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We present a unified analysis of the two main production processes of vector boson pairs at the LHC,
V V -fusion and qq̄ annihilation, in a minimal strongly interacting electroweak symmetry breaking
sector. Using a unitarized electroweak chiral Lagrangian formalism and modeling the final VLVL

strong rescattering effects by a form factor, we describe qq̄ annihilation processes in terms of the
two chiral parameters that govern elastic VLVL scattering. Depending on the values of these two
chiral parameters, the unitarized amplitudes may present resonant enhancements in different angular
momentum- weak isospin channels. Scanning this two parameter space, we generate the general
resonance spectrum of a minimal strongly interacting electroweak symmetry breaking sector and
determine the regions that can be probed at the LHC.

I. INTRODUCTION

One of the main goals of the LHC will be to bring
some light on the symmetry breaking sector (SBS) of
electroweak (EW) interactions. In spite of the impressive
agreement of the present data with the Standard Model
(SM) predictions, the origin of EW symmetry breaking
remains unknown to a large extent. From direct searches
of the SM Higgs boson [1] we know that it has to be
heavier than 101 GeV (95% C.L.), and the fit to EW
data [2] gives a 95 % C.L. upper bound of 230 GeV.
Concerning alternative SBS scenarios, the EW precision
measurements disfavor the most simple technicolor mod-
els [3,5], but the data are compatible with a general class
of strongly interacting SBS [6]. One of the most char-
acteristic signals of this type of models is the enhanced
production of longitudinal vector boson pairs (VLVL) at
high energy colliders [8].

The Electroweak Chiral Lagrangian (EChL) [9] pro-
vides a general way to describe the low energy effects
of different strongly interacting SBS models, which are
represented by different values of the effective chiral cou-
plings. However, the perturbative predictions made with
this effective Lagrangians can only describe accurately
EW physics at low energies. The reason is that EW ob-
servables are given as a truncated series in powers of the
external momenta and, therefore, will always violate the
unitarity bounds if we go to high enough energy. In par-
ticular, at LHC, the EChL amplitudes involving longitu-
dinal gauge bosons will violate unitarity for values of the
effective couplings in the expected range of 10−2 to 10−3.
Furthermore, these polynomials in the external momenta
will not be able to reproduce the main feature of this type
of models, that is, the poles associated to possible new
heavy resonances generated by the SBS dynamics.

The perturbative EChL predictions can be extended to
high energy using unitarization methods [26]. The unita-
rized amplitudes for VLVL production processes can also
reproduce a resonant behavior depending on the values

of the effective couplings. Since the effective couplings
appearing in V V fusion are different from those in qq̄ an-
nihilation, these two processes will not show in general
the same pattern of resonances for an arbitrary choice
of the effective couplings. However, given that the SBS
interactions are strong, their dominant effects in both
processes are due to the same strong VLVL rescattering.
Thus, using the unitarity relations between qq̄ annihi-
lation and VLVL fusion, we describe in this paper both
processes only in terms of the two chiral parameters that
govern elastic VLVL scattering.

We start giving in Sec.II a brief overview of the Chiral
Lagrangian description of EW interactions. We summa-
rize the present experimental bounds on the chiral coef-
ficients and discuss which are the relevant ones for the
present study. In Sec.III, we provide a unified unitarized
description of the two main VLVL production processes at
the LHC, showing the spectrum of resonances expected in
different regions of the two parameter space. In Sec.IV we
apply these techniques to study the effects of the scalar
and vector resonances of the SBS in the production of
ZZ and WZ pairs at the LHC. First, we briefly describe
our calculation of the signal and the main background re-
actions. In order to obtain conservative predictions, we
will restrict our analysis to the cleanest detection modes
with the final W and Z bosons decaying into leptons of
the first two generations. Finally, in Sec. IV, we perform
a systematic study of the significance of the signals for
both vector and scalar resonances, and determine the re-
gion of the parameter space where these resonances can
be probed at the LHC. We give our conclusions in Sec.
V.

II. CHIRAL LAGRANGIAN DESCRIPTION OF
ELECTROWEAK INTERACTIONS

In this work we study minimal strongly interact-
ing symmetry breaking sectors (MSISBS), in which the
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global symmetry breaking pattern SU(2)L × SU(2)R

down to the custodial SU(2)c symmetry is the smallest
one ensuring [10] that ρ ≈ 1+O(g′2) [11]. The only light
modes of the SBS are the three Goldstone bosons (GB)
associated to this global symmetry breaking. The next
physical states from the SBS are expected to be heavy
resonances at the TeV scale, generated by the strong in-
teraction dynamics. Since no additional Higgs field is in-
cluded in this approach, the symmetry has to be realized
nonlinearly, with the three GB, ωa(x) with a = 1, 2, 3,
gathered in an SU(2) matrix

U(x) = exp
(

iωa(x)τa

v

)
, (1)

where τa are the Pauli matrices and v = 246 GeV.
The EW interactions at low energies can be well de-

scribed by the Electroweak Chiral Lagrangian [9], an ef-
fective field theory that couples the three GB to the gauge
bosons and fermions in an SU(2) × U(1) invariant way.
This Lagrangian has a set of effective operators of in-
creasing dimension that represent the low energy effects
of the underlying symmetry breaking dynamics. The C
and P invariant bosonic operators up to dimension 4 are

LEChL =
v2

4
TrDµU(DµU)† + a0

g′2v2

4
[Tr(TVµ)]2

+ a1
igg′

2
BµνTr(TWµν) + a2

ig′

2
BµνTr(T [V µ, V ν ])

+ a3gTr(Wµν [V µ, V ν ]) + a4[Tr(VµVν)]2

+ a5[Tr(VµV µ)]2 + a6Tr(VµVν)Tr(TV µ)Tr(TV ν)

+ a7Tr(VµV µ)[Tr(TV ν)]2 + a8
g2

4
[Tr(TWµν)]2

+ a9
g

2
Tr(TWµν)Tr(T [V µ, V ν ])

+ a10[Tr(TVµ)Tr(TVν)]2

+ e.o.m. terms + standard YM terms (2)

where the “e.o.m” terms refer to the operators that can
be removed using the equations of motion, and the “stan-
dard YM terms” stand also for gauge fixing and Faddeev-
Popov terms. where we have defined the following com-
binations of fields

T ≡ Uτ3U †; Vµ ≡ (DµU)U † (3)

and the covariant derivative and field strength tensors
are given by

DµU ≡ ∂µU − gWµU + g′UBµ,

Wµ ≡ −i

2
~Wµ · ~τ , Bµ ≡ −i

2
Bµ τ3,

Wµν ≡ ∂µWν − ∂νWµ − g[Wµ,Wν ],
Bµν ≡ ∂µBν − ∂νBµ. (4)

For some particular models of strong symmetry break-
ing physics, the values of the effective couplings ai can

be determined by integrating out their heavy degrees of
freedom. This has been done for the particular cases of
the SM with a heavy Higgs [13] and in technicolor mod-
els [15]. They all have a constant term giving their value
at the threshold of the new physics, and those needed to
renormalize the lowest order predictions also have a log-
arithmic term, giving the running from the new physics
threshold down to the low energy scale. The typical size
of these two types of terms lies in the range 10−2 to 10−3.

This formalism has been applied to constrain the effec-
tive couplings from EW low energy data. For instance,
the couplings a0, a1 and a8 contribute to the gauge bo-
son self energies up to order q2, and are related to the
T, S and U parameters [3], respectively. From the global
fit to the present EW data [4], we obtain the following
constraints on a0, a1 and a8 at the scale of 1 TeV:

a0(1TeV) = (4.3± 4.9)× 10−3,

a1(1TeV) = (6.8± 2.8)× 10−3,

a8 = (4.9± 4.7)× 10−3. (5)

Similar bounds have been obtained in [6]. These results
disfavor the simplest models of strong SBS, like a heavy
SM Higgs boson and rescaled-QCD technicolor models.
Indeed, it has been shown [3] that models with exact
custodial symmetry, a dominance of vector resonances,
and whose underlying SBS dynamics satisfies the Wein-
berg sum rules, give a negative contribution to a1 (that
is, a positive contribution to S) that is clearly disfavored
by the data. However, the effective couplings in Eq.(5)
are perfectly compatible with the general hypothesis of a
strong SBS [6], because their values are in the expected
range and no fine tunning is needed in order to fit the
data. The open question is then whether there is a model
of underlying SBS dynamics that can explain these val-
ues. In this work, we take a phenomenological approach
without making any assumption on the underlying the-
ory, and investigate what can we expect at future col-
liders if the EChL couplings take natural values in the
range 10−2 to 103.

At LEP-II and Tevatron, three more effective couplings
a2, a3 and a9 come into play, through their contribution
to the triple gauge boson vertices. A complete 1-loop
EChL calculation and a fit to the data could place con-
straints on these new couplings, but this analysis has not
been done so far. In spite of that, indirect bounds [16,17]
of the order of 10−1 for the trilinear couplings and in the
range of 10−1 to 10−2 for the couplings a4, a5, a6, a7 and
a10 that contribute to the quartic gauge boson vertices,
can be obtained from the low energy data through their
contribution to anomalous vertices in 1-loop calculations.

To summarize, the EW interactions in a MSISBS can
be well described at low energy by the EChL, with a set
of effective couplings taking values in the range of 10−2

to 10−3. The signals at low energy are expected to be
small deviations in the EW observables, of a similar size
to the EW radiative corrections.
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Concerning the LHC, there are already studies of its
sensitivity to the W and Z interactions within the non-
resonant EChL approach [18,17]. Hence, they are limited
to moderate energies, due to the breaking of unitarity al-
ready mentioned in the introduction. There is a general
agreement that, although the present bounds could be
significantly improved, with these non-resonant studies
the LHC would be hardly sensitive to values of the chiral
parameters down to the 10−3 level. Our aim in this work
is to extend these studies to include resonances without
leaving the EChL formalism. At the next generation of
colliders, we will be probing the W and Z interactions at
TeV energies, where the longitudinal components of the
weak bosons behave as their corresponding GB. Since
the GB are modes of the SBS, their self-interactions are
strong and it is reasonable to expect that they will dom-
inate the standard EW corrections. This allows us to
simplify further the description of the strong SBS effects
at high energies.

First, since we are assuming that the SBS interactions
preserve the custodial SU(2)L+R symmetry, only those
operators that are custodial symmetric (once the gauge
interactions are switched off) can be generated by pure
strong interaction effects, and they are expected to be
the relevant ones at high energy. These are the universal
term and the operators corresponding to the ai couplings
with i = 3, 4, 5. The couplings of the custodial break-
ing operators should be generated with at least a partial
contribution from the U(1)Y gauge interaction or other
sources of custodial breaking, that we are assuming to be
subleading compared with the strong SBS dynamics.

But it is possible to reduce further the number of op-
erators needed to describe the dominant effects of the
strong SBS interactions at high energy colliders. If the
strong SBS interactions dominate the EW physics at high
energy, the key reaction is the scattering of longitudinal
vector bosons, because it can take place through a pure
strong interaction amplitude. Then, if we know the scat-
tering amplitudes of longitudinal vector bosons in all the
relevant channels, this characterizes the main effects of
the strong dynamics. In particular, the main corrections
to the EW production of VLVL pairs will be due to their
strong rescattering effects, and if inelastic channels are
neglected, we can parametrize all the electroweak VLVL

production mechanisms in terms of only two effective
couplings (a4, a5) that govern the elastic VLVL ampli-
tudes. We discuss in the next section how to make this
parametrization in the unitarized-EChL formalism.

III. UNITARIZATION AND RESONANCES IN
THE SBS

A. Elastic VLVL scattering

At high energies, the scattering amplitudes of longi-
tudinal gauge bosons can be approximated by the corre-

sponding GB amplitudes using the Equivalence Theorem
(ET) [8]. At first sight, it may seem that the ET is in-
compatible with the use of the EChL, since the ET is
valid only at energies

√
s >> MW while the EChL is

a low energy effective theory. Nevertheless, it has been
shown [19] that there is still a window of applicability
for the ET together with ECHL, valid at lowest order
in the weak couplings, and for small chiral parameters.
However, in general, if we want to use the ET at energies
larger than, say, 1 TeV, it is essential that the theory
respects unitarity at high energies. This is an additional
reason to use the unitarization methods that we discuss
next.

Customarily, GB elastic scattering is described in
terms of partial wave amplitudes of definite angular mo-
mentum, J , and weak isospin, I, associated to the cus-
todial SU(2)L+R group. With the EChL, these partial
waves, tIJ are obtained as an energy (or external mo-
mentum) expansion

tIJ(s) = t
(2)
IJ (s) + t

(4)
IJ (s) + O(s3), (6)

where the superscript refers to the corresponding power
of momenta. The explicit expressions for these GB am-
plitudes valid up to O(p4) are given in the appendix [21].
As long as we are working at lowest order in the weak
coupling constants and we are assuming custodial sym-
metry in the SBS, these amplitudes only depend on the
two parameters a4 and a5.

It is easy to check that the EChL amplitudes given
in Eqs. (6) and (19) do not satisfy the elastic unitarity
condition

Im tIJ(s) =| tIJ (s) |2 ⇒ Im
1

tIJ(s)
= −1, (7)

which is simply the partial wave version of the Optical
Theorem. However, they satisfy the following perturba-
tive relation

Imt
(4)
IJ (s) =| t(2)IJ (s) |2 (8)

Whereas this condition is approximately equivalent to
the exact one for the relevant energies at LEP, SLC and
Tevatron, that is definitely not the case in the TeV energy
region. In general, and for (a4, a5) parameters of a natu-
ral size, 10−2 to 10−3, the unitarity violations cannot be
ignored at energies beyond 1 TeV.

To solve this problem, we are going to unitarize the
above amplitudes by means of the Inverse Amplitude
Method (IAM) [22,23]. This method has given remark-
able results describing meson dynamics further beyond
the perturbative regime, and reproducing the first res-
onances in each I, J channel up to 1.2 GeV [23,24]. A
simple way to understand the IAM is to realize that,
as indicated in eq.(7), the imaginary part of the inverse
elastic amplitude is known exactly at all energies. As a
consequence, any unitary elastic amplitude has to satisfy
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1
tIJ(s)

= Re
1

tIJ(s)
− i ⇒ tIJ(s) =

1
Re t−1

IJ (s)− i
.

(9)

Hence, we only need the EChL to approximate the real
part of the inverse amplitude. Formally:

Re t−1
IJ = (t(2)IJ )−1[1− Ret(4)IJ /t

(2)
IJ + ... ]. (10)

Then, using eq.(8) we arrive at the final expression for
the unitary amplitudes

tIJ (s) =
t
(2)
IJ (s)

1− t
(4)
IJ (s)/t

(2)
IJ (s)

(11)

which are the O(p4) IAM partial waves that respect strict
elastic unitarity at all energies. Note that the low-energy
chiral prediction (6) is recovered if we re-expand (11) in
powers of s, so that we have not spoiled the good features
of the EChL.

Concerning resonances, although in our derivation of
Eq.(11) we have used Eq.(7) which only holds for physi-
cal values of s, the very same unitarized amplitudes can
be obtained using dispersion theory [23], thus justifying
the extension of eq.(11) to the complex plane. In par-
ticular, it can be shown that Eqs.(11) have the proper
analytical structure with the right cuts. In addition, for
certain values of the chiral coefficients, the partial waves
from Eq.(11) can have poles in the second Riemann sheet,
which can be interpreted as dynamically generated res-
onances. Thus within this EChL+IAM formalism one
can describe resonances without increasing the number
of parameters and, at the same time, respecting chiral
symmetry and unitarity at all energies.

Note, however, that since the IAM at O(p4) can only
generate one pair of conjugated poles in the complex-s
plane, we can only reproduce one resonance per channel.
Hence, when we identify poles with resonances, we are
implicitly assuming that the values of a4 and a5 describe
the GB interactions due to the low energy tail of these
resonances. The saturation of the chiral parameters by
the lightest resonance multiplets, is usually known as the
resonance saturation hypothesis [14,25], and the better
known strong scenarios are indeed of this type.

Furthermore, non-resonant channels can also be well
reproduced, since in this case, the IAM poles will appear
at energies so high that the low energy regions look non-
resonant. Although the IAM formula still yields poles,
they are beyond the applicability limits, where other ef-
fects that we are neglecting here can come into play, and
we are not allowed to interpret them as resonances.

B. Unitarization of qq̄ → VLVL.

In order to study the LHC sensitivity to the different
resonant scenarios via VLVL production, it is essential to

include the qq̄ annihilation process. By means of the ET,
this process can be estimated from qq̄ → ωω. As far as
the initial quarks are essentially massless, and since the
couplings of GB to quarks are proportional to their mass,
the only relevant contribution is the s-channel, where
a quark and an anti-quark annihilate producing an W
which gives a GB pair. After this initial weak process,
we expect that the final state will re-scatter strongly. In
practice, such a W → ωω interaction can be described as
g FV (s), by means of a vector form factor, FV (s) (simi-
larly to what happens for the pion form factor). Due to
gauge invariance, FV (0) = 1.

The low energy EChL prediction for the form factor is
given as a series expansion

FV (s) = 1 + F
(2)
V (s) + ... (12)

We will see later that within our approximations, we do
not need the explicit EChL expression of F

(2)
V (s), but it is

important to note that it depends on the chiral parameter
a3, thus introducing another undetermined constant in
the analysis.

Since we are only considering strong rescattering ef-
fects, the exact two body unitarity condition for the form
factor reads

Im FV (s) = FV (s)t∗11(s), (13)

As in the case of the GB elastic amplitudes, the form
factor in Eq.(12) only satisfies unitarity perturbatively,
i.e.

Im F
(2)
V (s) = F

(0)
V (s)t(2) ∗11 (s) = t

(2)
11 (s), (14)

A way to unitarize the form factor is to realize that
the unitarity condition (13) tells us that the vector form
factor FV should have the same phase and the same poles
that the t11 partial wave. Therefore,

FV (s)
t11(s)

=
Re FV (s)
Re t11(s)

. (15)

Now, we can get an approximation of the modulus of FV

using the EChL expressions for Re FV /Re t11. Using the
unitarized expression for t11 from Eq.(11), we ensure that
the poles and phase of FV are correct. In summary, we
arrive at

FV ' 1 + Re F
(2)
V

1 + Re t
(4)
11 /t

(2)
11

1

1− t
(4)
11 /t

(2)
11

. (16)

This expression depends on the parameter a3 through
Re F

(2)
V and on a4, a5 through the elastic amplitude t.

From the strictest point of view of the effective theory
these two sets of parameters are not related, but once
one assumes that there is only one vector resonance, or
a scalar one, or both, it is possible to get a relation for
them. In particular, for those models presenting a vector
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resonance, it can be shown that, to a very good approx-
imation, the first quotient in eq.(16) is one. Thus, the
unitarized vector form factor is well approximated in this
case by

FV (s) ' 1

1− t
(4)
11 (s)/t

(2)
11 (s)

. (17)

which is completely determined by the unitarized t11(s)
amplitude and depends only on a4 and a5. This approach
has also been applied to the pion form factor and it re-
produces the ρ correctly [31].

FIG. 1. Vector Resonances in the (a4, a5) parameter space.
The chiral couplings are given at the scale of 1 TeV. The
J=I=1 partial wave only depends on a4 − 2a5, so that the
straight lines have the same physics in this channel. In the
table we give the resonance parameters for several lines. The
points P1 to P5 will be used as reference models in Sec.IV.

In models where there is not a vector resonance sat-
urating the I = 1, J = 1 channel, we do not expect a
significant enhancement of the vector form factor.

C. Resonances

The IAM was first applied to the SBS of the EW theory
in [26], to study the signals at the LHC of several spe-
cific choices of a4 and a5 that correspond to models with
rescaled-QCD or Higgs like resonances. The complete
theoretical study of the resonances that are generated in
the (a4, a5)-plane was performed in [28]. Since we will
use this information in the next section, we review here
the basic results.

Scanning the (a4, a5) parameter space in the range be-
tween 10−2 and 10−3, we can reproduce the scattering
amplitudes for VLVL production in the MSISBS. Fur-
thermore, the position of the poles in these amplitudes

FIG. 2. Scalar neutral resonances in the (a4, a5) parameter
space. The chiral couplings are given at the scale of 1 TeV.
The J=I=0 partial wave only depends on 7a4 + 11a5, so that
the straight lines have the same physics in this channel. In the
table we give the resonance parameters for several lines. The
points P1 to P5 will be used as reference models in Sec.IV.

will give us the masses and widths of the resonances (see
the appendix for the explicit expressions). We show in
Fig.1 a map of the vector resonances (J=I=1 channel)
in the (a4, a5) parameter space. Within our approxima-
tions, this partial wave only depends on the combination
a4−2a5, so that the straight lines with constant a4−2a5

have vector resonances with roughly the same mass and
width. We give several examples in the table within the
figure. In addition we locate five points that we will use
later as illustrative examples. The area in blank stands
for the case when no resonances or saturation of uni-
tarity is reached below 4π v ' 3 TeV, which, on general
grounds, we expect to be the applicability region of our
approach. Similarly, we show in Fig.2 the map of neu-
tral scalar resonances that appear in the J=I=0 channel,
which only depends on 7a4 + 11a5

∗. Incidentally, the
fact that the IAM amplitudes only depend on one com-
bination of chiral parameters implies that their mass and
width are related by the well known KSFR relation [27].

We do not give the I=2, J=0 channel since we do not
expect here any resonance in a MSISBS. Intuitively this
can be understood from the fact that, at low energies,
the I=2, J=0 channel is repulsive and therefore we do
not expect doubly charged heavy resonances. Further-

∗J.R.P. thanks J.A.Oller for pointing out a mistake in the
combination given in [28]. The figures obtained in that paper
are nevertheless correct.
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more, since we cannot make the slope of a phase shift
too negative due to causality (we cannot make an in-
teraction so repulsive that the scattered waves leave the
interaction point before they arrive), certain combina-
tions of chiral parameters are excluded theoretically [28].
Taking all this into account, in the I=2, J=0 channel we
either find a non-resonant behavior or an smooth and
wide saturation of unitarity.

FIG. 3. The general resonance spectrum of a MSISBS in
the (a4, a5) space. The chiral couplings are given at the scale
of 1 TeV. V stands for vector resonances, S for neutral scalar
resonances and W2, for wide structures that saturate the dou-
bly charged (I=2) channel. For illustration, we have also lo-
cated the most familiar models of the SM Higgs and Techni-
color, as explained in the text.

We have gathered the information on all these chan-
nels in Fig.3, which is a map of the general resonance
spectrum of a MSISBS [28]. Note that depending on the
parameters, we can find one scalar resonance (S), one
vector resonance (V), two resonances (S,V), a resonance
and a doubly charged wide saturation effect (W2) or even
no resonances below 3 TeV (white area). For illustrative
purposes, we have included the points that correspond to
some simple and familiar scenarios: minimal one-doublet
technicolor models with 3 and 5 technicolors (TC3 and
TC5), and the heavy Higgs SM case, with a tree level
Higgs mass of 1000 and 1200 GeV (H1000 and H1200).
The black region is excluded by causality constraints on
the I=2, J=0 wave.

Note that the chiral couplings a4 and a5 do have a scale
dependence [14,9,13]

a4(µ) = a4(µ′)− 1
16π2

1
12

log
µ2

µ′2 ,

a5(µ) = a5(µ′)− 1
16π2

1
24

log
µ2

µ′2 . (18)

In Figs.(1,2,3) they are given at the scale of 1 TeV.
Of course, the physical properties of resonances do not
change if we change the scale, but their location in the
(a4, a5) plane will be shifted according to the logarithmic
running of the effective couplings given in Eq.(18).

Concerning how reliable these predictions are, we
should remember that we are neglecting higher order ef-
fects on the weak couplings, gauge boson masses and
other inelastic channels that could open before 3 TeV.
We can only make a rough estimate of the accuracy of
our predictions based in Chiral Perturbation Theory and
meson dynamics or using specific models. From meson-
meson scattering, we know that it is possible to recon-
struct the lightest resonances from the chiral parameters
measured at low energy to within 10 to 20% of their ac-
tual values. We also know that inelastic effects due to
states of more than two GB are highly suppressed up to
the chiral scale (around 3 TeV in our case). Concern-
ing specific models, we know that we can mimic a heavy
Higgs scenario or a technicolor scenario within the same
range of accuracy. It is worth noting that we expect the
predictions to get worse if the resulting resonances be-
come too light. For instance, it is possible to see that the
IAM results deviate by more than 20% from those of the
N/D unitarization of a heavy Higgs SM if the mass is less
than, roughly, 700 GeV [29]. For higher masses the agree-
ment is much better. That is why we have darkened the
area where “Light Resonances” (lighter than 700 GeV)
appear. The results in this area should be interpreted
very cautiously. Outside this area we estimate that the
predictions of Fig.3 are reliable within, roughly, a 20%.

IV. GAUGE BOSON PAIR PRODUCTION AT
THE LHC

A. Signal and background processes

The cleanest way to detect V V pairs at hadron col-
liders is through the isolated, high-pT leptons produced
in their leptonic decay modes. For this reason, we will
restrict our analysis to ZZ and WZ production, assum-
ing that their gold-plated decay modes ZZ → 4l and
WZ → lν ll (with l = e, µ), can be identified and
reconstructed with 100 % efficiency. Realistic simula-
tion studies [32] have shown that the inclusion of silver-
plated W+W , ZZ and W±Z events, in which one of
the gauge bosons decays to jets, can improve the ob-
servability of very heavy scalar and vector resonances re-
spectively. However, the study of these channels would
require a detailed study of QCD backgrounds and jet re-
construction which is beyond the scope of this analysis.
Therefore our results, based on gold-plated events, are
rather conservative. In addition, since our theoretical
scenario does not predict any resonances in the I = 2
channel, we have not studied like-sign W±W± pair pro-
duction. Nevertheless, this final state could be particu-
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larly interesting to test non-resonant models [34], due to
its small backgrounds.

At LHC, the main production mechanisms of ZZ
and W±Z pairs are quark-antiquark annihilation and
V V fusion processes. Non-fusion diagrams, with
bremsstrahlung of the V bosons, are expected to be
small in the kinematic region that we will consider, and
have not been included in our calculation. To evaluate
V V fusion processes, we use the Effective-W Approxima-
tion (EWA) [35] and take the gauge bosons as real with
leading-order energy distribution functions. For the par-
ton distribution functions, we have used the CTEQ4 set
[36] in all the calculations, evaluated at Q2 = M2

W in V V
fusion processes and at Q2 = s in qq̄ annihilation and gg
fusion processes, with

√
s being the total center of mass

energy of the parton-parton system.
Since we have not included explicitly the decays of the

final W and Z bosons to leptons in our programs, we have
used the gauge boson variables to set event selection cuts.
A first event selection criteria to enhance the strong VLVL

production signal over the background is to require high
invariant mass V V pairs with small rapidities. We have
applied the following set of minimal cuts:

500 GeV ≤ MV1V2 ≤ 10TeV

|ylab(V1)|, |ylab(V2)| ≤ 2.5

pT (V1), pT (V2) ≥ 200 GeV

Indeed, these cuts are also required by the approxima-
tions that we have made in our analysis. Given that
VLVL → VLVL scattering amplitudes are calculated us-
ing the ET, our predictions can only be applied to
V V boson pairs with high invariant mass. In addition,
bremsstrahlung V bosons in non-fusion diagrams are pre-
dominantly produced at small angles, and it is a good ap-
proximation to neglect their contribution if one restricts
the analysis to the central rapidity region. Finally, the
pT cut selects V bosons from the signal because they are
produced with high pT from the two body decay of a
heavy resonance. However, we should keep in mind that
our pT distributions have several sources of uncertainty.
In V V fusion processes, we have used the EWA assuming
collinear V radiation, thus we have neglected the pT of
the incident V bosons. In qq̄ annihilation processes, we
have not included the NLO QCD corrections [37], which
are known to increase significantly the distributions at
high pT values. In the next section, this minimal set of
cuts will be complemented with a more restrictive cut
in the invariant mass around the resonances, in order to
improve the statistical significance of the signal.

The strong-interaction signal in ZZ production is ex-
pected in the fusion channels:

W+
L W−

L → ZLZL, ZLZL → ZLZL.

The amplitudes for these processes have been calculated
following the approach explained in Sect. III. We have

included and estimated the following backgrounds:

qq̄ → ZZ, 61%

W+W− → ZZ, 18%

gg → ZZ, 21%

where the percentage is their relative contribution to the
total background with the minimal set of cuts. The
ZZ → ZZ background has not been included since its
contribution is known to be negligible compared with
W+W− → ZZ The continuum from qq̄ annihilation has
tree level SM formulas. As we have said before, the next
to leading order QCD corrections to this process can sig-
nificantly enhance the tree level cross sections. There-
fore, our estimates of the qq̄ annihilation background for
ZZ production are probably too optimistic. The second
background is calculated in the SM at tree level, with at
least one transverse weak boson, excluding the Higgs con-
tribution. Finally, the one-loop amplitudes for gg → ZZ
have been taken from ref. [38].

For W±Z final states, two processes contribute to the
signal:

W±
L ZL → W±

L ZL, qq̄′ → W±
L ZL.

and the backgrounds included in our analysis are

W±Z → W±Z, 18%.

γZ → W±Z, 15%.

qq̄′ → W±Z. 67%.

All these backgrounds have SM tree level calculations.
The amplitudes for W±Z → W±Z have at least one
transverse weak boson and exclude the Higgs contribu-
tion. In the qq̄′ → W±Z background, we do not include
the amplitude with two longitudinal weak bosons, which
is considered as part of the signal. The QCD corrections
to qq̄′ annihilation processes would give an enhancement
in both the signal and the background, so we expect that
they will not modify considerably our estimates of the
statistical significance of vector resonance searches. We
have not studied the contribution to the background from
tt̄ production, but it has been shown that it can be effi-
ciently suppressed, after imposing kinematic constraints
and isolation cuts to high pT leptons [32].

B. Numerical Results

In order to see the LHC sensitivity to the resonance
spectrum described in Sec.III, we have first chosen five
representative points in the (a4, a5) parameter space (see
Figs.(1,2)). Points 1, 3 and 4 represent models containing
a J = I = 1 resonance with masses in the range 900-2000
GeV. Point 5 represents a model with a scalar resonance
with mass 730 GeV and a width of 140 GeV. Finally,
point 2 corresponds to a situation with both a scalar and
a vector resonance.

7



FIG. 4. Distribution of gold-plated WZ and ZZ events for 50 GeV MV V invariant mass bins, with the minimal set of cuts
in Eq.(IVA). The shaded histogram corresponds to the total background. On top of it we have plotted the signal as a white
histogram. We plot (from top to bottom) the predictions for the points P1 to P5 (see Figs. 1 and 2), that represent models with
one narrow vector resonance, a vector and a scalar resonance, an intermediate vector resonance, a very wide vector resonance
and, finally, a “narrow” scalar resonance.
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The MV V distributions for these five models are shown
in Fig.4, where we have plotted the signal on top of the
background for gold-plated ZZ and WZ events, assum-
ing an integrated luminosity of 100 fb−1. The vector
resonances in points 1 to 4 can be seen as peaks in the in-
variant mass distribution for final WZ states. The scalar
resonances in points 2 and 5 give small enhancements in
the number of ZZ pairs. We can see that, as a4 and a5

approach the origin, the resonances become heavier and
broader, and therefore the signals in the MV V distribu-
tions are more difficult to detect. From these plots, it is
also evident that that it will be much harder to detect
scalar than vector resonances. The reasons are: First,
that scalars are not significantly produced in qq̄ annihi-
lation. Second, the smaller rate of ZZ production from
V V -fusion. Third, the fact that the branching ratio to
leptons is smaller for ZZ (BR=0.0044) than for WZ fi-
nal states (BR=0.015), and, finally, that the scalar res-
onances are approximately six times wider than vector
resonances for the same mass.

The relative contribution of the different signal and
background processes for WZ and ZZ production at
these representative points is given in Tables I and II.
In order to enhance the signal to background ratio, we
have optimized the cut in MV V , keeping events in the
region of approximately one resonance width around the
resonance mass. The MV V cuts taken in each case are
given in the second column of these tables.

From the results for WZ production, it is clear that
the LHC will have an extremely good sensitivity to light
vector resonances, due to their production through qq̄′-
annihilation which dominates by far the V V -fusion pro-
cess. As the mass of the vector resonance increases, the
qq̄ contribution is damped faster than the V V fusion,
and both signals become comparable for vector masses
around 2 TeV. It is also important to note that, in ZZ
production, the strong interaction signal appears only in
V V fusion diagrams, and therefore to tag forward jets
is always convenient in this final state in order to reject
non-fusion processes. This is not the case, however, for
vector resonance searches in WZ pairs because then the
most important contribution comes from qq̄ annihilation
processes. In these tables, we have also estimated the sta-
tistical significance of the signal defined as σ = S/

√
B,

assuming integrated luminosities of 100 and 400 fb−1. In
ZZ final states, we also give the significance of the signal
assuming perfect forward jet-tagging.

V. CONCLUSIONS

We have presented a unified description of longitudinal
gauge boson pair production by fusion and qq̄ annihila-
tion just in terms of the a4 and a5 parameters of the
Electroweak Chiral Lagrangian (EChL). Our amplitudes
respect unitarity and generate dynamically resonances
depending on the values of these parameters. Within this

approach, we have studied the sensitivity of the LHC to
the general resonance spectrum of the minimal strongly
interacting symmetry breaking sector.

From a purely phenomenological EChL approach, and
without making any further assumption on the under-
lying symmetry breaking sector dynamics, the present
bounds on the electroweak parameters have room for
scenarios where heavy scalar or vector resonances can
appear in longitudinal gauge boson pair production pro-
cesses.

We show in Figure 5 the regions of the (a4, a5) param-
eter space that could be tested at the LHC, giving 3 and
5 sigma contours and assuming integrated luminosities of
100 and 400 fb−1.

We can see that there is a central region in the (a4, a5)
parameter space that does not give significant signals in
gold-plated ZZ and WZ events. This region corresponds
to models in which, either the resonances are too heavy
to give a significant enhancement at LHC energies, or
there are no resonances in the SBS and the scattering
amplitudes are unitarized smoothly. It is a very impor-
tant issue whether this type of non-resonant V V scatter-
ing signals could be probed at the LHC. Some authors
have argued that doubly-charged WW production could
be relevant to test this non-resonant region. But non-
resonant V V production distributions would have slight
enhancements in the high energy region, and a very ac-
curate knowledge of the backgrounds and the detector
performance would be necessary in order to establish
the existence of non-resonant signals over the continuum
background.

When the sensitivity contours are translated into res-
onance mass reach limits, our results are in good agree-
ment with realistic studies at LHC [32]. We find that,
with 100 fb−1, scalar resonances could be discovered (5σ)
in Gold-plated ZZ events up to a mass of 800 GeV with
forward jet-tagging, and vector resonances could be dis-
covered using gold-plated WZ events up to a mass of
1800 GeV.
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APPENDIX

The EChL predictions [14,21] for the VLVL elastic scat-
tering tIJ partial waves are

t
(2)
00 =

s

16 πv2
,

t
(4)
00 =

s2

64 πv4

[
16(11a5(µ) + 7a4(µ))

3
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FIG. 5. Sensitivity of the LHC to the resonance spectrum
of the strong SBS, with WZ and ZZ gold plated events. In
the (a4, a5) parameter space we represent the 3σ and 5σ reach
with an integrated luminosity of 100 fb−1 (solid lines limiting
the shaded areas) and 400 fb−1 (dashed lines), both for scalar
and vector resonances. The chiral couplings are given at the
scale of 1 TeV.

+
1

16 π2

(
101− 50 log(s/µ2)

9
+ 4 i π

)]
.

t
(2)
11 =

s

96 πv2
,

t
(4)
11 =

s2

96 πv4

[
4(a4(µ)− 2a5(µ)) +

1
16 π2

(
1
9

+
i π

6

)]
.

t
(2)
20 =

−s

32 πv2
,

t
(4)
20 =

s2

64 πv4

[
32(a5(µ) + 2a4(µ))

3

+
1

16 π2

(
273
54

− 20 log(s/µ2)
9

+ i π

)]
. (19)

Note that the projection in angular momentum has been
defined as

tIJ =
1

64 π

∫ 1

−1

d(cos θ)PJ (cos θ)TI(s, t) , (20)

where TI is the amplitude in the weak isospin basis.
From these amplitudes, and using eq.(11), we can ob-

tain the value of the masses and widths of the resonances
when they appear. We only have to determine the posi-
tion of the pole in each channel, and then to identify its
real and imaginary parts with the mass and half of the
width of the resonance. Thus, for the vector channel, we
find:

m2
V =

1
4(a4 − 2a5) + 1

9(4π)2

, ΓV =
m3

V

96 π v2

Of course, mV is an observable and cannot depend on
the scale. Indeed, the a4 − 2a5 combination is scale in-
dependent (see eq.(18)). For the scalar channel we get a
trascendental equation

m2
S =

12 v2

16 (11a5(mS)− 7a4(mS)) + 101
3(4π)2

, ΓS =
m3

S

16 π v2

Note that the scale µ is taken at mS . From the above
equations it is easy to see that, for equal masses, scalar
resonances would be six times wider than vector reso-
nances.
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(1998) 3452; Phys. Rev. D59, (1999) 074001; Erratum-
ibid. D60, (1999) 099906. F. Guerrero and J. A. Oller,
Nucl. Phys. B537, (1999) 459.

[25] G. Ecker, J. Gasser, A. Pich and E. de Rafael, Nucl.Phys.
B321, 311 (1989).

[26] A.Dobado, M.J.Herrero and T.N.Truong, Phys. Lett.
B235 (1990) 129;A.Dobado, M.J.Herrero and J. Terrón,
Z. Phys. C50 (1991) 205; Z. Phys. C50 (1991) 465.

[27] K. Kawarabayashi and M. Suzuki, Phys.Lett. 16B, 225
(1966) Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071
(1996)
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TABLE I. Expected number of signal and background gold-plated W±Z events at the LHC with L = 100 fb−1, for four
different values of (a4, a5) that give vector resonances in the 900−2000 GeV mass range. We have applied the cuts in Eq.(IVA),
with the optimized cut in the V V -invariant mass indicated in each case. The statistical significance of the signal is given also
for an integrated luminosity of 400 fb−1.

P: MV , ΓV (GeV) Cuts: Signal Signal Signal Backg. Backg. Backg. S/
√

B S/
√

B
(a4, a5)× 103 (Mmin

V V , Mmax
V V ) Fusion qq̄ Total Fusion qq̄ Total (400 fb−1)

P1: 894, 39
(-6.25,6.25)

(700,1000) 123 1630 1743 74 150 224 116 232

P2: 1150, 85
(-1.25,8.75)

(900, 1300) 65 369 434 50 84 134 37 75

P3: 1535 , 200
(-1.25,3.75)

(1250, 1700) 24 56 80 21 27 48 11 23

P4: 1963 , 416
(-1.25,1.25)

(1500, 2350 ) 10 12 22 14 16 30 4 8

TABLE II. Expected number of signal and background gold-plated ZZ events at the LHC with L = 100 fb−1, for two
representative values of (a4, a5) with scalar resonances. We have applied the cuts in Eq.(IVA) with the optimized cut in the
V V -invariant mass indicated in each case. The statistical significance of the signal is also given for the cases of ideal forward
jet-tagging and for an integrated luminosity of 400 fb−1.

P: MS, ΓS (GeV) Cuts: Signal Backg. Backg. Backg. Backg. S/
√

B S/
√

B S/
√

B
(a4, a5)× 103 (Mmin

V V , Mmax
V V ) Fusion Fusion gg qq̄ Total (jet-tagging) (400 fb−1)

P2: 850, 225
(-1.25,8.75)

(600, 1050) 15 10 11 34 55 2 5 4

P5: 750 , 140
(3.25,3.75)

(550, 900) 21 10 14 39 63 3 6 5
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