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1 Introduction

Duality between large N el theordies on D 3{branes placed at conical singularities and
Type IIB theory com pacti cations on a 5d m anifold have been the sub fct of m any in-
vestigations in the last couple of years [[H] (for a rewiew see []). In particular, n [{]
an N = 1 superconform alYang{M ills eld theory hasbeen constructed which tumed out
to be dual to Type IIB theory com pacti ed on the T = SU (2)?=U (1) m anifod. Sold
evidence on such duality was developed in [§,[],[d1and in [§], where a one{to{one corre-
spondence was established between theK aluza{K lein (KK ) supergravity spectrum on T *
fLd] and the boundary superconform al operators. In the case of M 2 and M 5 branes the
AdS=CFT confcture was rst studied form axim al supersym m etry in com pacti cations
on spheres S’ and S* [11,[13,[13]and then further extended to lower N for sphere-orbifolds
and other brane system s [[4,[3].

In [14]the question was raised whether one could sin ilarly construct a SuperC onform al
Field Theory (SCFT) in three dim ensions which is dual for large brane- ux N to M {
theory com pacti ed on AdS, M- [4,[[1,[[§], where M ; is one am ong the com pact
E instein m anibds that were classi ed [[9] and analysed in the eighties B4, P1]. Such
three{din ensional SCFT ’'s would then be de ned as the conform al lim it of the world{
volum e theory of N M 2{branes positioned at a conical sinqularity of M 3 Y5, where Yg
is the cone over M .

T hreedin ensional SCFT 's arem ore di cult to analyze because they em erge in non-
perturbative lin it of conventional gauge quantum eld theories. T he origin of thisdi —
culty iswell known, and can be traced back to the fact that the three dim ensional bare
gauge coupling constant is din ensionfiil, so that a conform al description of the theory
dual to supergravity is only possible in the infrared lim it, w here the gauge coupling blow s
up and the gauge elds are integrated out.

In this regim e, the SCFT is described as the low energy theory of N coincident M 2{
branes,where N is the num ber of units of ux of the dualof the eleven {din ensional four{
form on the Intemal m anifold M ;. Thdeed, com pacti cations of M {theory on a circle
lads to a D 2{brane description in type ITA theory whose world{volim e gauge theory
is not conform al and whose near horizon geom etry generically is not AdS (19,23, B1.
The superconform al description is recovered in the strong coupling lin it of type IIA
decom pacti cation, when g%, >> N2, u<< g?, ,where g%, = g;.N=u [§]land u is the
energy scale. W hen the radius of the circle goes to In nity, the gauge coupling also blow s
up and we reach theM 2{brane description in the infrared of the three{din ensional gauge
theory. Its relevant degrees of freedom are given In temm s of the d=3 chiral m ultiplets
and are related to the KK excitations of d = 11 supergravity. V ice{versa, jfgéff 10
and u! 1 ,we aredescribing the ultraviolet lim it of the d= 3 Yang{M ills theory (for a
thorough discussion of the above considerations see [13,[23,4)).

It is also in portant to observe that, although the d = 3 ultraviolet gauge theory has



both a Coulomb and a H iggs branch, n the AdS,=C F T3 correspondence one ismanly
Interested in the Higgs branch, param etrized by the vev’s of the scalars of the chiral
m ultiplets. The Coulom b branch scalars, belonging to the vector m ultiplets, are excluded
since their vev’s can be safely put to zero.

n 3]by a thorough study of the KK excitationsand O Sp(4) multiplets P4]on the
MM =5U@) SUER) U@L)=SU(ER) UML) U@ RFland Q! = sU (2)°=U (1)* 4]
m anifolds, the relevant N = 2 SCFT ’'s have been constructed on the basis of the m ass
Soectrum , and con Ectured to be dualto M —theory com pacti cations.

In the above construction, it was in portant that both M *** and Q **! adm it a descrip-
tion in term s of toric geom etry 7). This allowed to identify the fiindam ental degrees
of freedom of the underlying SCFT and thus to nd the abelian gauge theories, whose
m oduli space of vacua (the H iggs branch com ponent) is isom orphic to the conifolds over
the two seven {m anifods.

T his paper analyses the case of M {theory com pacti ed on the real Stiefel m anifold
Vi) SO (5)=S0 (3)with SO (3) canonically enbedded in SO (5). T he relevant four-old
cone whose base isV (s, was denti ed in {1

T he Stiefel m anifold is peculiar am ong the E instein spaces leading to N = 2 super-
symm etry in that it does not adm it a toric description 27]. Nevertheless, we shall see
that it ispossible to build up the single brane (N = 1) theory and to conpcture itsN > 1
extension by perform ing the follow ing steps.

W e rstanalyse the fullKK m ass spectrum and O Sp(23#) superm ultiplets for theV 5
m anifold: this is in com plete analogy with the procedure in ] for T and in 23, 23]
for som e M ~theory exam ples. A relevant point of our analysis w ith respect to B3] 1s the
absence of Bettim ultiplets since there are no non{trivial Bettinum bers on Vs,

b= 0; p= 1;:::;6; by==1: (1.1)
T hus, there is no continuous baryonic symm etry £,29,19,8,[J] in the corresponding
SCET.

T he second step is to construct adm issible superconform al boundary operators to be
put in dual correspondence w ith those KK superm ultiplets undergoing shortening when
the required unitarity bounds on the O Sp(4}) representations are saturated. To arrive
to a well founded con pcture for the SCFT operators, we are guided by the consideration
of the classical equation describing the eight din ensional cone Yg over Vs, . It tums out
that the solution of the cone equation [3]

X4
72 =0 (12)
can be obtained In the sim plest way by use of the so called P lucker em bedding, where
beside the pfa an dentity on the coordinates p;; = py; (where i;j are indices In the
fundam ental representation of Sp(4) SO (5))

e pip = 0 (1.3)



one also uses the traceless constraint

C Ppy = 0: (14)
Asshown In 23], the solution to ([L3) can be given as

Pij = ApB gyt (1.5)

In the present case,we nd that one can w rite the coordinates param etrizing the cone Ygq
as the bilinear

zt= A $BY; (16)
where A, B! are in the 4 of Sp(4) SO (5) and 3, are the gamm a matrices n  ve
din ensions. The vanishing of a SU (2) D {tetm xes the residual SL (2;C ) invariance
of equations () and ([ 4). The above solution (I.4) is obtained by a procedure quite
analogous to that em ployed In [§]to solve the cone equation on T in termm s of two ob fcts
A1, B® belonging to the representation (1=2;0) (0;1=2) of SU (2) SU (2). There, the
analogous of SL (2;C ) invariance was given by equation (13) of E], nam ely invariance
under com plex rescalings.

T his discussion gives us a little but usefill inform ation on the gauge group G of the
theory in the ultraviolet regim e. M ore precisely, since the equation for the vanishing of the
D {tem sis SU (2) valued, the gauge group should reduce to SU (2) fora singleM 2{brane
at the conical singularity. T hen, in virtue of the fact that the conifold coordinate z* does
Indeed appear in the KK spectrum and isa gauge singlet, we arrive at the conclusion that
forN > 1 thebasic sihglkton S, , ransform Ing in the 4 of SO (5),must be In a pseudoreal
representation of G labeled by the index . A Dbeit this requirem ents could be satis ed by
several groups, we are led to confcture the sin ple choice G = USp(2N ) O (2N 1),
where the index of S; belongs to the bifundam ental representatjonﬂ ofG.

Once we have som e 0lid base for the choice of the basic degrees of freedom 1n the
dual three{dim ensional N = 2 SCFT , we can perform the last step and show that it is
possible to construct a com plete set of conform alprim ary operatorsm atching all the KK
m ultiplets previously obtained.

In establishing such correspondence we llow the procedure already em ployed in ]
or the T case. In particular we nd that, as for T, there are Jong multiplets w ith
rational protected din ensiond].

It is Interesting to note that since in the infrared lim it the gauge eld is Integrated
out, one m ay expect that it should be related in the SCFT to som e com posite ed in
term s of the singlkton S; . In fact we nd in the gravitino sector a com posite eld X
obeyingD X = Owhose com ponenﬁ has the right quantum num bers of a gauge ed,
being a singlet of the avour group SO (5) and having R {symm etry y = 0.

4Indeed such gauge group appear in the context of orientiHd m odels ].

5 The sam e feature was also und in E}.

% For three{din ensional super elds we de ne: = 14y4i2, = ! 1i?.Conformaldinensions
and R {symm etry y quantum numbersare ( = 1=2;y= 1) for and ( = 1=2;y= 1) for



In the rest of the paper, section 2 brie y dealsw ith the hamm onic analysis on the Stiefel
m anifold while section 3 contains the results on the fullm ass spectrum and its assem bling
Into O Sp(dR) supem ultiplets, w ith particular em phasis on the shortening pattems due
to saturation of unitarity bounds.

Section 4, relying on the solution of the conifold equation, proposes a candidate for
the classical N = 1 theory which is supported by the condition of vanishing D {tem s. T he
N > 1 extension is then conpctured to be related in the ultraviolet to a gauge theory of
D 2-branesgiven by the product of two non {sim ply Jaced groupsG = USp(2N ) O (2N 1)
with chiralmultiplet S; transform ing In the sphor representation of the avour group
SO (5) and In the bifundam entalofG.

Som e considerations are also given on the possible existence of a superpotential, at
Jeast in the N = 1 case. In section 5, after a short sum m ary of the conform al operators
related to the shortenings ofK K representations, we construct a set of conform aloperators
which can be put in correspondence w ith the various supem ultiplets. Finally, we give a
summ ary of our result in Section 5 while som e of the m ore technical aspects regarding
useful tools for the harmm onic analysis are contained in two appendices.

2 Them ass spectrum o0fV gy,

Ham onic analysis on the coset space V sy, SO (5)=S0 (3) yields the com plete m ass
soectrum , which as in the other N = 2 supersymm etric com pacti cations, is arranged
into O sp(4P) representations. Referring to [[J] and references therein for the relevant
details conceming ham onic expansion on a generic coset m anifold, we give below the
essential ingredients for carrying out the com putations and collect our results in tables
for the various superm ultiplets.

A s Ih any KK com pacti cation, after the linearization of the equations of m otion of
the ed uctuations, one is left with a di erential equation on the eleven {dim ensional

fJg .
elds [1;2;3](X’y)
£J9 | malai2izly £99 Y= O-
(2X + Yl ) [1;2;3](X’y)_ 0: @.1)
Here the ed ¢ (x;y) depends on the coordnates x of AdS, and y of Vs, and

[17273]

transform s irreducibly in the representations fdg of SO (3;2)and [ 1; 2; 3]ofSO (7). 24
is the kinetic operator fora eld of quantum numbers fJg f ;sg In four{din ensional
AdS space and K, is the Laplace{Beltram ioperator fora eld of spin [ 1; 2; 3]In the
Intermal space V(5. (In the ollow ing we m ostly om it the index £Jg on the elds. The
symbol[ 1; 2; 3]denotesthequantum numbersofthe SO (7) representation in the Y oung
tableaux form aliam .)

M ore speci cally, one expands the d = 11 supergravity elds [ ;,; ,;(X;y)==fh,,
Agpar ag (@@= (a; )ya= 1;:::34, = 1;:::;7) In the ham onics of V5 transform ing
irreducibly under the isom etry group of V(s»), and com putes the action of K, on these



ham onics. T he elgenvalues are sim ply related to the AdS m ass.
T he tw o necessary Ingredients in this com putation are the geom etric structure and the
harm onics of the coset space.

G eom etry

W egive here a briefdescription of the essential geom etricalelem ents of the Stiefelm anifold
such as the m etric and the R Jamm anian curvature, that are used to build the invariant
Laplace{B eltram i operators.

W e ram ind that the Stiefel m anifold, beside SO (5), has an extra isometry SO (2)
that can be dentifyed w ith the R {symm etry group [L9]

SO (5) SO (2k
SO (3) SO (2)

© Visg) ; (22)
q ;
w here the em bedding ofthe SO (2)y Into SO (5) SO (2)z isdiagonaland the em bedding
of SO (3) in SO (5) is the canonical one, nam ely the fundam ental of SO (5) breaks under
SO (3)as5! 3+ 1+ 1 (other enbeddings yield di erent inequivalentM ; with N & 2).
Wecall ; = 1;:::5the SO (5) Indices, I = 1;2;3 the SO (3) ndicesand A = 1;2
the SO (2) ones. The ad pint generators of SO (5) and SO (2)r ' U (1) are respectively
T ;0.
The SO (5) algebra is

r ;T 1= T + T T + T (2.3)
which m eans that our generators In the vector representation are (T ) = 2
For the canonical em bedding of SO (3) n SO (5), = (I;A),we can de ne Jg

% k 1717 as the SO (3) generators and N T4s+ U asthe SO (2)y generator. T he coset
generators are given by Tia (Tp 7Tw ) m ;= 1;2;3),T; Ty UL

Since the vielbeins are cosset{algebra valued, we use the sam e convention for labelling
the viebein directions in the coset space.

G Iven the structure constants C %, of the coset, the R iam ann tensor isde ned by the
formula

1 r(d)r(e 1 .
R%me = ZC peC Cde(r;() EC "piC ger@)r(e) +

1 1
écacdccbe'l' écaceccbd; (24)

whose derivation we give In Appendix A . Here we sin ply point out that the r(a) are the
rescalings of the viebeins needed to cbtain an E instein space and that the C %, are certain
gpoeci ¢ com binations of the structure constants.



W e have in posed(]

to obtain R, = 126 2. W ith such rescalings (2.3), we obtain

R"Ma = R"gy= %2 k1 (2.6)

R% % = 2 K1 (2.7)
3

R"p = gmn k27 (2.8)

R™,, = R™Mpy=2": (2.9)

T he harm onics

T he ham onics on the coset space Vs, are labelled by two kind of indices, the rst giving
the speci ¢ representation of the isom etry group SO (5) Uy (1) and the other referring to
the representation of the subgroup H SO (3) SO (2). The ham onic is thus denoted
by Y(;HM ;N’Q )(y),whereM N are the quantum num bers of the SO (5) representation, Q is
the Uy (1) charge and ¢y are the H {quantum num bers.

The above results mply that an SO (7) ed (,;,;,1(X;y) can be splitted into the
direct sum ofH irreducible fragm ents labelled by ¢ . T he analysis of the reduction of the
SO (7) representation under the H group reported in A ppendix B, yields that the vector

and gpinor SO (7) representations break as

! 31 31 lo;

.
(2.10)
8 ! 312 3122 1z 1 39;

and by taking suitable com binations one can also derive all the other tensor decom posi-
tions.

Thegeneric ed (., ,;,,(X;y) can then be expanded as follow s
X X (im )
a]o:::(xl.Y)= ( )ym )(X)Yab::: (Y); (2-11)
() @m)
where a;b;:::are SO (7) tensor (or spinor) indices of the representation [ 1; 2; 31, ( ) is

a shorthand notation for M ;N ;Q ) and m Jlabels the representation space of M ;N ;0 ).
O f course, not all the hamm onics are allowed In the () expansion, as the irrepses
of SO (7) appearing in (2.11) m ust contain, once reduced w ith respect to H , at least one

7 N ote that there is an am biguity in the sign of the rescalings, since the E instedn space requirem ent on
the curvature determ inesonly their square. H ow ever, thisam biguity isonly apparent. W hile the partially
re ected solutionsw ith r(a) ! r(a)orr() ! r(b) are perfectly equivalent to ourdescription, a change
in the sign of r(c) in plies that we really re ect the orientation on them anifold and as a consequence we
com pletely break supersymm etry.



of the representations appearing in the decom position of [ 1; 2; s]underH . T his gives
som e constraints on M ;N ;Q which select the allowed representations ().

W e w rite a generic representation of SO (5) in the Young tableaux form alism [ 1; 2 1=
M + N;M ]

| { Hl { }

M N

and Q , the Ui (1) charge, isde ned by the Uy (1) ham onic e
A speci ¢ com ponent of (P.17) can then be written as

alal . )il g]+]..-] ]
515 ...+

where we de ned the Uy (1) xed charge com binations

L1 [4] 13]

soin (x) (x;v) ham onic Koperator SO (7) irrep
2 hap hap Y 2=D D 0,00]
1" |A,, W, hy, A Y 2+ 24 [1,0,0]
1 AN A, Y[ (2 + 40) 2C [1,1,0]
0* SI habrh lAabc Y 2 [0,0,0]
h Yo, | @+40){ ) 4 200]
0 A Yo 1=24 D 1,1,1]
3/2 a a B= 7 [%;%r%]
1/2 L ar 4
; B- 5 Biziz)

Table 1: C orrespondence between 11d and 4d elds and harm onics [B1]

O necan now proceed w ith the KK analysis, In plem enting the above inform ations n all
the Laplace{Beltram i operators and com puting the eigenvalues of the various ham onics
and thus them asses of the KK states.

A Tthough straightforward in principle, this analysis can becom e quite cum bersom e for
som e of the higher spin operators. Lucdkily, it is not really necessary to com plete the
whole task. In fact,due to the N = 2 supersym m etry, this peculiar com pacti cation falls
In the class considered in ], where the O Sp(4R2) multiplet structure was elucidated,
together w ith the m ass values expected for states of given quantum num bers. M ost of
these multiplets can be Iled by using only our results for the sim pler operators, while
the entries in the ram aining slots can be determ ined w ith the help of supersym m etry.



From the scalar, spinor and vector eigenvalues, we have obtained the m asses for all
the graviton and gravitinos and for som e of the vectors, spinors and scalars, which let
us 1l the ve types of supem ultiplets presented In Tables 2{6, with all the shortening
pattems. A prelim Inary analysis of the rank of the two{form m atrix yields that we can
have at m ost two m ore vector m ultiplets, which we guess do not undergo shortening.

Indeed, as in the T*! case [1J,[], all the m ass elgenvalues depend on the G {quantum
num bers only through the function H o, which is the scalar laplacian eigenvalue. For the
Stiefelm anifold, such eigenvalue is given by

32 2 2 2
HoM ;N;Q)=§ oM “+ 9N + 3N “+ 12M + 6M N Q° = (2.12)

Since for a given num ber of preserved supersym m etries, the structure of the linearized
equations, supersymm etry relations and superm ultiplets are xed, we can suppose that
also the mass formulae in term s of H; are universal for all ssven-din ensional N = 2
supersym m etric com pacti cations. By thiswe m ean that not only the num ber and type
ofm ultiplets fordi erent com pacti cationsare the sam e,butalso theH o m assdependence
should be equal.

This is exactly what we nd by com paring our case with the M **!' com pacti cation
P31, and we expect such agreem ent to hod also for the Q' space. O f course, the
shortening pattems as well as the possible presence of Betti m ultiplets w ill be m odel
dependent features, as they derive either from certain functions of H  taking rational
values or from non{trivial Betti num bers of the relevant m anifold. However, In this
respect, the two vectorm ultipletsm entioned before have = 2+ 1P 4+ Hoand = Z+

4

% HoM™M ;N ;0 + %) 28, and satisfy no shortening conditions. T hism akes us con dent

that all the relevant output derived from the supergravity analysis is correct.

3 The AdS; Vg multiplet structure.

W e report below in tables 2{6 the ve fam ilies of supem ultiplets we have found: one
graviton multiplet, two gravitino m ultiplets and two vector m ultiplets.

Each tablkhas wvem ain colum ns. The rstcolum n contains the spin quantum num ber
of the state, while in the second we give its © value. The basic value of assigned
to each multiplet is the one belonging to a vector eld, a spin 1/2 or a scalar for the
graviton, gravitino and vector m ultiplets respectively. In the third colum n we w rite the
R {symm etry of the state where the value y is assigned to the statewith “'= .We
use herey = %Q , sihce this varies in integer steps according w ith the usual convention
on the unit value of the R {charge of the coordinate [2}]. The fourth colmn shows
the speci ¢ eld of the KK gpectrum that is associated w ith the given O Sp(4R) state,
according to the notations of 24]. The fth colum n contains the m ass of the statef] given
In term sof H .

8 W e give the value of the m ass for the ferm jons and the m ass squared for the bosons.



Forgeneric SO (5) quantum num bers and R {sym m etry values, the m ultiplets of tables
2{6 are Jong m ultiplets of O Sp(4R). However, group theory predicts [24] shortening in
corregoondence w ith speci ¢ threshold values of the quantum num bers. T hese give rise
to chiral ( ) multiplets. T he above sym bols appear in the
extra left colum ns to denote the surviving states in the shortened m ultiplets. In absence
of these sym bols no shortening of any kind can occur for that m ultiplet.

), sam i{long (?) orm assless (

[ [ [®n] © [Risymm.| ed | M ass |
2l 2 + 1 y h Ho
2 3/2] +1=2| vy 1 * 6+;I—10+36
?l 3/2 + 1=2 v+ 1 * 6+pH0+36
2| 3/2 | + 3=2 y 1 6 pHO+36
3/2 + 3=2 v+ 1 6 Ho+ 36
2l 1 y A=W |Ho+ 48 8 H,+ 36
1 + 1 v+ 2 7z H + 32
2] 1 +1 y 2 Z H o+ 32
? 1 +1 y Z H (+ 32
1 +1 y Z H (+ 32
1 + 2 y A=W |H o+ 48+ 8 Ho+ 36
1/2 ] +1=2 | y+1 T 2 ;H0+ 36
2| 1/2 + 1=2 y 1 T 2 pI—10+36
/2| +3=2 | y 1 T 2+pHO+36
1/2 | +3=2 | y+1 T 2+ Ho+ 36
0 +1 y H o+ 32
Table 2: Long G raviton M ultiplet = 2+ %pHO+ 36.
[ [on] © [Rigmm.| ed | M ass
? | 3/2 +1 ¥ * 8+11H%+24
2| 1 +1=2 | y+1 |A=W |H o+ 56 12 _H,+ 24
2| 1 +1=2 | v 1 |A=W |H o+ 56 12 Ho+ 24
2 1 +3=2 | yv 1 v4 H o+ 24 4 Ho+ 24
1 + 3=2 v+ 1 z H o+24 _4 Ho+ 24
2| 1/2 y : 8+pLHO+24
2 1/2 +1 y 2 T 4 pHo+24
2| 1/2 + 1 y . 4 pHO+24
1/2 + 1 v+ 2 T 4 pHo+24
1/2 +1 - 4p Ho+ 24
1/2 + 2 y T Ho+ 24
2] 0 +1=2 | y 1 Ho+ 56 12 Ho+ 24
0 +1=2 | y+1 Ho+ 56 12 Ho+ 24
0 +3=2 | y+1 Ho+24 4 Hy+ 24
0 + 3=2 y 1 Ho+24 4 Ho+ 24
P

Table 3: Long G ravitino M ultiplet T




(s)

‘ ‘spjn‘ ‘R{symm ‘ e]d‘ D/Yl\’ass
? | 3/2 + 1 y 8 ~Hy+ 24
2| 1 +1=2 | y+1 Z H o+ 24+ 4 Hy+ 24
2 1 +1=2 | yv 1 z H o+ 24+ 4 Ho+ 24
? 1 + 3=2 y 1 A=W |H o+ 56+ 12 _Hy+ 24
1 + 3=2 y 1 |A=W |H o+ 56+ 12 Ho+ 24
2| 1/2 y T *pHO+ 24
2| 1/2 +1 y 2 T 4+pHo+ 24
2| 1/2 +1 v T 4+pHo+ 24
1/2 +1 y+ 2 T 4+ JHot 24
1/2 +1 v T 4+ Ho+ 24
1/2 + 2 N - 8 Ho+ 24
2] 0 +1=2 | y 1 H o+ 24+ 4 _H,y+ 24
0 +1=2 | y+1 H o+ 24+ 4 Hy+ 24
0 + 3=2 v+ 1 Ho o+ 56+ 12 Hy+ 24
0 + 3=2 y 1 Ho o+ 56+ 12 Ho+ 24

Table 4: Long G ravitino M ultiplet IT

p—
2+ 2 Ho+ 24

‘spjn‘ (s) ‘R{symm.‘ e]d‘ M ass
1 r 1 y  |A=W |H o+ 964 16 H,+ 36
/2| +1=2] v 1 T 6+ Ho+ 36
1/2 | +1=2 | y+1 T 6+ Hy+ 36
1/2 + 3=2 y 1 L 10+ _Hy+ 36
/2| +3=2 ] y+1 L 10+ Hg+ 36
0 y 24+ H o+ 8 _Hy+ 36
0 + 1 y 2 H o+ 96+ 16_H, + 36
0 +1 v HO+96+16pI—10+36
0 +1 v+ 2 HO+96+16pI—10+36
0 + 2 y S= 176+ H o+ 24 Hy+ 36
Table 5: Vector M ultiplet T = §+%pHO+ 36
| [ || © [Rismm.| ed | M ass
? 1 T 1 y A=W | Ho+ 96 _16 H,+ 36
? 1/2] +1=2| y 1 5 10 ;HO+ 36
? 1/2 + 1=2 v+ 1 L 10 pHO+ 36
? /2| +3=2 | yv 1 T 6 LHo+ 36
1/2 | +3=2 | y+1 T 6 Hot 36
? 0 y S= | 176+ H, 24 H,+ 36
? 0 + 1 y 2 Ho+ 96 16_H,+ 36
? 0 +1 v Ho+ 96 16_Hy+ 36
0 + 1 v+ 2 Ho+ 96 16 H,+ 36
0 + 2 y 24+ H, 8 Ho+ 36
Table 6: Vector M ultiplet II = 2+ %pHO+ 36
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4 ClassicalV g,y cone equation and CFEFT

C onsider the non{com pact four{fold de ned by

X5
72 = 0; (41)

which has an ordinary double point singularity at z, = 0 {§]. This conibd is a cone
over the hom ogeneous space SO (5)=S0 (3), that can be retrieved by looking at the set of
points at unit distance from the singularity
%5
7.5 = 1: (42)

a=1

T he full isom etry group of this gpace is SO (5) Uy (1) where the Ui (1) plays the roke of
an R {symm etry group and acts as a phase shift on the coordinates

A e Za (4.3)

T herefore the z, have Q = 1 under this symm etry and transform in the 5 of SO (5).

Since it acts non {trivially on the canonical Jine bundle of the conifold, the @.3) trans-
form ation is an R {symm etry of the theory. W e can also see that it is an R {symm etry
group from the fact that the holom orphic 4{form

dz; dz, dzz dz
_ 1 QZy AZ3C2Zy (4.4)
Zs

hasQ = 3under the Uz (1) ( ! e’ ). The charge of the farm ionic coordinates of
superspace is xed by the requirem ent that they transform as _, and then Q = %

Indeed, on a Calbi{Yau m anifold we can always w rite the holom orphic form as

t

abcd = abed 7 (4.5)

where is a covariantly constant spinor. This means that transforms as 2, and
supersym m etries, being generated by covariantly constant spinors, transform as

A s explained In sect. 3, it is convenient to x the R {symm etry value of the co-
ordinates equal to one, and to introduce the rescaled R {charge y = %Q , under which
y = 1.

In com plete analogy with [}, we can write a CY m etric on the cone by introducing
the SO (5) invardant K ahler potential

K = ZeZa : (46)

a

P _
Deningr ( ,z.z) ° and introducing a set of angular variables y* , invariant under
the scaling of the z coordinates, the m etric can be put In the standard form

dst = dr’ + s dy*dy® @B = 1;:::;7): (4.7)
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Thism etric inserted in
ds?, = ¥ (dx; dx; dx5)+ %dsé (4.8)
plus the vacuum expectation value of the three{form eld strength (F, dAs)
F =e (49)

describe the supergravity vacuum yielding the spontaneous com pacti cation on a seven{
m anifold from eleven to four space{tin e din ensions.

T his supergravity solution has nom oduli, as in eleven din ensional supergravity there
isnodilaton and thevev’softhe eldsgiving theAdS,; Vs, com pacti cation isuniquely
xed. Theonly \ {angle" we could introduce is a shift in the vacuum value of the three{
form A ,q. by a closed non{exact three{form on the intemal indices. But we know that
H3(V(s2);Z2) is at m ost discrete torsion ] and therefore there are no \ {anglks". The
absence of m odulire ects in the CFT de nition im plying that the interacting xed point

is isolated In the param eter space.

T his seem s to be related to the geom etrical nature of thism anifold. Tt hasbeen shown
271 that, at variance w ith theM ! and Q! cases, the Stiefelm anild does not adm it a
description in temm s of toric geom etry and thus it is very di cult to see if it can be found
as a partial resolution of som e orbifold. If this could be done (lke for the Q ! m anibld
271), it would in ply that there existsa ux from the orbifold CFT to this infrared point
[H,[19], but it does not seem to be the case. R ecent supergravity calulations [33]seem to
con m this fact at least for uxes connecting m anifolds w ith the sam e topology.

The Conform alF ield T heory
In the sam e spirit of [§], the basic degrees of freedom ofthedesired CFT can be understood
upon \solving" the (4.) equation. T his can be done as ollow s: we set

=" °B Tt 2] (4.10)

ij

where At and B are SO (5) spinors (transform ing in the fiundam ental representation of

Sp(4)) and ¢ are antisymm etric gamm a m atrices In ve dim ensions, nam ely

k
L=Cul )y, (411)
Cy belng the Sp(4) nvarant m etric. Since (usihg the dentity § k1= 6CCyp+
C45Cx1)
X5
2z, (A °B)A .B) (A CB); (4.12)

we have to supplem ent ([@.10) w ith the sym plectic trace condition
CyABI=0 (413)

12



in order to retrieve the conibld equation (@.J]).
This m atches exactly the representation of the conifold already used in 23]in tem s
of the P lucker coordinates
Py = AuB 7 (414)

satisfying the Pfa an constraint
c We kl}pijpkl = 0; (4.15)

supplem ented w ith the traceless condition C Ypy; = 0[]. Equations @13) and @19) are
invariant under SL (2;C ) transform ations. Ifwe setA*= S} and B'= S;,we see that the
P lucker coordinates

Py = AgBy S'S’ ;o= 152 (4.16)

and their sym plectic trace C Fpy; = 0 are invariant under SL (2;C ).

Noting that SL (2;C) is the com plexi cation of SU (2) B4], we can gauge x such
Invariance precisely by setting the SU (2) D {term to vanish

e TR T B,
Dsy@y= 0! _—— o (417)
L.1AB = 0:

T he above discussion in plies that the correct gauge group G to be used for N coincident
branes should reduce to SU (2) for N = 1. Hence, choosing G to reduce for N = 1 to
SU (2), equation @#@17) xesthe SL (2;C) residual invariance. This gauge xing is quite
analogous to the one used in [§], where the com plexi cation ofthe U (1) residualsymm etry
in the solution of the cone on T isgiven by a com plex rescaling of the relevant variables.

G wven the above inform ation, we can try to guess G, when N > 1. The product of
two unitary group is excluded, since the coordinate, as in T*! (but not on the spheres),
appears In the KK spectrum and it is a gauge singlet so that the spinor S; must be in
a pseudoreal representation of G (In a pseudoreal representation CS = S,C%= 1 and
thus the gauge singlet is contained in the antisym m etric product (S S ).sy ).

W e are thus led asam inin al choice to the product of the two non-sim ply lJaced groups

G=USp(@N ) O (2N 1) (4.18)

T he rationale for this choice is that, if we take the singleton S; to be in the bifindam ental
representation of G, then, since S* is in the 4 of Sp(4), the coordinate

7%= Tr (S* @9) (419)

isnon {zero only if the gauge group contains a factor U Sp(2N ); the other factorm ust then
be the orthogonal group O (2N 1). Indeed, the orthogonal group, having a sym m etric

° Curiously () is analogous to the m oduli space ofan SU (2) N = 2 gauge theory w ith hyperm ul-
tipletsw ith two avours [E].
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hvariant m etric, assures a non{zero value for z* and m oreover its order is xed to be
2N 1 because of the condition G, 5 = SU (2).

Such groups usually arise when one deals w ith ordentifold profctions 30]and for the
present case N refers correctly to the total num ber of branes before m irroring.

From the chain decom position

USp(2N) O(@N 1) ! USp(2) USp@2N 1)) O0@N 1))
! USp(2) UM 1) UN 1) (420)
I USp(2) UM 1) ! USPR) U@l *

we can retrieve the phase where all but one brane are free to m ove at sm ooth points over
the cone. Looking at the chain (4.2(), we see that, by the rst decom position, we get

0o _ . : 1
A* B*|0 ... O
. B0 0 E
S =§ ) ; , ; (421)
: : Sa A
0 0

where the upper kft block isa 1 2 matrix, the lower right block has indices A; =
1;:::;2N 2,while theo {diagonalblocksarerectangularl @N 2)and?2 (2N 2)
zero m atrices.

Since USp(2(N 1)) and O (2(N 1)) both contain a U (N 1) subgroup under
which they both decom pose as (N 1) (ﬁ), we have A ! aj;a and ! ;
(@;a; ; = 1;::5N 1), Correspondingly, the ower right (2N 2) (2N 2) subblock

of $* becom es |

. st sl
Sy = —21-2 (4.22)
Sa Sa

which derives from the second step of the chain (¢ .2(). Further going to the diagonal
UMN 1),wehaveS! = S! = 0and setting S = A*,SI = B*we nd

- 0 Al
St= - : 423
B 0 ( )
W hen we consider a generic vacuum con guration Ugag N 1) ! U @) !, theA’,

B! subblocks reduce to diagonal (com m uting) m atrices in the C artan subalyebra.

W e rem ark that it is likely that there exist jist one singleton S* and that A*and B*
are just speci ¢ com ponents of these S*. Indeed, prom oting A* and B * to two independent
singletons $*;T*, would in ply that equation (19) adm its the baryonic symm etry

st 1 sl ; (424)
T 1 Tt (4 25)

T he baryonic symm etry is related to the existence of U (1) Betti multiplets in the KK
spectrum  [B1,[LQ, 23], which only occur if there are non+rivial Bettinumbersby; 16 1;7.
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However, V(s,, has the sam e real hom ology the seven-sphere S’, and thus a continuous
baryonic sym m etry is ruled out.

Thus we propose that the CFT describing a Jarge number of M 2{branes on the (4.])
singularity is given by the infrared xed pointofan USp(2N ) O (2N 1) gauge theory
where the basic degrees of freedom are chiralm ultiplets S* lying in the 4 of SO (5),with R {
symm etry chargeQ = 1=2 (ory = 1=3)and in the 2N ;2N 1) irrep. of the gauge group.
In the brane construction of gauge theories usually there can be other m atter elds in
sym m etric and antisym m etric representations. W e assum e here that such representations
decouple at the conform al IR xed point.

The chiral elds (singlktons) of the conform al eld theory have = Jj= % This
m eans that ow ing to the interacting point they acquire an anom alousdin ension = % .
T his m akes the conform al dim ension violate the unitarity bound %, but since the
singleton eld is not a gauge group singlet it is not an observable of the theory. The
analogous phenom enon occurs for the ve{dinensionalcase T'!', where .5 = 2 < 1
and for the proposed CFT ‘s dual to the seven{din ensionalm anibdsM *** and Q ** 31.

A s already rem arked, the gauge theory exists only in the ultraviolet lin it where it is
not conform aland w here the gauge vector potential, w hich isa singlet of them atter group
SO (5) is in the ad pint representation of USp((2N ) O (2N 1). W e could dualize it, at
Jeast in the Coulom b branch, and then reintroduce it In the CFT .However, from the KK
analysis, we see that we have no states corresponding to products of this true singleton

ed (with = % ) and therefore we have no coordinates for the Coulom b branch.

Aswe will see Jater, it is also essential to Introduce a superpotential whose Jacobian
dealgives the needed vanishing relations for the correct m atching of the chiral prin aries
w ith the supergravity hyperm ultiplets. T his is given generically by the sixth power of the
singleton eds

W (Si)= Cijmn Tr(S'SIS S'S™S™): (4.26)

w here the tensor C i1, n s constructed by an appropriate linear com bination of products
of three Sp(4) nvariant m etrics C 5. It should probably be m ade of a com bination of the
follow ing structures

Tr[(SS) (SS) (SS)] (4.27)
Tr((SS)S °SS .S] (4.28)
TrhS 85 S ™53 desl abodes (429)
Trh(SS)S abg g absl. (4 30)
TrhS PSS S S gsll (431)
TrhS S S Ps s absl: (432)

Let us consider the previous structures forN = 1,when we can drop the trace sym bol.
W e easily see that they are the six a priori existing singlets which can be obtained from
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the product of six 4 spinor representations of Sp(4). N ext we note that when (423) hods,
all the above structures are given by products of three A* and three B * contracted w ith
three C;; tensors. A ctually, there is just one possble Sp(4) invariant that can be built,
nam ely

@'BIcy) (433)
Furthem ore, the rst four structures (4 .277){ () are antisym m etric under the exchange
of A' and B* while the last two are symm etric. That m eans that, by Fierz dentities,
#27){ E30) m ust be proportional to each other, while the other two must vanish den-
tically.

5 AdS/CFT correspondence

0O Sp(4R) conform al super eds

A generic O Sp(4R) representation [24] is labelled by three quantum num bers, according
tothe 0Sp(dR) SO (2) SO (3) Ug (1) decom position of the supergroup. They are
the energy , the spin s and the R {chargey.

T his generic representation is unitary if

1+ s+ 7 (5.1)

w hile short chiral representations can occur for

1
= j¥yj -—: 52
Y] 5 (52)

Like In the SU (2;2]l) case [§), at the threshold of the unitarity bound (EJ]), we can
obtain short representations. These BP S {saturated states correspond to short super elds
which thus satisfy som e di erential constraint.

O perators w ith protected dim ensions are related to such shortenings and they fall in

three categories:

C hiral super elds: They occurwhen = jyjand satisfy the condition

D (x; ; )=0; (53)
orD (x; ; )= 0 foranti{chiralones.
Conserved currents: They occurwhen = 1+ s and satisfy
D 'J w, X; ;)=D'J ., (x; ;)=0 ifs60 (5.4)
or D2J(x; ; )=52J(x; ; )= 0: fors= 0: (5.5)
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Sem iconserved currents: They occurwhen = 14+ s+ Jjand satisfy
D 'L ,u,(x; ;)=0; (s60) (56)
D'L(x; ; )=0; (s=0) (5.7)

if left{sam iconserved, or the conjugate conditions if right{sam iconserved.

It is trivial to see that a right and left sam i{conserved super eld is also conserved.
T he protected operators

From the CFT point of view , we expect to have chiral operators corresponding to the
wave{finctions of the conibld {§]. Such operators are given by

Tr & Tr(z* :1:2%) Cay umy (5.8)

with C,, .a, @ completely symm etric and traceless rank k tensor. They have = y= 2k.
Surely, there should be a conserved current related to the global SO (5) symm etry,
which should be a singlet of the gauge and R {sym m etry group and that we can dentify

as
Jge® s s (5.9)

This J% should be m assless and satisfy D 2J%° = D 209" = 0. Its conform aldin ension is
therefore = 1.

A nother operator w ith protected din ension we certainly expect is given by the stress{
energy tensor .

J =D SD S+D SD S+iS & S; (5.10)

which has = 2,y=0and satisesD J =D J = 0.

Tt isnow trivialto see thatwe should also expect KK supergravity states corresponding
to the follow Ing sam i{conserved super elds

Trd *) and Tr(d® ¥) (5.11)

(or the conjugate ones).

Tt seem s m ore problam atic to nd the appropriate singleton com binations which ap-
pear as sam iconserved gpin 1=2 super elds In the CFT corresponding to short gravitino
m ultiplets on the supergravity side. In the theory at hand there isno eld lke the W
of the T™ case [{,[9]and thus there is no natural candidate for these operators. W e also
have to be carefiil not to use sin ple descendants of prin ary operators and thism akes the
task m ore di cult. Anyway, once we have the isom etry group quantum num bers, from
the KK analysis, we can see that the appropriate combinations of the S; are uniquely

xed, and w ill be w ritten explicitely below .

T he correspondence
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G ven the structure of the O Sp(43) multiplets of eleven {din ensional supergravity com -
pacti edonAdS,; V(sp),wecanm ake the com parison between these resultsand the CFT

predictions. W e can also m ake use of these results to explicitly determ ine the expression
of the farm ionic operators related to the short gravitino m ultiplets.

A long the lines of the ve{din ensional case of type IIB supergravity on AdSs T
d,[Zq1, we Jook for rational conform aldin ensions occurring in the KK multiplets and see
w hether they correspond to the right shortenings needed to be related to the previously
described conform al operators.

From the energy values of the multiplets, it is easy to see that a rational conform al
din ension can be obtained only ifH j + 36 orH ; + 24 are squares of rational num bers.

Asin the T case,we obtain rationality when we saturate the bound on theR {charge
of a given hamm onic, ie. when In the Young Tableaux all the boxes w hich can be charged
have the sam e R {charge. T his occurs for the representatjonsﬂ k ; 0]§k ofSO (S)y, 1) In
theH,+ 36 case and for k ; 0]1+§k In theH g + 24 case. T he corresponding square roots
are given by 6 + %k and 4+ %k respectively. W e have solved the rationality constraint for
themoregenericcaseofm + n+ k ;m ], %k,and we have found that there are two other
In nite series of operators w ith rational din ension, form and n satisfying the follow ing
relations

2 2

m n 2zmn  3n m 0; forHq,+ 36; (5.12)

m? n®+2m (1 n)=0; frHy+ 24: (513)
T his gives sequences of num bers w ith no sin ple rationale. Anyway we w ill see that as for
T!!,beside thecasem = n = 0,only another couple of SO (5) U (1) quantum num bers,
is related to shortenings, while all the others correspond to the rational long m ultiplets
partially noticed in []]and com pletely clari ed in [f]]. H ere these couplesarem = 1;n= 0
andm = 1;n = 1 respectively.
Let usnow Introduce these conditionson the SO (5) Ug (1) quantum num bers in the
values of the supergravity m ultiplets and see when the shortening occurs.
W e start w ith the graviton and vectorm ultiplets for which we have som e expectations
to be veri ed and then pass to the gravitino m ultiplets. T he graviton m ultiplet has

1 19—
= S+ Ho+ 36: (5.14)

IftheSO (5) Ug (1) irep is k ; 0L, , it reduces to
3

2
=2+ =k; (5.15)
3

which is the shortening condition = 1+ s+ jyjrelated to the protected operator (§.11)
corresponding to the m assless and short graviton m ultiplets.

T the form [Young indicesbharge = M + N ;M },.
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Tt can be easily seen thatalsoin the k+ 1 ; l]%k case, it is obtained a rational state
with = 3+ %k. T hese states do not satisfy the shortening condition = 1+ s+ F7,
but they can be put in correspondence w ith the rational non supersym m etry protected

operatord ]

Tr(@ J% *): (5.16)
For the vector II,
3 19—
= —+ — Hy+ 36: (5.17)
2 4

Ifwe choose the k ; 0] 2 irrep ., we obtain states w ith

= =k; (5.18)

which are hypemultiplet ( = 7/ states associated to the ¥ operators. W hen the
G{imrep is k+ 1 ; 1]§k, we obtain again a shortening of the multiplet. Tts anom alous
din ension is given by

=1+ gk; (519)

and is related to the m assless gauge vector m ultiplet of the SO (5) m atter group or to
short vector m ultiplets corresponding to Tr(J%* *) operators.

T he other type of vector m ultiplets we have found never undergo shortening, but we
can easily nd the CFT rational long operators. T heir anom alous din ension is

> qu 36 (5.20)
= —+ — + ;
2 4 0 ’

which for the [k ; 0] 2, Irreps reduces to
3

4+ =k (5.21)

and for the k+ 1; 1] 2, case reduces to
3

2
=5+ —k: (522)
3
Tt is easy to see that the related CFT operators are given by
Trd J %) (523)

and
Tr(d J J® *): (524)

Let us now exam ine the shortening conditions for the gravitino multjplets. Type I

gravitino has
! L H 24 (525)
= — + — 0 + .
2 4 ’
"Here and In the llow ng the conform al operators have to be understood as profcted along the

S0 (5) Young tableaux of the corresponding KK state.
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which, forthe [k ; 0], 2 Irreps reduces to

L R S (526)
2" 3 o T Y

T hisdoesnot correspond to a shortening condition , but nevertheless satis es the unitarity
bound 1+ s+ F3

W e can obtain unitary multiplets when the G quantum numbersare k+ 2 ; 1], 2y
In this case Indeed c

2
= —+ -k=1+ s+ Jj 527
2 3 J ( )

and therefore we obtain short gravitino m ultiplets.
For type II gravitino we have

19—
+ 2 Ho+ 24; (5.28)

N W

which, for the [k ; 0], 2, Ireps reduces to
3

5 2

- 24 % (529)
2 3

undergoing shortening, and for k + 2; 1], 2,

3
9 2

= —+ —k (530)
2 3

gives long rationalm ultiplets.

Having the O Sp(4®) and m atter group quantum num bers, we can try to guess the
correspond ing conform aloperators. Fork = 0, those related to the short type I gravitinos
are given by h 5
TrL =Tr S *SD S ™S D S 2SS s ; (531)
while those related to short type II gravitinos are

h i
TrXx =Tr S .S S ,SD S s 25 ,D SS *¥*s ; (532)

which become Tr(l. *)and Tr(X *) for the generic cases (527) and (529) respectively.
Equations (63]) and (537) are easily seen to obey the sem i{conservation condition (54).

W epointout that in thel. operator,only the irreducible a loc] representation survives
once we use the {m atrices dentities and the D {term equations.

Letusnote explicitly that, asanticipated in the introduction the type IT short gravitino
multiplet Tr X hasa lowest com ponent of R {symmetry y= 1, s0 that its com ponent,
which we callW ,hasy = 0.M oreover, it isa singlet under SO (5) so that In the infrared
Im it W has the sam e quantum num bers (apart from the conform aldin ension) as the
originalgauge eld in the ultraviolet lim it.

W emay com pare this result w ith the gravitino sector super eld of the four dim en—
sional SCFT dualto the T com pacti cation of Type IIB theory and called L' in [§].
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T here, the vector eld strength super eld W  is the singleton of the conform al theory,
so that it does not appear in the spectrum of T!' com pacti cation. In the present case
instead, Tr [X * ]does indeed appear in the spectrum of V55, being a com posite  eld of
singletons. Furthem ore, L™* does not exist for k = 0, since in this case it would reduce
to [

LYP=Tr@E@w eV) (5.33)

which vanishes dentically while T r [X X1isdi erent from zero even fork = 0.

F inally, for type ITgravitinos, we have in addition statesw ith = %+ %k corresponding
to Jong rationalm ultiplets, which can be written as
h i
Tr (SD S)(SD S)L * : (534)

6 Summary

Tn order to collect our results, we present a table where we list the m ultiplet type aswell
as spin, representation and energy of the highest states forM {theory com pacti ed on the
Stiefelm anifold, and m atch them w ith the boundary conform al super elds. T hese results
m erely rely on the AdS/CFT correspondence.

It ram ains an open problem to m ake an explicit construction of the ultraviolet de-
scription of the underlying eld theory in temm s of D 2{brane gauge theory.

T [ [ [ oo
1| 2¢ 2k | KoL, e T
1 3+§k k+ 1;1L, grinjgon gabp  k
1/2 g * gk b7 Ol 3k graxsfhj;:lz IT x -
1/2 §+ gk k+ 271, 2, gmilj‘;;co ! Lox
1/2 §+ gk K+ 251, 2, gm\]fj;iol (SD S)(SD S)L X
0 %k LA hyperm ultiplet K
0 | 1+ =k | k+ 1;1]%k v$§11 Jgeb k
0 | 4+ Zx K ; Ok, Ve]s;il T T K
0 | 5+ k| K+ 151k, Ve]s;il T T J® X

M assless ork = 0.
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A ppendix A : Rescaled connection and curvature on
G /H

In this appendix we present an algebraic technique to derive the rescaled connection and
curvature on a cosetm anifod given the structure constants of theG ,H and G=H groupd]
that generalizes the form ulae of @]. The a;b are the coset Indices, i;j are the H Indices
while € and !? are the vielbeins.

The M aurer{C artan equations fore* and ! * are

1 ,
det + EC e’ + co ettt = 0; @ la)

N 1 . .
dart+ EClbcebeC+ Ecljk!j!k = 0: (A 1b)

Under a rescaling of €®, equations (@ ) becom e:

1r( b -
dea+ _wcabcebec+ Ecabieb!l = O; (A .Za.)
2 r(@) r(a)
i, 1 i obe, 1y 9k
dli+ Sr@r®)C e+ SCh It = o (B 2b)
T he connection one{form on G=H can be de ned by
de® B3 = 0: (A 3)
Combining @ J) and @ 1) yieds
llc ro .
B, = Egcabcech %a))cabi!l+ K %.e%; A 4)

where K ., symm etric in b;c, is determ ined by the requirem ent of antisymm etry of B .
T hus the antisym m etric connection B is given by
1 r(b) .
Bab: —Cabcec—cabi!l A D)
2 r@)
12T he results of this section were derived in collaboration w ith L Castellani.
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where
r(a)r()

r(c)

ea

ce b C%yp °F oyt (A b)

T he R iam ann curvature is de ned in tem s of the connection as
Rab dBab BaCBCb Rabdeedee: A7)

Substituting the de nition of B in termm s of the structure constants given above, and
using the M aurer{C artan equations for the di erentiated vielbeins and Jacobi dentities
for products of structure constants, one arrives at

1 r(d)r(e)

1 ,
R%e = ZC "1eC e EC “0iC ger(d)r(e) +

1 1
écacdccbe‘F écaceccbd: (A 8)

This form of the R iem ann tensor ism ore general than the one presented in ], where
the nalresult depended only on the C 2. and not on the C %, due to the hypothesis that
the K illing m etric be com pletely diagonal. Tn our case instead them ixed com ponents
are non{zero,w hile the condition that w ithin an isotropy { irreducible subspace theK illing
m etric is proportional to ., still hods. T his is necessary to ensure the antisym m etry of
the connection B4°.

It is straightforw ard tq verify thatw hen theK illing m etric isdiagonal, the C % reduces

b
to the com bination ac C 4. of B3l

A ppendix B :The R eduction of SO (7) under SO (3)
SO (2).

In this section we reduce the SO (7) Indices to H {irreducible indices.
The embedding of SO (3) SO (2) In SO (7) isde ned by

Ty °= Cy ) (T P (B 1)

relating the generators of H in an SO (7) irrep to the generators of SO (7) in the sam e
frrep through the structure constants. In the vector representation of SO (7) one has

(T ) =

and therefore
(Tg ) = (Cyxg ) :

U sing the expressions for the structure constants one obtains

0 1
0 0
N) =8 ."| 0 |0K; B 2)
0 0 0
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im n O Oﬂ
ahH =8 0 | 7|0 % B 3)
0 0 |0

T hus the SO (7) vector reduces under H as
7103 3, 1o (® 4)

where the st num ber labels the SO (3) irrep, while the second one isthe U (1)y charge.
To construct them in the spinor representations we use the follow ing m atrices:

n ]
m — il 1 Z;il 2 ]1; il 3 2 ; (B.5a)
n O
o i2 2 1,’i2 2 3; i2 1 2 ; (B.5b)
=i 1 1 (B 5c)

T he charge conjugation m atrix is

The N generator in the spinor rep. is thus

0 1 1
2 1
=
% 1
1 o 1B -3
N = 5 nm = 53 ]} ’ ®.7)
R -1
% -1 A
3
and the J* are 0 1
ik
§ i Oy %
- 0 0
Jt B & (B 8)
ijk
B ] 0
@ Oy I A
0 0

50 the eight{dim ensional spinor representation of SO (7) reduces under the H subgroup
as
8! 312 3 12 ls: ®9)
H
W e w ill decom pose the eight{com ponent M a prana spinor as , Where

!

(3;1=2)
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Since ours are M a prana spinors C

Il
s
Il

and then our generic spinor is

e ©

'k Z% : (B .10)
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