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1 Introduction

Duality between large N field theories on D3–branes placed at conical singularities and

Type IIB theory compactifications on a 5d manifold have been the subject of many in-

vestigations in the last couple of years [1]-[3] (for a rewiew see [4]). In particular, in [5]

an N = 1 superconformal Yang–Mills field theory has been constructed which turned out

to be dual to Type IIB theory compactified on the T 11 = SU(2)2/U(1) manifold. Solid

evidence on such duality was developed in [6, 7, 8] and in [9], where a one–to–one corre-

spondence was established between the Kaluza–Klein (KK) supergravity spectrum on T 11

[10] and the boundary superconformal operators. In the case of M2 and M5 branes the

AdS/CFT conjecture was first studied for maximal supersymmetry in compactifications

on spheres S7 and S4 [11, 12, 13] and then further extended to lower N for sphere-orbifolds

and other brane systems [14, 15].

In [16] the question was raised whether one could similarly construct a SuperConformal

Field Theory (SCFT) in three dimensions which is dual for large brane-flux N to M–

theory compactified on AdS4 × M7 [16, 17, 18], where M7 is one among the compact

Einstein manifolds that were classified [19] and analysed in the eighties [20, 21]. Such

three–dimensional SCFT’s would then be defined as the conformal limit of the world–

volume theory of N M2–branes positioned at a conical singularity of M3 × Y8, where Y8

is the cone over M7.

Three-dimensional SCFT’s are more difficult to analyze because they emerge in non-

perturbative limit of conventional gauge quantum field theories. The origin of this diffi-

culty is well known, and can be traced back to the fact that the three dimensional bare

gauge coupling constant is dimensionful, so that a conformal description of the theory

dual to supergravity is only possible in the infrared limit, where the gauge coupling blows

up and the gauge fields are integrated out.

In this regime, the SCFT is described as the low energy theory of N coincident M2–

branes, where N is the number of units of flux of the dual of the eleven–dimensional four–

form on the internal manifold M7. Indeed, compactifications of M–theory on a circle

leads to a D2–brane description in type IIA theory whose world–volume gauge theory

is not conformal and whose near horizon geometry generically is not AdS [15, 22, 4].

The superconformal description is recovered in the strong coupling limit of type IIA

decompactification, when g2
eff >> N1/2, u << g2

Y M , where g2
eff = gsN/u [4] and u is the

energy scale. When the radius of the circle goes to infinity, the gauge coupling also blows

up and we reach the M2–brane description in the infrared of the three–dimensional gauge

theory. Its relevant degrees of freedom are given in terms of the d=3 chiral multiplets

and are related to the KK excitations of d = 11 supergravity. Vice–versa, if g2
eff → 0

and u → ∞, we are describing the ultraviolet limit of the d=3 Yang–Mills theory (for a

thorough discussion of the above considerations see [15, 22, 4]).

It is also important to observe that, although the d = 3 ultraviolet gauge theory has
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both a Coulomb and a Higgs branch, in the AdS4/CFT3 correspondence one is mainly

interested in the Higgs branch, parametrized by the vev’s of the scalars of the chiral

multiplets. The Coulomb branch scalars, belonging to the vector multiplets, are excluded

since their vev’s can be safely put to zero.

In [23] by a thorough study of the KK excitations and OSp(4|2) multiplets [24] on the

M111 = SU(3)× SU(2)× U(1)/SU(2)× U(1)× U(1) [25] and Q111 = SU(2)3/U(1)2 [26]

manifolds, the relevant N = 2 SCFT’s have been constructed on the basis of the mass

spectrum, and conjectured to be dual to M-theory compactifications.

In the above construction, it was important that both M111 and Q111 admit a descrip-

tion in terms of toric geometry [27]. This allowed to identify the fundamental degrees

of freedom of the underlying SCFT and thus to find the abelian gauge theories, whose

moduli space of vacua (the Higgs branch component) is isomorphic to the conifolds over

the two seven–manifolds.

This paper analyses the case of M–theory compactified on the real Stiefel manifold

V(5,2) ≡ SO(5)/SO(3) with SO(3) canonically embedded in SO(5). The relevant four-fold

cone whose base is V(5,2) was identified in [5].

The Stiefel manifold is peculiar among the Einstein spaces leading to N = 2 super-

symmetry in that it does not admit a toric description [27]. Nevertheless, we shall see

that it is possible to build up the single brane (N = 1) theory and to conjecture its N > 1

extension by performing the following steps.

We first analyse the full KK mass spectrum and OSp(2|4) supermultiplets for the V(5,2)

manifold: this is in complete analogy with the procedure in [9] for T 11 and in [23, 25]

for some M-theory examples. A relevant point of our analysis with respect to [23] is the

absence of Betti multiplets since there are no non–trivial Betti numbers on V(5,2)

bp = 0, p = 1, . . . , 6, b0 = b7 = 1. (1.1)

Thus, there is no continuous baryonic symmetry [28, 29, 18, 9, 10] in the corresponding

SCFT.

The second step is to construct admissible superconformal boundary operators to be

put in dual correspondence with those KK supermultiplets undergoing shortening when

the required unitarity bounds on the OSp(4|2) representations are saturated. To arrive

to a well founded conjecture for the SCFT operators, we are guided by the consideration

of the classical equation describing the eight dimensional cone Y8 over V(5,2). It turns out

that the solution of the cone equation [5]

4∑
a=1

z2
a = 0 (1.2)

can be obtained in the simplest way by use of the so called Plücker embedding, where

beside the pfaffian identity on the coordinates pij = −pji (where i, j are indices in the

fundamental representation of Sp(4) ≡ SO(5))

εijklpijpkl = 0 (1.3)
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one also uses the traceless constraint

C ijpij = 0. (1.4)

As shown in [23], the solution to (1.3) can be given as

pij = A[iBj]. (1.5)

In the present case, we find that one can write the coordinates parametrizing the cone Y8

as the bilinear

za = Ai Γa
ijB

j , (1.6)

where Ai, Bi are in the 4 of Sp(4) ≡ SO(5) and Γa
ij are the gamma matrices in five

dimensions. The vanishing of a SU(2) D–term fixes the residual SL(2,C) invariance

of equations (1.3) and (1.4). The above solution (1.6) is obtained by a procedure quite

analogous to that employed in [5] to solve the cone equation on T 11 in terms of two objects

Ai, Bi belonging to the representation (1/2, 0)⊕ (0, 1/2) of SU(2) × SU(2). There, the

analogous of SL(2,C) invariance was given by equation (13) of [5], namely invariance

under complex rescalings.

This discussion gives us a little but useful information on the gauge group G of the

theory in the ultraviolet regime. More precisely, since the equation for the vanishing of the

D–terms is SU(2) valued, the gauge group should reduce to SU(2) for a single M2–brane

at the conical singularity. Then, in virtue of the fact that the conifold coordinate za does

indeed appear in the KK spectrum and is a gauge singlet, we arrive at the conclusion that

for N > 1 the basic singleton Sα
i , transforming in the 4 of SO(5), must be in a pseudoreal

representation of G labeled by the index α. Albeit this requirements could be satisfied by

several groups, we are led to conjecture the simple choice G = USp(2N) × O(2N − 1),

where the index α of Sα
i belongs to the bifundamental representation4 of G.

Once we have some solid base for the choice of the basic degrees of freedom in the

dual three–dimensional N = 2 SCFT, we can perform the last step and show that it is

possible to construct a complete set of conformal primary operators matching all the KK

multiplets previously obtained.

In establishing such correspondence we follow the procedure already employed in [9]

for the T 11 case. In particular we find that, as for T 11, there are long multiplets with

rational protected dimensions5.

It is interesting to note that since in the infrared limit the gauge field is integrated

out, one may expect that it should be related in the SCFT to some composite field in

terms of the singleton Sα
i . In fact we find in the gravitino sector a composite field Xα

obeying D̄αXα = 0 whose θ̄ component6 has the right quantum numbers of a gauge field,

being a singlet of the flavour group SO(5) and having R–symmetry y = 0.

4Indeed such gauge group appear in the context of orientifold models [30].
5The same feature was also found in [23].
6For three–dimensional superfields we define: θα = θ1

α + iθ2
α, θ̄α = θ1

α − iθ2
α. Conformal dimensions ∆

and R–symmetry y quantum numbers are (∆ = 1/2, y = 1) for θα and (∆ = 1/2, y = −1) for θ̄α.
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In the rest of the paper, section 2 briefly deals with the harmonic analysis on the Stiefel

manifold while section 3 contains the results on the full mass spectrum and its assembling

into OSp(4|2) supermultiplets, with particular emphasis on the shortening patterns due

to saturation of unitarity bounds.

Section 4, relying on the solution of the conifold equation, proposes a candidate for

the classical N = 1 theory which is supported by the condition of vanishing D–terms. The

N > 1 extension is then conjectured to be related in the ultraviolet to a gauge theory of

D2-branes given by the product of two non–simply laced groups G = USp(2N)×O(2N−1)

with chiral multiplet Sα
i transforming in the spinor representation of the flavour group

SO(5) and in the bifundamental of G.

Some considerations are also given on the possible existence of a superpotential, at

least in the N = 1 case. In section 5, after a short summary of the conformal operators

related to the shortenings of KK representations, we construct a set of conformal operators

which can be put in correspondence with the various supermultiplets. Finally, we give a

summary of our result in Section 5 while some of the more technical aspects regarding

useful tools for the harmonic analysis are contained in two appendices.

2 The mass spectrum of V(5,2)

Harmonic analysis on the coset space V(5,2) ≡ SO(5)/SO(3) yields the complete mass

spectrum, which as in the other N = 2 supersymmetric compactifications, is arranged

into Osp(4|2) representations. Referring to [10] and references therein for the relevant

details concerning harmonic expansion on a generic coset manifold, we give below the

essential ingredients for carrying out the computations and collect our results in tables

for the various supermultiplets.

As in any KK compactification, after the linearization of the equations of motion of

the field fluctuations, one is left with a differential equation on the eleven–dimensional

fields Φ{J}
[λ1,λ2,λ3]

(x, y)

(2{J}
x + [λ1,λ2,λ3]

y )Φ
{J}
[λ1,λ2,λ3](x, y) = 0. (2.1)

Here the field Φ
{J}
[λ1,λ2,λ3](x, y) depends on the coordinates x of AdS4 and y of V(5,2), and

transforms irreducibly in the representations {J} of SO(3, 2) and [λ1, λ2, λ3] of SO(7). 2x

is the kinetic operator for a field of quantum numbers {J} ≡ {∆, s} in four–dimensional

AdS space and y is the Laplace–Beltrami operator for a field of spin [λ1, λ2, λ3] in the

internal space V(5,2). (In the following we mostly omit the index {J} on the fields. The

symbol [λ1, λ2, λ3] denotes the quantum numbers of the SO(7) representation in the Young

tableaux formalism.)

More specifically, one expands the d = 11 supergravity fields Φ[λ1,λ2,λ3](x, y)={hâb̂,

Aâb̂ĉ,ψâ} (â = (a, α), a = 1, . . . , 4, α = 1, . . . , 7) in the harmonics of V(5,2) transforming

irreducibly under the isometry group of V(5,2), and computes the action of y on these
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harmonics. The eigenvalues are simply related to the AdS mass.

The two necessary ingredients in this computation are the geometric structure and the

harmonics of the coset space.

Geometry

We give here a brief description of the essential geometrical elements of the Stiefel manifold

such as the metric and the Riemmanian curvature, that are used to build the invariant

Laplace–Beltrami operators.

We remind that the Stiefel manifold, beside SO(5), has an extra isometry SO(2)R

that can be identifyed with the R–symmetry group [19]

G

H
= V(5,2) ≡ SO(5)× SO(2)R

SO(3)× SO(2)H
, (2.2)

where the embedding of the SO(2)H into SO(5)×SO(2)R is diagonal and the embedding

of SO(3) in SO(5) is the canonical one, namely the fundamental of SO(5) breaks under

SO(3) as 5 → 3 + 1 + 1 (other embeddings yield different inequivalent M7 with N 6= 2).

We call Λ,Σ = 1, . . . 5 the SO(5) indices, I = 1, 2, 3 the SO(3) indices and A = 1, 2

the SO(2) ones. The adjoint generators of SO(5) and SO(2)R ' U(1)R are respectively

TΛΣ, U .

The SO(5) algebra is

[TΛΣ, TΓ∆] = −ηΛΓTΣ∆ + ηΛ∆TΣΓ − ηΣ∆TΛΓ + ηΣΓTΛ∆, (2.3)

which means that our generators in the vector representation are (TΛΣ)Γ∆ = 2δΛΣ
Γ∆.

For the canonical embedding of SO(3) in SO(5), Λ = (I, A), we can define JK ≡
1
2
εKIJTIJ as the SO(3) generators and N ≡ T45 + U as the SO(2)H generator. The coset

generators are given by TIA ≡ (Tm, Tm̂) (m, m̂ = 1, 2, 3), T7 ≡ T45 − U .

Since the vielbeins are coset–algebra valued, we use the same convention for labelling

the vielbein directions in the coset space.

Given the structure constants Ca
bc of the coset, the Riemann tensor is defined by the

formula

Ra
bde = −1

4
Ca

bcC
c
de
r(d)r(e)

r(c)
− 1

2
Ca

biC
i
der(d)r(e) +

− 1

8
Ca

cdCc
be +

1

8
Ca

ceCc
bd, (2.4)

whose derivation we give in Appendix A. Here we simply point out that the r(a) are the

rescalings of the vielbeins needed to obtain an Einstein space and that the Ca
bc are certain

specific combinations of the structure constants.
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We have imposed7

r(a) = r(b) = 4

√
2

3
e, r(c) = −4

3
e (2.5)

to obtain Ra
b = 12e2 δa

b . With such rescalings (2.5), we obtain

Rmn
kl = Rm̂n̂

k̂l̂ =
32

3
δmn
kl (2.6)

Rmn
k̂l̂ =

20

3
δmn
kl (2.7)

Rmn̂
kl̂ =

4

3
δmnδkl − 2δm

l δ
n
k (2.8)

R7m
7n = R7m̂

7n̂ = 2δm
n . (2.9)

The harmonics

The harmonics on the coset space V(5,2) are labelled by two kind of indices, the first giving

the specific representation of the isometry group SO(5)×UR(1) and the other referring to

the representation of the subgroup H ≡ SO(3)× SO(2). The harmonic is thus denoted

by Y
(M,N,Q)
(qH) (y), where M ,N are the quantum numbers of the SO(5) representation, Q is

the UR(1) charge and qH are the H–quantum numbers.

The above results imply that an SO(7) field Φ[λ1,λ2,λ3](x, y) can be splitted into the

direct sum of H irreducible fragments labelled by qH . The analysis of the reduction of the

SO(7) representation under the H group reported in Appendix B, yields that the vector

and spinor SO(7) representations break as

7 → 31 ⊕ 3−1 ⊕ 10,
8 → 31/2 ⊕ 3−1/2 ⊕ 13/2 ⊕ 1−3/2,

(2.10)

and by taking suitable combinations one can also derive all the other tensor decomposi-

tions.

The generic field Φ[λ1,λ2,λ3](x, y) can then be expanded as follows

Φab...(x, y) =
∑
(ν)

∑
(m)

Φ(ν)(m)(x)Y
(ν)(m)
ab... (y), (2.11)

where a, b, . . . are SO(7) tensor (or spinor) indices of the representation [λ1, λ2, λ3], (ν) is

a shorthand notation for (M,N,Q) and m labels the representation space of (M,N,Q).

Of course, not all the harmonics are allowed in the (2.11) expansion, as the irrepses

of SO(7) appearing in (2.11) must contain, once reduced with respect to H , at least one

7Note that there is an ambiguity in the sign of the rescalings, since the Einstein space requirement on
the curvature determines only their square. However, this ambiguity is only apparent. While the partially
reflected solutions with r(a) → −r(a) or r(b) → −r(b) are perfectly equivalent to our description, a change
in the sign of r(c) implies that we really reflect the orientation on the manifold and as a consequence we
completely break supersymmetry.
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of the representations appearing in the decomposition of [λ1, λ2, λ3] under H . This gives

some constraints on M,N,Q which select the allowed representations (ν).

We write a generic representation of SO(5) in the Young tableaux formalism [λ1, λ2] =

[M +N,M ]:

. . . . . .

. . .︸ ︷︷ ︸
M

︸ ︷︷ ︸
N

and Q, the UR(1) charge, is defined by the UR(1) harmonic eiQ φ.

A specific component of (2.12) can then be written as

4 4 . . . i j + . . . −
5 5 . . . +

where we defined the UR(1) fixed charge combinations

± ≡ 4 ± i 5

spin Φ(x) Φ(x, y) harmonic operator SO(7) irrep

2 hab hab Y 2 = DαDα [0,0,0]
1+ Aa, Wa haβ , Aabγ Yα 2 + 24 [1,0,0]
1− Za Aaβγ Y[βγ] (2 + 40)δµν

βγ − 2Cµνβγ [1,1,0]

0+ S,Σ hab, hαβ , Aabc Y 2 [0,0,0]

φ hαβ Y(αβ) (2 + 40)δ
(µν)
(βγ) − 4Cµβνγ [2,0,0]

0− π Aαβγ Y[αβγ] 1/24εµνρσαβγDσ [1,1,1]

3/2 χa ψa Ξ D/− 7 [ 1
2
, 1

2
, 1

2
]

1/2 λL ψa,ψα Ξ, Ξα

λT ψα Ξα D/− 5 [3
2
, 1

2
, 1

2
]

Table 1: Correspondence between 11d and 4d fields and harmonics [31]

One can now proceed with the KK analysis, implementing the above informations in all

the Laplace–Beltrami operators and computing the eigenvalues of the various harmonics

and thus the masses of the KK states.

Although straightforward in principle, this analysis can become quite cumbersome for

some of the higher spin operators. Luckily, it is not really necessary to complete the

whole task. In fact, due to the N = 2 supersymmetry, this peculiar compactification falls

in the class considered in [24], where the OSp(4|2) multiplet structure was elucidated,

together with the mass values expected for states of given quantum numbers. Most of

these multiplets can be filled by using only our results for the simpler operators, while

the entries in the remaining slots can be determined with the help of supersymmetry.
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From the scalar, spinor and vector eigenvalues, we have obtained the masses for all

the graviton and gravitinos and for some of the vectors, spinors and scalars, which let

us fill the five types of supermultiplets presented in Tables 2–6, with all the shortening

patterns. A preliminary analysis of the rank of the two–form matrix yields that we can

have at most two more vector multiplets, which we guess do not undergo shortening.

Indeed, as in the T 11 case [10, 9], all the mass eigenvalues depend on the G–quantum

numbers only through the function H0, which is the scalar laplacian eigenvalue. For the

Stiefel manifold, such eigenvalue is given by

H0(M,N,Q) =
32

9

(
6M2 + 9N + 3N2 + 12M + 6MN −Q2

)
. (2.12)

Since for a given number of preserved supersymmetries, the structure of the linearized

equations, supersymmetry relations and supermultiplets are fixed, we can suppose that

also the mass formulae in terms of H0 are universal for all seven-dimensional N = 2

supersymmetric compactifications. By this we mean that not only the number and type

of multiplets for different compactifications are the same, but also theH0 mass dependence

should be equal.

This is exactly what we find by comparing our case with the M111 compactification

[25], and we expect such agreement to hold also for the Q111 space. Of course, the

shortening patterns as well as the possible presence of Betti multiplets will be model

dependent features, as they derive either from certain functions of H0 taking rational

values or from non–trivial Betti numbers of the relevant manifold. However, in this

respect, the two vector multiplets mentioned before have ∆ = 1
2
+ 1

4

√
4 +H0 and ∆ = 1

2
+

1
4

√
H0(M,N,Q+ 3

2
)− 28, and satisfy no shortening conditions. This makes us confident

that all the relevant output derived from the supergravity analysis is correct.

3 The AdS4 × V(5,2) multiplet structure.

We report below in tables 2–6 the five families of supermultiplets we have found: one

graviton multiplet, two gravitino multiplets and two vector multiplets.

Each table has five main columns. The first column contains the spin quantum number

of the state, while in the second we give its ∆(s) value. The basic value of ∆ assigned

to each multiplet is the one belonging to a vector field, a spin 1/2 or a scalar for the

graviton, gravitino and vector multiplets respectively. In the third column we write the

R–symmetry of the state where the value y is assigned to the state with ∆(s) = ∆ . We

use here y = 2
3
Q, since this varies in integer steps according with the usual convention

on the unit value of the R–charge of the θ coordinate [24]. The fourth column shows

the specific field of the KK spectrum that is associated with the given OSp(4|2) state,

according to the notations of [24]. The fifth column contains the mass of the state8 given

in terms of H0.

8We give the value of the mass for the fermions and the mass squared for the bosons.
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For generic SO(5) quantum numbers and R–symmetry values, the multiplets of tables

2–6 are long multiplets of OSp(4|2). However, group theory predicts [24] shortening in

correspondence with specific threshold values of the quantum numbers. These give rise

to chiral (•), semi–long (?) or massless (�) multiplets. The above symbols appear in the

extra left columns to denote the surviving states in the shortened multiplets. In absence

of these symbols no shortening of any kind can occur for that multiplet.

spin ∆(s) R–symm. field Mass

� ? 2 ∆ + 1 y h H0

� ? 3/2 ∆ + 1/2 y − 1 χ+ −6 +
√
H0 + 36

� ? 3/2 ∆ + 1/2 y + 1 χ+ −6 +
√
H0 + 36

? 3/2 ∆ + 3/2 y − 1 χ− −6−√H0 + 36
3/2 ∆ + 3/2 y + 1 χ− −6−√H0 + 36

� ? 1 ∆ y A/W H0 + 48− 8
√
H0 + 36

1 ∆ + 1 y + 2 Z H0 + 32
? 1 ∆ + 1 y − 2 Z H0 + 32
? 1 ∆ + 1 y Z H0 + 32

1 ∆ + 1 y Z H0 + 32
1 ∆ + 2 y A/W H0 + 48 + 8

√
H0 + 36

1/2 ∆ + 1/2 y + 1 λ−T 2−√H0 + 36
? 1/2 ∆ + 1/2 y − 1 λ−T 2−√H0 + 36

1/2 ∆ + 3/2 y − 1 λ+
T 2 +

√
H0 + 36

1/2 ∆ + 3/2 y + 1 λ+
T 2 +

√
H0 + 36

0 ∆ + 1 y φ H0 + 32

Table 2: Long Graviton Multiplet ∆ = 1
2

+ 1
4

√
H0 + 36.

spin ∆(s) R–symm. field Mass

? 3/2 ∆ + 1 y χ+ −8 +
√
H0 + 24

? 1 ∆ + 1/2 y + 1 A/W H0 + 56− 12
√
H0 + 24

? 1 ∆ + 1/2 y − 1 A/W H0 + 56− 12
√
H0 + 24

? 1 ∆ + 3/2 y − 1 Z H0 + 24− 4
√
H0 + 24

1 ∆ + 3/2 y + 1 Z H0 + 24− 4
√
H0 + 24

? 1/2 ∆ y λ+
T −8 +

√
H0 + 24

? 1/2 ∆ + 1 y − 2 λ−T 4−√H0 + 24
? 1/2 ∆ + 1 y λ−T 4−√H0 + 24

1/2 ∆ + 1 y + 2 λ−T 4−√H0 + 24
1/2 ∆ + 1 y λ−T 4−√H0 + 24
1/2 ∆ + 2 y λ+

T

√
H0 + 24

? 0 ∆ + 1/2 y − 1 π H0 + 56− 12
√
H0 + 24

0 ∆ + 1/2 y + 1 π H0 + 56− 12
√
H0 + 24

0 ∆ + 3/2 y + 1 φ H0 + 24− 4
√
H0 + 24

0 ∆ + 3/2 y − 1 φ H0 + 24− 4
√
H0 + 24

Table 3: Long Gravitino Multiplet I ∆ = −1
2

+ 1
4

√
H0 + 24
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spin ∆(s) R–symm. field Mass

? 3/2 ∆ + 1 y χ− −8−√H0 + 24
? 1 ∆ + 1/2 y + 1 Z H0 + 24 + 4

√
H0 + 24

? 1 ∆ + 1/2 y − 1 Z H0 + 24 + 4
√
H0 + 24

? 1 ∆ + 3/2 y − 1 A/W H0 + 56 + 12
√
H0 + 24

1 ∆ + 3/2 y − 1 A/W H0 + 56 + 12
√
H0 + 24

? 1/2 ∆ y λ−T −√H0 + 24
? 1/2 ∆ + 1 y − 2 λ+

T 4 +
√
H0 + 24

? 1/2 ∆ + 1 y λ+
T 4 +

√
H0 + 24

1/2 ∆ + 1 y + 2 λ+
T 4 +

√
H0 + 24

1/2 ∆ + 1 y λ+
T 4 +

√
H0 + 24

1/2 ∆ + 2 y λ−T −8−√H0 + 24
? 0 ∆ + 1/2 y − 1 φ H0 + 24 + 4

√
H0 + 24

0 ∆ + 1/2 y + 1 φ H0 + 24 + 4
√
H0 + 24

0 ∆ + 3/2 y + 1 π H0 + 56 + 12
√
H0 + 24

0 ∆ + 3/2 y − 1 π H0 + 56 + 12
√
H0 + 24

Table 4: Long Gravitino Multiplet II ∆ = 3
2

+ 1
4

√
H0 + 24

spin ∆(s) R–symm. field Mass

1 ∆ + 1 y A/W H0 + 96 + 16
√
H0 + 36

1/2 ∆ + 1/2 y − 1 λT 6 +
√
H0 + 36

1/2 ∆ + 1/2 y + 1 λT 6 +
√
H0 + 36

1/2 ∆ + 3/2 y − 1 λL 10 +
√
H0 + 36

1/2 ∆ + 3/2 y + 1 λL 10 +
√
H0 + 36

0 ∆ y φ 24 +H0 + 8
√
H0 + 36

0 ∆ + 1 y − 2 π H0 + 96 + 16
√
H0 + 36

0 ∆ + 1 y π H0 + 96 + 16
√
H0 + 36

0 ∆ + 1 y + 2 π H0 + 96 + 16
√
H0 + 36

0 ∆ + 2 y S/Σ 176 +H0 + 24
√
H0 + 36

Table 5: Vector Multiplet I ∆ = 5
2

+ 1
4

√
H0 + 36

spin ∆(s) R–symm. field Mass

� ? 1 ∆ + 1 y A/W H0 + 96− 16
√
H0 + 36

� ? • 1/2 ∆ + 1/2 y − 1 λL 10−√H0 + 36
� ? 1/2 ∆ + 1/2 y + 1 λL 10−√H0 + 36

? 1/2 ∆ + 3/2 y − 1 λT 6−√H0 + 36
1/2 ∆ + 3/2 y + 1 λT 6−√H0 + 36

� ? • 0 ∆ y S/Σ 176 +H0 − 24
√
H0 + 36

? • 0 ∆ + 1 y − 2 π H0 + 96− 16
√
H0 + 36

� ? 0 ∆ + 1 y π H0 + 96− 16
√
H0 + 36

0 ∆ + 1 y + 2 π H0 + 96− 16
√
H0 + 36

0 ∆ + 2 y φ 24 +H0 − 8
√
H0 + 36

Table 6: Vector Multiplet II ∆ = −3
2

+ 1
4

√
H0 + 36
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4 Classical V(5,2) cone equation and CFT

Consider the non–compact four–fold defined by

5∑
a=1

z2
a = 0, (4.1)

which has an ordinary double point singularity at za = 0 [5]. This conifold is a cone

over the homogeneous space SO(5)/SO(3), that can be retrieved by looking at the set of

points at unit distance from the singularity

5∑
a=1

|za|2 = 1. (4.2)

The full isometry group of this space is SO(5)× UR(1) where the UR(1) plays the role of

an R–symmetry group and acts as a phase shift on the coordinates

za → eiαza. (4.3)

Therefore the za have Q = 1 under this symmetry and transform in the 5 of SO(5).

Since it acts non–trivially on the canonical line bundle of the conifold, the (4.3) trans-

formation is an R–symmetry of the theory. We can also see that it is an R–symmetry

group from the fact that the holomorphic 4–form

Ω =
dz1 dz2 dz3 dz4

z5
(4.4)

has Q = 3 under the UR(1) (Ω → e3iαΩ). The charge of the fermionic coordinates of

superspace is fixed by the requirement that they transform as
√

Ω, and then Qθ = 3
2
.

Indeed, on a Calabi–Yau manifold we can always write the holomorphic form as

Ωabcd = tηΓabcdη, (4.5)

where η is a covariantly constant spinor. This means that Ω transforms as η2, and

supersymmetries, being generated by covariantly constant spinors, transform as η.

As explained in sect. 3, it is convenient to fix the R–symmetry value of the θ co-

ordinates equal to one, and to introduce the rescaled R–charge y = 2
3
Q, under which

yθ = 1.

In complete analogy with [5], we can write a CY metric on the cone by introducing

the SO(5) invariant Kähler potential

K =

(∑
a

z̄aza

)3/4

. (4.6)

Defining r ≡ (
∑

a z̄aza)
3/8 and introducing a set of angular variables yA, invariant under

the scaling of the z coordinates, the metric can be put in the standard form

ds2
C = dr2 + r2gABdy

AdyB (A,B = 1, . . . , 7). (4.7)
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This metric inserted in

ds2
11 = r2 (dx2

0 − dx2
1 − dx2

2) +
1

r2
ds2

C (4.8)

plus the vacuum expectation value of the three–form field strength (F4 ≡ dA3)

Fµνρσ = e εµνρσ (4.9)

describe the supergravity vacuum yielding the spontaneous compactification on a seven–

manifold from eleven to four space–time dimensions.

This supergravity solution has no moduli, as in eleven dimensional supergravity there

is no dilaton and the vev’s of the fields giving the AdS4×V(5,2) compactification is uniquely

fixed. The only “θ–angle” we could introduce is a shift in the vacuum value of the three–

form Aâb̂ĉ by a closed non–exact three–form on the internal indices. But we know that

H3(V(5,2),Z) is at most discrete torsion [23] and therefore there are no “θ–angles”. The

absence of moduli reflects in the CFT definition implying that the interacting fixed point

is isolated in the parameter space.

This seems to be related to the geometrical nature of this manifold. It has been shown

[27] that, at variance with the M111 and Q111 cases, the Stiefel manifold does not admit a

description in terms of toric geometry and thus it is very difficult to see if it can be found

as a partial resolution of some orbifold. If this could be done (like for the Q111 manifold

[27]), it would imply that there exists a flux from the orbifold CFT to this infrared point

[5, 18], but it does not seem to be the case. Recent supergravity calculations [32] seem to

confirm this fact at least for fluxes connecting manifolds with the same topology.

The Conformal Field Theory

In the same spirit of [5], the basic degrees of freedom of the desired CFT can be understood

upon “solving” the (4.1) equation. This can be done as follows: we set

za = tA ΓaB ≡ tAi Γa
ijB

j (4.10)

where Ai and Bi are SO(5) spinors (transforming in the fundamental representation of

Sp(4)) and Γa are antisymmetric gamma matrices in five dimensions, namely

Γa
ij = Cik(Γ

a)k
j, (4.11)

Cik being the Sp(4) invariant metric. Since (using the identity Γa
ijΓa kl = −6C[ijCk]l +

CijCkl)
5∑

a=1

zaza ≡ (tA ΓaB)(tA ΓaB) ∼ (tA CB)2, (4.12)

we have to supplement (4.10) with the symplectic trace condition

CijA
iBj = 0 (4.13)

12



in order to retrieve the conifold equation (4.1).

This matches exactly the representation of the conifold already used in [23] in terms

of the Plücker coordinates

pij = A[iBj], (4.14)

satisfying the Pfaffian constraint

C [ijCkl]pijpkl = 0, (4.15)

supplemented with the traceless condition C ijpij = 0 9. Equations (4.13) and (4.14) are

invariant under SL(2,C) transformations. If we set Ai = Si
1 and Bi = Si

2, we see that the

Plücker coordinates

pij = A[iBj] ≡ Si
αS

j
βε

αβ α, β = 1, 2 (4.16)

and their symplectic trace C ijpij = 0 are invariant under SL(2,C).

Noting that SL(2,C) is the complexification of SU(2) [34], we can gauge fix such

invariance precisely by setting the SU(2) D–term to vanish

DSU(2) = 0 →

∑4

i=1 |Ai|2 =
∑4

i=1 |Bi|2,
∑4

i=1A
iB∗i = 0.

(4.17)

The above discussion implies that the correct gauge group G to be used for N coincident

branes should reduce to SU(2) for N = 1. Hence, choosing G to reduce for N = 1 to

SU(2), equation (4.17) fixes the SL(2,C) residual invariance. This gauge fixing is quite

analogous to the one used in [5], where the complexification of the U(1) residual symmetry

in the solution of the cone on T 11 is given by a complex rescaling of the relevant variables.

Given the above information, we can try to guess G, when N > 1. The product of

two unitary group is excluded, since the coordinate, as in T 11 (but not on the spheres),

appears in the KK spectrum and it is a gauge singlet so that the spinor Sα
i must be in

a pseudoreal representation of G (In a pseudoreal representation CS̄ = S, C2 = −1 and

thus the gauge singlet is contained in the antisymmetric product (S × S)asy).

We are thus led as a minimal choice to the product of the two non-simply laced groups

G = USp(2N)×O(2N − 1) (4.18)

The rationale for this choice is that, if we take the singleton Si to be in the bifundamental

representation of G, then, since Si is in the 4 of Sp(4), the coordinate

za = Tr (StΓaS) (4.19)

is non–zero only if the gauge group contains a factor USp(2N); the other factor must then

be the orthogonal group O(2N − 1). Indeed, the orthogonal group, having a symmetric

9Curiously (4.15) is analogous to the moduli space of an SU(2) N = 2 gauge theory with hypermul-
tiplets with two flavours [33].
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invariant metric, assures a non–zero value for za and moreover its order is fixed to be

2N − 1 because of the condition G<vac> = SU(2).

Such groups usually arise when one deals with orientifold projections [30] and for the

present case N refers correctly to the total number of branes before mirroring.

From the chain decomposition

USp(2N)× O(2N − 1) → USp(2)× USp(2(N − 1))×O(2(N − 1))

→ USp(2)× U(N − 1)× U(N − 1) (4.20)

→ USp(2)× U(N − 1)diag → USp(2)× U(1)N−1

we can retrieve the phase where all but one brane are free to move at smooth points over

the cone. Looking at the chain (4.20), we see that, by the first decomposition, we get

Si =


Ai Bi 0 . . . 0
0 0
...

... Si
AΛ

0 0

 , (4.21)

where the upper left block is a 1 × 2 matrix, the lower right block has indices A,Λ =

1, . . . , 2N −2, while the off–diagonal blocks are rectangular 1× (2N −2) and 2× (2N −2)

zero matrices.

Since USp(2(N − 1)) and O(2(N − 1)) both contain a U(N − 1) subgroup under

which they both decompose as (N − 1) ⊕ (N − 1), we have A → a, ā and Λ → α, ᾱ

(a, ā, α, ᾱ = 1, . . . , N −1). Correspondingly, the lower right (2N −2)× (2N −2) subblock

of Si becomes

Si
AΛ =

(
Si

aα Si
aᾱ

Si
āα Si

āᾱ

)
(4.22)

which derives from the second step of the chain (4.20). Further going to the diagonal

U(N − 1), we have Si
aα = Si

āᾱ = 0 and setting Si
aᾱ = Ai, Si

āα = Bi we find

Si =

(
0 Ai

Bi 0

)
. (4.23)

When we consider a generic vacuum configuration Udiag(N − 1) → U(1)N−1, the Ai,

Bi subblocks reduce to diagonal (commuting) matrices in the Cartan subalgebra.

We remark that it is likely that there exist just one singleton Si and that Ai and Bi

are just specific components of these Si. Indeed, promoting Ai and Bi to two independent

singletons Si, T i, would imply that equation (4.19) admits the baryonic symmetry

Si → Sieiα, (4.24)

T i → T ie−iα. (4.25)

The baryonic symmetry is related to the existence of U(1) Betti multiplets in the KK

spectrum [31, 10, 23], which only occur if there are non-trivial Betti numbers bi, i 6= 1, 7.
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However, V(5,2) has the same real homology the seven-sphere S7, and thus a continuous

baryonic symmetry is ruled out.

Thus we propose that the CFT describing a large number of M2–branes on the (4.1)

singularity is given by the infrared fixed point of an USp(2N)×O(2N − 1) gauge theory

where the basic degrees of freedom are chiral multiplets Si lying in the 4 of SO(5), with R–

symmetry charge Q = 1/2 (or y = 1/3) and in the (2N , 2N−1) irrep. of the gauge group.

In the brane construction of gauge theories usually there can be other matter fields in

symmetric and antisymmetric representations. We assume here that such representations

decouple at the conformal IR fixed point.

The chiral fields (singletons) of the conformal field theory have ∆ = |y| = 1
3
. This

means that flowing to the interacting point they acquire an anomalous dimension γ = −1
6
.

This makes the conformal dimension violate the unitarity bound ∆ ≥ 1

2
, but since the

singleton field is not a gauge group singlet it is not an observable of the theory. The

analogous phenomenon occurs for the five–dimensional case T 11, where ∆A,B = 3
4
< 1

and for the proposed CFT’s dual to the seven–dimensional manifolds M111 and Q111 [23].

As already remarked, the gauge theory exists only in the ultraviolet limit where it is

not conformal and where the gauge vector potential, which is a singlet of the matter group

SO(5) is in the adjoint representation of USp(2N)×O(2N − 1). We could dualize it, at

least in the Coulomb branch, and then reintroduce it in the CFT. However, from the KK

analysis, we see that we have no states corresponding to products of this true singleton

field (with ∆ = 1
2
) and therefore we have no coordinates for the Coulomb branch.

As we will see later, it is also essential to introduce a superpotential whose Jacobian

ideal gives the needed vanishing relations for the correct matching of the chiral primaries

with the supergravity hypermultiplets. This is given generically by the sixth power of the

singleton fields

W(Si) = Cijklmn Tr(SiSjSkSlSmSn). (4.26)

where the tensor Cijklmn is constructed by an appropriate linear combination of products

of three Sp(4) invariant metrics Cij. It should probably be made of a combination of the

following structures

Tr [(SS) (SS) (SS)] (4.27)

Tr [(SS) SΓaS SΓaS] (4.28)

Tr
[
SΓaS SΓbcS SΓdeS

]
εabcdef (4.29)

Tr
[
(SS) SΓabS SΓabS

]
(4.30)

Tr
[
SΓabS SΓbcS SΓc

aS
]

(4.31)

Tr
[
SΓaS SΓbS SΓabS

]
. (4.32)

Let us consider the previous structures for N = 1, when we can drop the trace symbol.

We easily see that they are the six a priori existing singlets which can be obtained from
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the product of six 4 spinor representations of Sp(4). Next we note that when (4.23) holds,

all the above structures are given by products of three Ai and three Bi contracted with

three Cij tensors. Actually, there is just one possible Sp(4) invariant that can be built,

namely

(AiBjCij)
3 (4.33)

Furthermore, the first four structures (4.27)–(4.30) are antisymmetric under the exchange

of Ai and Bi while the last two are symmetric. That means that, by Fierz identities,

(4.27)–(4.30) must be proportional to each other, while the other two must vanish iden-

tically.

5 AdS/CFT correspondence

OSp(4|2) conformal superfields

A generic OSp(4|2) representation [24] is labelled by three quantum numbers, according

to the OSp(4|2) ∼ SO(2)× SO(3) × UR(1) decomposition of the supergroup. They are

the energy ∆, the spin s and the R–charge y.

This generic representation is unitary if

∆ ≥ 1 + s+ |y|, (5.1)

while short chiral representations can occur for

∆ = |y| ≥ 1

2
. (5.2)

Like in the SU(2, 2|1) case [9], at the threshold of the unitarity bound (5.1), we can

obtain short representations. These BPS–saturated states correspond to short superfields

which thus satisfy some differential constraint.

Operators with protected dimensions are related to such shortenings and they fall in

three categories:

• Chiral superfields: They occur when ∆ = |y| and satisfy the condition

DαΦ(x, θ, θ̄) = 0, (5.3)

or DαΦ(x, θ, θ̄) = 0 for anti–chiral ones.

• Conserved currents: They occur when ∆ = 1 + s and satisfy

Dα1Jα1...α2s(x, θ, θ̄) = D
α1Jα1...α2s(x, θ, θ̄) = 0 if s 6= 0 (5.4)

or D2J(x, θ, θ̄) = D
2
J(x, θ, θ̄) = 0. for s = 0. (5.5)
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• Semiconserved currents: They occur when ∆ = 1 + s+ |y| and satisfy

D
α1
Lα1...α2s(x, θ, θ̄) = 0, (s 6= 0) (5.6)

D
2
L(x, θ, θ̄) = 0, (s = 0) (5.7)

if left–semiconserved, or the conjugate conditions if right–semiconserved.

It is trivial to see that a right and left semi–conserved superfield is also conserved.

The protected operators

From the CFT point of view, we expect to have chiral operators corresponding to the

wave–functions of the conifold [5]. Such operators are given by

Trφk ≡ Tr (za1 . . . zak) Ca1...ak
(5.8)

with Ca1...ak
a completely symmetric and traceless rank k tensor. They have ∆ = y = 2

3
k.

Surely, there should be a conserved current related to the global SO(5) symmetry,

which should be a singlet of the gauge and R–symmetry group and that we can identify

as

Jab ≡ S̄ΓabS (5.9)

This Jab should be massless and satisfy D̄2Jab = D2Jab = 0. Its conformal dimension is

therefore ∆ = 1.

Another operator with protected dimension we certainly expect is given by the stress–

energy tensor

Jαβ = D̄αS̄DβS + D̄βS̄DαS + iS̄
↔
∂/ αβS, (5.10)

which has ∆ = 2, y = 0 and satisfies DαJαβ = D̄αJαβ = 0.

It is now trivial to see that we should also expect KK supergravity states corresponding

to the following semi–conserved superfields

Tr (Jαβφ
k) and Tr (Jabφk) (5.11)

(or the conjugate ones).

It seems more problematic to find the appropriate singleton combinations which ap-

pear as semiconserved spin 1/2 superfields in the CFT corresponding to short gravitino

multiplets on the supergravity side. In the theory at hand there is no field like the Wα

of the T 11 case [5, 9] and thus there is no natural candidate for these operators. We also

have to be careful not to use simple descendants of primary operators and this makes the

task more difficult. Anyway, once we have the isometry group quantum numbers, from

the KK analysis, we can see that the appropriate combinations of the Sα
i are uniquely

fixed, and will be written explicitely below.

The correspondence
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Given the structure of the OSp(4|2) multiplets of eleven–dimensional supergravity com-

pactified on AdS4×V(5,2), we can make the comparison between these results and the CFT

predictions. We can also make use of these results to explicitly determine the expression

of the fermionic operators related to the short gravitino multiplets.

Along the lines of the five–dimensional case of type IIB supergravity on AdS5 × T 11

[9, 10], we look for rational conformal dimensions occurring in the KK multiplets and see

whether they correspond to the right shortenings needed to be related to the previously

described conformal operators.

From the energy values of the multiplets, it is easy to see that a rational conformal

dimension can be obtained only if H0 + 36 or H0 + 24 are squares of rational numbers.

As in the T 11 case, we obtain rationality when we saturate the bound on the R–charge

of a given harmonic, i.e. when in the Young Tableaux all the boxes which can be charged

have the same R–charge. This occurs for the representations10 [k , 0] 2
3
k of SO(5)UR(1) in

the H0 + 36 case and for [k , 0]1+ 2
3
k in the H0 + 24 case. The corresponding square roots

are given by 6 + 8
3
k and 4 + 8

3
k respectively. We have solved the rationality constraint for

the more generic case of [m+n+ k , m]1+ 2
3
k, and we have found that there are two other

infinite series of operators with rational dimension, for m and n satisfying the following

relations

m2 − n2 − 2mn− 3n−m = 0, for H0 + 36, (5.12)

m2 − n2 + 2m(1− n) = 0, for H0 + 24. (5.13)

This gives sequences of numbers with no simple rationale. Anyway we will see that as for

T 11, beside the case m = n = 0, only another couple of SO(5)×UR(1) quantum numbers,

is related to shortenings, while all the others correspond to the rational long multiplets

partially noticed in [7] and completely clarified in [9]. Here these couples are m = 1, n = 0

and m = 1, n = 1 respectively.

Let us now introduce these conditions on the SO(5)×UR(1) quantum numbers in the

∆ values of the supergravity multiplets and see when the shortening occurs.

We start with the graviton and vector multiplets for which we have some expectations

to be verified and then pass to the gravitino multiplets. The graviton multiplet has

∆ =
1

2
+

1

4

√
H0 + 36. (5.14)

If the SO(5)× UR(1) irrep is [k , 0] 2
3
k, it reduces to

∆ = 2 +
2

3
k, (5.15)

which is the shortening condition ∆ = 1 + s+ |y| related to the protected operator (5.11)

corresponding to the massless and short graviton multiplets.

10In the form [Young indices]charge = [M + N, M ]y.
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It can be easily seen that also in the [k + 1 , 1] 2
3
k case, it is obtained a rational state

with ∆ = 3 + 2
3
k. These states do not satisfy the shortening condition ∆ = 1 + s + |y|,

but they can be put in correspondence with the rational non supersymmetry protected

operators11

Tr (JαβJ
abφk). (5.16)

For the vector II,

∆ = −3

2
+

1

4

√
H0 + 36. (5.17)

If we choose the [k , 0]± 2
3
k irrep., we obtain states with

∆ =
2

3
k, (5.18)

which are hypermultiplet (∆ = |y|) states associated to the φk operators. When the

G–irrep is [k + 1 , 1] 2
3
k, we obtain again a shortening of the multiplet. Its anomalous

dimension is given by

∆ = 1 +
2

3
k, (5.19)

and is related to the massless gauge vector multiplet of the SO(5) matter group or to

short vector multiplets corresponding to Tr(Jabφk) operators.

The other type of vector multiplets we have found never undergo shortening, but we

can easily find the CFT rational long operators. Their anomalous dimension is

∆ =
5

2
+

1

4

√
H0 + 36, (5.20)

which for the [k , 0]± 2
3
k irreps reduces to

∆ = 4 +
2

3
k (5.21)

and for the [k + 1 , 1]± 2
3
k case reduces to

∆ = 5 +
2

3
k. (5.22)

It is easy to see that the related CFT operators are given by

Tr (JαβJ
αβφk) (5.23)

and

Tr (JαβJ
αβJabφk). (5.24)

Let us now examine the shortening conditions for the gravitino multiplets. Type I

gravitino has

∆ = −1

2
+

1

4

√
H0 + 24, (5.25)

11Here and in the following the conformal operators have to be understood as projected along the
SO(5) Young tableaux of the corresponding KK state.
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which, for the [k , 0]1+ 2
3
k irreps reduces to

∆ =
1

2
+

2

3
k = −1

2
+ |y|. (5.26)

This does not correspond to a shortening condition, but nevertheless satisfies the unitarity

bound ∆ ≥ 1 + s+ |y|.
We can obtain unitary multiplets when the G quantum numbers are [k + 2 , 1]1+ 2

3
k.

In this case indeed

∆ =
5

2
+

2

3
k = 1 + s + |y| (5.27)

and therefore we obtain short gravitino multiplets.

For type II gravitino we have

∆ =
3

2
+

1

4

√
H0 + 24, (5.28)

which, for the [k , 0]1+ 2
3
k irreps reduces to

∆ =
5

2
+

2

3
k (5.29)

undergoing shortening, and for [k + 2, 1]1+ 2
3
k

∆ =
9

2
+

2

3
k (5.30)

gives long rational multiplets.

Having the OSp(4|2) and matter group quantum numbers, we can try to guess the

corresponding conformal operators. For k = 0, those related to the short type I gravitinos

are given by

TrLα = Tr
[(
S̄ΓaS D̄αS̄ΓbcS − D̄αS̄ΓaS S̄ΓbcS

)]
, (5.31)

while those related to short type II gravitinos are

TrXα = Tr
[
SΓaS

(
S̄ΓbS̄ D̄αS̄ΓabS − 2S̄ΓbD̄αS̄ S̄ΓabS

)]
, (5.32)

which become Tr(Lαφ
k) and Tr(Xαφ

k) for the generic cases (5.27) and (5.29) respectively.

Equations (5.31) and (5.32) are easily seen to obey the semi–conservation condition (5.6).

We point out that in the Lα operator, only the irreducible a[bc] representation survives

once we use the Γ–matrices identities and the D–term equations.

Let us note explicitly that, as anticipated in the introduction the type II short gravitino

multiplet Tr Xα has a lowest component of R–symmetry y = 1, so that its θ̄ component,

which we call W̃α, has y = 0. Moreover, it is a singlet under SO(5) so that in the infrared

limit W̃α has the same quantum numbers (apart from the conformal dimension) as the

original gauge field in the ultraviolet limit.

We may compare this result with the gravitino sector superfield of the four dimen-

sional SCFT dual to the T 11 compactification of Type IIB theory and called L1k
α̇ in [9].
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There, the vector field strength superfield Wα is the singleton of the conformal theory,

so that it does not appear in the spectrum of T 11 compactification. In the present case

instead, Tr [Xαφ
k] does indeed appear in the spectrum of V(5,2) being a composite field of

singletons. Furthermore, L1k
α̇ does not exist for k = 0, since in this case it would reduce

to [9]

L10
α̇ = Tr (eVWα̇e

−V ) (5.33)

which vanishes identically while Tr [Xαφ
k] is different from zero even for k = 0.

Finally, for type II gravitinos, we have in addition states with ∆ = 9
2
+ 2

3
k corresponding

to long rational multiplets, which can be written as

Tr
[
(SD̄βS̄)(SD̄βS̄)L̄αφ

k
]
. (5.34)

6 Summary

In order to collect our results, we present a table where we list the multiplet type as well

as spin, representation and energy of the highest states for M–theory compactified on the

Stiefel manifold, and match them with the boundary conformal superfields. These results

merely rely on the AdS/CFT correspondence.

It remains an open problem to make an explicit construction of the ultraviolet de-

scription of the underlying field theory in terms of D2–brane gauge theory.

s ∆
SO(5)UR(1)

irreps
multiplet

Conformal
superfield

1 2 +
2

3
k [k , 0] 2

3
k

short
graviton? Tαβφ

k

1 3 +
2

3
k [k + 1 , 1] 2

3
k

long
graviton

Jab Tαβφ
k

1/2
1

2
+

2

3
k [k , 0]1+ 2

3
k

non
unitary

1/2
5

2
+

2

3
k [k , 0]1+ 2

3
k

short
gravitino II

Xαφ
k

1/2
5

2
+

2

3
k [k + 2 , 1]1+ 2

3
k

short
gravitino I

Lαφ
k

1/2
9

2
+

2

3
k [k + 2 , 1]1+ 2

3
k

long
gravitino I

(SD̄βS̄)(SD̄βS̄)L̄αφ
k

0
2

3
k [k , 0] 2

3
k hypermultiplet φk

0 1 +
2

3
k [k + 1 , 1] 2

3
k

short
vector? II

Jab φk

0 4 +
2

3
k [k , 0] 2

3
k

long
vector I

TαβT
αβ φk

0 5 +
2

3
k [k + 1 , 1] 2

3
k

long
vector I

TαβT
αβ Jab φk

? Massless for k = 0.
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Appendix A: Rescaled connection and curvature on

G/H

In this appendix we present an algebraic technique to derive the rescaled connection and

curvature on a coset manifold given the structure constants of the G, H and G/H groups12

that generalizes the formulae of [35]. The a, b are the coset indices, i, j are the H indices

while ea and ωi are the vielbeins.

The Maurer–Cartan equations for ea and ωi are

dea +
1

2
Ca

bce
bec + Ca

bie
bωi = 0, (A.1a)

dωi +
1

2
C i

bce
bec +

1

2
C i

jkω
jωk = 0. (A.1b)

Under a rescaling of ea, equations (A.1) become:

dea +
1

2

r(b)r(c)

r(a)
Ca

bce
bec +

r(b)

r(a)
Ca

bie
bωi = 0, (A.2a)

dωi +
1

2
r(a)r(b)C i

bce
bec +

1

2
C i

jkω
jωk = 0. (A.2b)

The connection one–form on G/H can be defined by

dea − Ba
be

b = 0. (A.3)

Combining (A.3) and (A.2) yields

Ba
b =

1

2

bc

a
Ca

bce
c +

r(b)

r(a)
Ca

biω
i +Ka

bce
c, (A.4)

where Ka
bc, symmetric in b, c, is determined by the requirement of antisymmetry of B.

Thus the antisymmetric connection B is given by

Ba
b =

1

2
Ca

bce
c r(b)

r(a)
Ca

biω
i (A.5)

12The results of this section were derived in collaboration with L.Castellani.
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where

Ca
bc ≡ r(b)r(c)

r(a)
Ca

bc +
r(a)r(c)

r(b)
Cf

ceη
eaηfb − r(a)r(b)

r(c)
Cg

fbη
afηcg. (A.6)

The Riemann curvature is defined in terms of the connection as

Ra
b ≡ dBa

b − Ba
cBc

b ≡ Ra
bdee

dee. (A.7)

Substituting the definition of B in terms of the structure constants given above, and

using the Maurer–Cartan equations for the differentiated vielbeins and Jacobi identities

for products of structure constants, one arrives at

Ra
bde = −1

4
Ca

bcC
c
de
r(d)r(e)

r(c)
− 1

2
Ca

biC
i
der(d)r(e) +

− 1

8
Ca

cdCc
be +

1

8
Ca

ceCc
bd. (A.8)

This form of the Riemann tensor is more general than the one presented in [35], where

the final result depended only on the Ca
bc and not on the Ca

bc due to the hypothesis that

the Killing metric be completely diagonal. In our case instead the mixed components γia

are non–zero, while the condition that within an isotropy–irreducible subspace the Killing

metric is proportional to δab still holds. This is necessary to ensure the antisymmetry of

the connection Bab.

It is straightforward to verify that when the Killing metric is diagonal, the Ca
bc reduces

to the combination

(
a b
c

)
Ca

bc of [35].

Appendix B:The Reduction of SO(7) under SO(3) ×
SO(2).

In this section we reduce the SO(7) indices to H–irreducible indices.

The embedding of SO(3)× SO(2) in SO(7) is defined by

(TH)ab = (CH
α)β(Tαβ)ab, (B.1)

relating the generators of H in an SO(7) irrep to the generators of SO(7) in the same

irrep through the structure constants. In the vector representation of SO(7) one has

(Tαβ)γδ = −δγδ
αβ

and therefore

(TH)αβ = (CH
α)β.

Using the expressions for the structure constants one obtains

(N)α
β =

 0 δm
m̂ 0

−δm̂m 0 0
0 0 0

 , (B.2)
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and

(J i)αβ =

 εimn 0 0
0 εim̂n̂ 0
0 0 0

 . (B.3)

Thus the SO(7) vector reduces under H as

7 → 31 ⊕ 3−1 ⊕ 10, (B.4)

where the first number labels the SO(3) irrep, while the second one is the U(1)H charge.

To construct them in the spinor representations we use the following γ matrices:

γm =
{
iσ1 ⊗ σ1 ⊗ σ2, iσ1 ⊗ σ2 ⊗ ,−iσ1 ⊗ σ3 ⊗ σ2

}
, (B.5a)

γm̂ =
{
−iσ2 ⊗ σ2 ⊗ σ1, iσ2 ⊗ σ2 ⊗ σ3,−iσ2 ⊗ ⊗ σ2

}
, (B.5b)

γ7 = iσ3 ⊗ ⊗ . (B.5c)

The charge conjugation matrix is

C = σ1 ⊗ ⊗ . (B.6)

The N generator in the spinor rep. is thus

N =
1

2
γmγm̂δmm̂ = − i

2



1
1

1
- 3

-1
-1

-1
3


, (B.7)

and the J i are

J i ∼


εijk 0

0 0
O4

O4
εijk 0

0 0

 , (B.8)

so the eight–dimensional spinor representation of SO(7) reduces under the H subgroup

as

8 → 31/2 ⊕ 3−1/2 ⊕ 13/2. (B.9)

We will decompose the eight–component Majorana spinor as

(
H
Λ

)
, where

Λ =

(
φ(3,1/2)

ω(1,−3/2)

)
.

24



Since ours are Majorana spinors CΞ∗ = Ξ, H∗ = Λ and then our generic spinor is

Ξ =


φk
−
ω+

φk
+

ω−

 . (B.10)
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