimuthal angle.
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3. Associated Jet Multiplicities in Higgs Production at the LHC

One important aspect of the final state at the LHC is the number of mini-jets produced.

By mini-jets we mean jets with transverse momenta above some resolution scale µR which

is very much smaller than the hard process scale Q. Then the mini-jet multiplicity at

small x involves not only ln x � 1 but also another large logarithm, T = ln(Q2/µ2
R
),

which needs to be resummed. The results derived in [10, 11] include all terms of the form

(αS ln x)nTm where 1 ≤ m ≤ n. Terms with m = n are called double-logarithmic (DL)

while those with 1 ≤ m < n give single-logarithmic (SL) corrections. In the calculations

the BFKL formalism [1, 2] has been used, but the results are expected to hold [12] also

in the CCFM formalism [13, 14, 15, 16] based on angular ordering of gluon emissions.

In order to find r(x), the mean number of resolved mini-jets as a function of x, it

is convenient to compute first the Mellin transform of this quantity

rω =
∫ 1

0
dx xω r(x) . (5)

We find [11]

rω = − 1

χ′

(
1

γL

+
χ′′

2χ′
+ χ

)
T − 1

2χ′
T 2 (6)

where γL is the Lipatov anomalous dimension which solves

ω = −ᾱS [2γE + ψ(γ) + ψ(1− γ)] ≡ ᾱS χ(γ) . (7)

Here ᾱS = 3αS/π, ψ is the digamma function and γE the Euler constant. In eq. (6), χ′

means the derivative of χ(γ) evaluated at γ = γL. The corresponding expression for the

variance in the number of jets, σ2
ω ≡ r2

ω − r2
ω, is more complicated, see [11].

To invert the Mellin transform (5), we can expand eq. (6) perturbatively as a series

in ᾱS/ω and then invert term by term using

1

2πi

∫ 1
2
+i∞

1
2
−i∞

dω x−ω−1
(
ᾱS

ω

)n

=
ᾱS

x

[ᾱS ln(1/x)]n−1

(n− 1)!
. (8)

The factorial in the denominator makes the resulting series in x-space converge very

rapidly. It is then straightforward to compute the mini-jet multiplicity associated with

pointlike scattering on the gluonic component of the proton at small x using

n(x) =
F (x,Q2)⊗ r(x)

F (x,Q2)
(9)

where F (x,Q2) is the gluon structure function and ⊗ represents a convolution in x.

As an application of these results, we can compute the mean value N and the

dispersion σN of the associated (mini-)jet multiplicity in Higgs boson production at the

LHC, assuming the dominant production mechanism to be gluon-gluon fusion. At zero

rapidity we have gluon momentum fractions x1 = x2 = x = MH/
√
s where MH is the

Higgs mass, and N = n(x1) + n(x2) = 2n(x). Similarly σ2
N(x) = σ2

n(x1) + σ2
n(x2) =

2σ2
n(x).
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Figure 3. The mean value and dispersion of the number of (mini-)jets in central
Higgs production at LHC for two different resolution scales µR. Solid lines show the
SL results up to the 15th order in perturbation theory, dashed lines correspond to the
DL approximation.

The results are shown in fig. 3. We see that in this case the DL results give an

excellent approximation and the SL terms are less significant. The mini-jet multiplicity

and its dispersion are rather insensitive to the Higgs mass at the energy of the LHC.

The mean number of associated mini-jets is fairly low, such that the identification of

the Higgs boson should not be seriously affected by them.
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