%} j INSTITUTE OF NUCLEAR PHYSICS |
L.

NATIONAL CENTRE FOR SCIENTIFIC RESEARCH "DEMOKRITOS"
153 10 AG PARASKEV! ATTIKIS POB 60228 TEL. £513111-9 £518911-9 TLX 216199 ATOM

to appear in Phys. Rev. C DEM_N_T“EH4

Ground—y band coupling in heavy deformed nuclei
and SU(3) contraction limit

N. Minkov*!, S. B. Drenska*?, P. P. Raychev*3, R. P. Roussev** and
Dennis Bonatsos'®

* Institute for Nuclear Research and Nuclear Energy,
72 Tzarigrad Road, 1784 Sofia, Bulgaria

I Institute of Nuclear Physics, N.C.S.R. “Demokritos”,
GR-15310 Aghia Paraskevi, Attiki, Greece

6601166-NV DS

R ORR NI

Abstract

We derive analytic expressions for the energies and B(E2)-transition probabilities
in the states of the ground and 4 bands of heavy deformed nuclei within a collective
Vector-Boson Model with SU(3) dynamical symmetry. On this basis we examine the
analytic behavior of the SU(3) energy splitting and the B(E2) interband transition
ratios in the SU(3) contraction limits of the model. The theoretical analyses out-
line physically reasonable ways in which the ground-y band coupling vanishes. The
experimental data on the lowest collective states of even-even rare earth nuclei and
actinides strongly support the theoretical results. They suggest that a transition from
the ground—y band coupling scheme to a scheme in which the ground band is sitnated
in a separate irreducible representation of SU(3) should be realized towards the mid-
shell regions. We propose that generally the SU(3) group contraction process should
play an important role for such a kind of transitions in any collective band coupling
scheme in heavy deformed nuclei.
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1 Introduction

An important advantage of the dynamical symmetry (DS) approach [1, 2. 3. 4] in nuclear
theory is the possibilitv to describe consistently various collective bands of heavy deformed
nuclei [3, 6, 7). Generally, the DS concept is based on the assumption that the physical
system possesses a “primary” symmetry with respect to a given group, called DS group.
The Hamiltonian of the system reduces this symmetry to the group of invariance of the
system (which for the nuclear system coincides with the angular momentum group SO{3))
and thus the energy spectrum is generated [1j-[4]. The Lie algebra of the DS group is then
reduced to the algebra of the group of invariance and is referred to as spectrum generating
algebra. The basic idea of DS approach in heavy deformed nuclei is that their collective
bands can be united into one or several multiplets, appearing in this reduction [5, 6, 7]. It
provides a natural way to study the interaction between a particular couple of bands as
well as the attendant spectroscopic characteristics of nuclei.

Various classification schemes with band coupling have been developed on the basis of
DS approach. Well known models, such as the Interacting Boson Model (IBM) [8], the
symplectic models [9, 10} and the Fermion Dynamical Symmetry Model [11], provide a
good overall description of nuclear collective phenomena, covering the different regions of
vibrational, rotational and transitional nuclei.

On the other hand, some models, based on the SU(3) dynamical symmetry, reproduce
successfully the particular characteristics of rotational bands in deformed .uclei. Such
models are the Pseudo-SU(3) Model [12], which has microscopic motivations, as well as the
Vector-Boson Model (VBM) with SU(3) dynamical symmetry {13, 14, 15], which allows a
relevant phenomenological treatment of the SU(3) multiplets in nuclei.

While in the 5U(3) limit of the IBM the possible irreducible representations (irreps)
(A, p) are restricted by the total number of bosons describing the specific nucleus, in the
VBM the possible SU(3) irreps (A, p) are not restricted by the underlying theory. However,
it has been shown recently [16] that some favored regions of (A, ) multiplets in the VBM
could be outlined through the numerical analysis of the experimental data available for

the ground (g) and the - collective bands of even-even deformed nuclei, (The favored
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multiplets provide the best model descriptions.) As a result, a systematic behavior of the
SU(3) svmmetry propertics of rotational nuclei has been established in terms of the VBM.
[t suggests the presence of a transition between a scheme. in which the ¢ and the 4 bands
are coupled into one and the same (A, i) irrep and a scheme, where these two bands belong
to different irreps. In addition it has been supposed that the fine systematic properties
of rotational spectra could be interpreted as a manifestation of a more general dynamical
symmetry.

As a first step in the recovering of the dynamical mechanism causing such a transition,
one should study the way in which the SU(3) symmetry is reduced in the (A, p)- plane.
In particular, it is of interest to reproduce the limits, in which the quantum numbers A
and g go to infinity, i.e. the cases, in which the SU(3) irreps are not finite anymore.
These limits correspond to the so called SU(3) contraction process, in which the algebra of
SU(3) goes to the algebra of the semi-direct product TsASO(3), i.e. SU(3) - Ts A S0(3)
(Ts is the group of 5-dimensional transiations generated by the components of the SU(3)-
quadrupole operators) [17, 18, 19, 20, 21, 22]. Generally, the contraction limit corresponds
to a singular linear transformation of the basis of a given Lie algebra. The transformed
structure constants approach a well-defined limits and a new Lie algebra, called contracted
algebra. results [17] . The original and the contracted algebra are not isomorphic.

On the above basis it is expected that in the SU(3) contraction limit the space of
the SU(3) irreps should undergo a respective limiting transition. As a result the SU(3)
multiplets should be disintegrated to sets of various independent bands. It is, therefore,
reasonable to consider this limit as a natural way in which the band-mixing interactions
vanish. It is important to remark that the SU(3) contraction process is a situation in which
a compact group goes to a non-compact one. Hence, one could try to interpret the vanishing
g— band-mixing interaction as a transition from a compact to a non-compact DS group.

In the present work we realize the above considerations through the formalism of the
VBM. Our purpose is to examine the various directions in the {\, u)-plane by investigating
the respective changes in the structure of the SU(3) multiplets in terms of model defined

spectroscopic characteristics of rotational nuclei. As such, we consider here the SU(3) energy



splitting and the g—v interband t‘ansitions, which carry important information about the
link between the two bands. It is Khown that the energy splitting of the multiplet determines
to a greal extent the systematic behavior of the SU(3) dynamical symmetry in deformed
niclei [16].

In the VBM relatively simple analytic expressions for the energies and the transition
probabilities can be derived both for the lowest I = 2 states of any (A, g)- multiplet and
for all the states of any (A, 2) multiplet. The analytic expressions for the L = 2 states allow
one to examine the SU(3) characteristics of nuclei in terms of two-dimensional surfaces in
the (A, p)-plane, while in the (X,2) direction one is able to investigate the behavior of the
full set of states in the multiplet, i.e. the states with L 2 2. On the other hand, the [ > 2
states of the irreps with 4 > 2 can be treated numerically.

In such a way, a relevant combination of analytic and numerical analyses could be
applied in order to reveal the systematic behavior of all the states of SU(3) irreps in the
(A, p)-plane including the limiting cases of SU(3) group contraction. The collective scheme
of the VBM is constructed by using the irreps with A > 4 and comprises the following two
SU(3) contraction limits:

(1) A — oo, with p finite;

(i) A — 20, g — oo, with g < A

Below we provide a detailed study of the most important spectroscopic characteristics
of the g and the 4 band in the above limiting cases. It will be shown that our approach
gives a reasonable interpretation of the corresponding experimental data and leads to rather
clear conclusions about the rearrangement of collective rotational bands in heavy deformed
nuclei.

In Sec. II the g~ band coupling scheme of the VBM is presented. In Sec. III we derive
analytic expressions for the energies and the B(E2)-transition probabilities for the 2, and
2, states of an arbitrary (A, #) multiplet. Using them, we obtain the analytic behavior of
the energy splitting and the physically meaningful transition ratios in the SU(3) contraction
limits (i} and (i1). In Sec. IV we derive expressions for the splitting and the transition ratios

for the [ull set of states (L > 2) in the (A, 2) multiplets and obtain their analytic form in the
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first limiting case (A — oo; g = 2). In See. V all analytic results are examined numerically.
Also, there we provide a nutierical study of the second limiting case (A = oo, Ho— 00;
p < Al for the states with L > 2. The results are discussed together with an analysis of

experimental data. In Sec. VI the conclusions are given.

2 g—v band coupling in the VBM

The Vector-Boson Model (VBM) with SU(3} dynamical symmetry is founded on the as-
sumption that the low-lying collective states of deformed even-even nuclei can be described
by means of two distinct kinds of vector bosons, whose creation operators &t and n* are
O(3) vectors and in addition transform according to two independent SU(3) irreps of the
type (A, 1) = (1,0) {13, 14, 15]. The vector bosons provide a relevant construction of the
SU(3} angular momentum and quadrupole operators like the bosons in the Schwinger re-
alization of SU(2) [23]. Therefore, they can be considered as natural building blocks of a
model scheme with SU(3) dynamical symmetry. Also, the vector bosons can be interpreted
as quanta of elementary collective excitations of the nucleus [15).

In this model an SU{3)-symmetry reducing Hamiltonian is constructed by using three

basic O{3) scalars, which belong to the enveloping algebra of SU(3) [13]:
V=gl’+¢l-Q L+gATA. (1)

Here g1, g2 and g3 are ‘ree parameters having the meaning of constants of interaction; L

and ) are the angular momentum and quadrupole operators respectively

Ln=-v2Y) ClIn (€& +ufn), m=04+1; (2)
1,
Qe=V6) CH(re +nfn), k=0,+1,42 (3)
[Ty

with CEY . denoting the standard Clebsch-Gordan coefficients: the operator A" has the

form

At =gt — (gt 7). (4)



pearing in (1) represent the higher third and fourth
ectivelv. It is known that any O(3) scalar in the
ressed by means of the three operators in Eq. (1) [24,

incorporates in a reasonable way the most important

d nuclei determined by their angular momenta and

to the SU(3} D O(3) group reduction and are con-

s {3 and nf (v = 1,0,-1) acting on the vacuum
aITO—20-B{(€+)2}()\+.u—L—2a—B)/2(A+)alo) : (5)
1+£i-1 )

-z = (E ) () - (€Y nt),

5 710 -

Gl =&t we =0t — €5nd

irrep of SU(3). The set of the states (5) is known as
27,

) distinguishes the various O(3) irreps, (L, M), ap-
nd labels the different bands of an SU(3) multiplet.
ough the following inequality {14, 27]

< min{5(u = 0), 55+~ L~ B)} ©)

0, A+ pu— L even (1)
1, A4 p~L odd

he Elliott quantum number K, which is used in the

/2 [14].
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In the VBM the g- and the lowest - band belong to one and the same SU(3) multiplet.
where A and g are even and X > g These bands are labeled by two neighboring integer
values of the quantum number a. (More precisely. the states of the g- band are labeled by
the largest value of a appearing in (6), while the y- band corresponds to the next smaller
a- value.)

While in the SU(3) limit of the original version of the IBM (known as IBM-1) [8] the
SU(3) maultiplets are degenerated with respect to the quantum number K in the VBM this
degeneracy is removed by the second, - @ - L, and the third, A* A, terms in Hamiltonian
(1). The analytic expressions for the matrix elements of these terms, given in Table 1,
depend on the quantum number a. So the SU(3) multiplets of the VBM are split with
respect to a.

The action of the transition operator Qg, Eq. (3), on the basis states (3} is given by
VAR VIR IR ®

{

Qo

The coefficients af are given in Table 2 .
The eigenstates of the Hamiltonian (1) with given angular momentum £ and energy wt

are constructed in the form:

\;Uf > z aJ,LL>' (9)

where dy, is the multiplicity of the O(3)-irrep (L, M) in the given SU(3) irrep.

The physical states and energies corresponding to a given SU(3) multiplet are then
obtained by solving the standard problem for eigenstates and eigenvalues. The general
solution of this problem (in arbitrary SU(3) irrep) is derived in Ref. [16].

The matrix elements of @y between the physical states (9}, which determine the B(E2)

transition probabilities in a given (A, u } multiplet, have been derived in the form [16]:

w(LA’,L> Z s 2 R (10)

s=0,%1

(A ) 0
Wit L4k L |0

=1



where ¢, 2" and £ take the values i = | —d; ¢ =1 —dpyp and k£ = 0,1,2. The matrix of
the wave-functions coefficients ('! and its inverse matrix " = (("F371 are determined by
the solutions of the eigenstate problem [Eqs. (13)-(16) of Ref. {16]].

The above scheme provides a good description of the energy levels and of the B(E2)
transition ratios within and between the g- and 4- bands [13, 16]. The other collective
bands, in particular the lowest 8-band, do not belong to the same irrep. Therefore, they

are not considered in the framework of this model.

3 The L =2 states in (), u)-plane
3.1 L =2 energy splitting

Here we consider the L = 2 energy levels of the g- and the ~- band in terms of the VBM.
For any (A, i) multiplet (1 > 2), the 2, and 2, states are the only possible ones appearing
at angular momentum L = 2. They are labeled by the quantum number « as follows [See
inequality (6)]: a1 = u/2 — 1 for 2, and a; = p/2 for 2,. Hence, for the L = 2 states the
Hamiltonian matrix is always two-dimensional and the corresponding eigenvalue equation

has the form:

Vl,l ~- wl@ Vl,z _
det ( Vo, Vg —w® | = 0, (11)

where w(? = wI=% are the eigenvalues and

A,
Viit = (@;,2\V]a;,2) = < o(:j Qu)z |V

(A p)
Qgr, 2, 2 ’ (]2)
with j,j7" = 1,2, are the corresponding Hamiltonian matrix elements. By using the general

analytic expressions given in Table 1 we obtained these matrix elements in the form:

Vio = (G = D.2VIG = 1),2) = 691 +602(20 + 20 +3) + 9P\ p) . (13)
Viz = (5.20V15,2) = 6g: — 602(20 + 2 + 3) + g5Q(N, 1) (14)
Viz = (5= D.20VI5.2) = 1200 = g5l - 2) . (15)
Ve = (5.2VI(5 —1).2) = —120) + 200\ + 2 + 2) (16)



where
PlAp) = Mpe =2+ 20 A+ 200 4+ 2) + pulpp — 2 + Dip +3) (17)
QA u) = M+ 2042y + plp ~ D+ 1)(p +2) . (18)

The energy levels £] and Ej, corresponding to the 2, and 2, states respectively, are

determined as

E] = P (19)
E; = ) -u9, (20)

where

1 .
W =5 {v + Vaa + (= 1)y (Vi + Va2)? — 4(VoVaa — vmvz,l)} (2

¢t = 1,2. are the solutions of the eigenvalue equation {11), and w(® = grf(A+p+1)2%is
the zero-level eigenvalue, corresponding to the ground state 0,. After using Egs. (13)-(16)

we obtain the following analytic expressions for EY and EJ:

E§ = 6gi —2Fg; — 2,/ Ag} + Bgt — Caags , (22)
E} = 6g1—2Fgs+ 2\/A9% + Bgi — Cygags , (23)
where
= A(Mp) =9[(2M +2u + 3)* —4Ay] ; (24)
= BAu)=[AA+2u+2) +p(p+ 1)) -
= AMA+2p+2)(p-2); (25)
C o= CAu)=6(20 +2u + 3)[AMA + 26 4+ 2) + p(p + 1)] -
— 6Au(A +3p) (26)
Fo= FOup) =AM +2u+2) +2u(n+1). (27)

Hence, we derive a model expression for the energy splitting of the SU(3) multiplet. It
1s known that the splitting can be characterized by the ratio [16]:

E] -

AL == (28)



In terms o1 Egs. (22) and {23) the quantity A, obtains the following analvtic form:
AE - )
/ ‘2 = - - - = . (29
(391 = Fao)/\/Ag] + Bgl — Cgagy — 1

The expressions. obtained so far, allow us to study analytically the g—4 band-mixing

interaction and the energy splitting at L = 2 in the (), u)-plane. In particular we are able
to reproduce analytically the SU(3) contraction limits:

(1) A — oo, with g finite;

(1) A = oc, p — oc, with g < A. Since the difference A — i 1s always finite, we take for
definiteness p = A,

In each of these limits we estimate the A- and/or - dependence of the matrix elements
(13)-(16), as well as the analytic behavior of the splitting ratio AE,.

In case (i) the matrix elements are determined by the corresponding highest degrees of

A. Thus for y > 2 the Hamiltonian matrix (V; ;) obtains the following asymptotic form:

(Voo ~ ( i: 22 ) , (30)

where the upper off-diagonal element (denoted by *) does not depend on A. Then the
relative contribution of the off-diagonal (band mixing) terms in the eigenvalue equation (11)
decreases with the increase of A as A*/A* = 1/A% For u = 2 the term V;; is proportional
to A instead of A? [See Eqs. (13) and (17)], so that in this particular case the off-diagonal
contribution decreases as 1/A.

In the same limiting case the functions (24)-{27) have the following asymptotic behavior:
Ascco = 36A% Basoo =AY Chee = 1203 Filoo = A2 .

After applying them in Eq. (29), we find the analytic limit of the splitting ratio (29):

2

lim AFy = —
o 0T gaflgsl = 1

(31)

We remark that the application of the VBM in rare earth nuclei and actinides requires
g3 < 0 [16], which gives in (31)
lim AL, = cc. (32)

A0
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Therefore, in this case the SU(3)-multiplet 1s completely spht.

Consider now the limiting case (ii}, A = ¢ — x. Then the asymptlotic form of the

matrix (V5 ;) is:

. PRI
(v )A=#—-0C« ~ ( A2 ) ) . (33)
Here we find that the relative magnitude of the band-mixing interaction decreases as

AY/A® = 1/X%, Le., more rapidly in comparison to the previous case.

Furthermore, in the limiting case (ii) one has:
Anzpmne = 108A% Bicuo = 130 Chcpse = 7203 Ficyim = 5A2.

Then the SU(3) splitting ratio goes to:

2
lim AE, = (34)

A== ~(5/V13)gs/1gsl — 1

For g3 < 0 we obtain

lim AF, =2/(53/v/13-1)=5.17. (35)

A=U—o0
Therefore, in this case the band-mixing interaction vanishes, while the energy splitting

between the two bands remains finite.

3.2  Transition ratios in the L = 2 states

Here we turn to the electromagnetic transition probabilities for the states 24,2y and 0,. In

particular it is of interest to consider the following B(E2) transition ratios:

_ B(E%2,-2,)

(2) = B(E%2, = 0,) (36)
_ B(E2;2, - 2,)

BaA2) = B(E2;2, - 0,) (37)

The first of them, Ri(2), gives the relative magnitude of the g—~ interband transition
probability with respect to the ground intraband one. Thus it naturally characterizes the
link between the two bands within the multiplet. The second ratio represents one of the
widely used collective characteristics of nuclei related to Alaga rules. Both quantities (36)
and (37) can be obtained from the experimental data on deformed nuclei and therefore have

a direct physical meaning.
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In order to derive analytlic expressions for the above ratios we calculate the matrix

clements of the quadrupole operator Qg between the cigenstates

\ (A p0) @ )
2\ () LA «(2) ; - 1.2 3
s ) 1 pj2—1,22 >+Ci2 l /2,22 ’ v= 1L (38
(0) (’\s Ju')
A > ’ (39)
of the VBM Hamiltonian (1). (It should be remembered that the eigenvalues w!?, ugz) and
L0

correspond to the 2., 2, and 0, states respectively.) After using the general expression

(10) we obtain the following matrix elements:

@] ol w®) = AMCEY? + w(CDY + 23 + 24 + 3)CPCP

R et B @@ _ (B0
Cll T Czl Clz
@) _ o)

(0 Qo {2}> = +/6C® pCy 21 ) (41)

[ o| W y

< 1 ! 01(3)02(2) _ C(ﬂcg)

(0) )\C{I #Cm

O Qolwf?) = VEC . (42)
| 2 cPcP _ cBcp)
The wave-function coefficients are determined as
CV = (D 4 2mafP 4 RSP (43)
C¥ o= hc® . i=12 (44)
O = (ot (45)

) (A1) () 1) [ 12 (1+1)(p -1
1(’)=<p/z.”1,2l oY = Lno ;(’jﬁ) s
x[( =D+ 2)(A+3)(A+5) = pAA +4) A+ 1+ 6)]; (46)

(0 ) >: %R(A’“) - (#/2 ) SI(A?#)U_JF_Q# . (47)

0 - (G| ) -k (3 Jsws e o



) (A, ) (A, p) - f i
= <J“/2,U ’ /2.0 > R(A.p1) ( 1 (49)

=0

(‘-' [v

>¢MW¢A+njnu+z+ﬂ
A+ 3 A+ p 4 4)

are the corresponding overlap integrals obtained by the general expression in [14], with

R(Ap) = (A+3)u!)?, (50)

At p—1-2)1 1
SO = ({1~ 1t e (51)

In addition [see Eqs. (13)-(15) in ref. {16]]

~ W
hig = _(Vl—‘vg_) = [=392(20 +2u +3) + ga[(A + p)* + 24 + p]+
(—1)"\//4(/\-#)93 + B(X u)g3 — C()\,#).azga] /(69201 — gap(p — 2)) , (52)

with A(A, u), B{A, u) and C(A, i) being defined in Eqgs. (24)~(26).
Subsequently, using the general expression for the B(E2) transition probability between

two of the above eigenstates

. —_ L2 L (o
B(Ez,LI,_}[JUu - (—L 0 L) < Wy 'QD

(L, L" = 0,2; v,v" = g,v), we derive the analvtic form of the transition ratios (36) and

(37}

(33)

B(E2§ 2, — 29) — i f(o) [.“h%z + (2A +2p + 3)haz + ’\]2 ) (54)
B(EQ;Qg - 09) 21 (fff} + 2h22f(2) 22 22 )(#hﬂ - A) ’
B(E2;2, — 2,) _ 4 O P+ 2h12f[2) hi, 'g))
B(E2;2, — Og) ) (fl(f + 2h22f21 22f2(§))2
[1h3, + (X + 2 + 3)hyy + A2 (55)

(nhiz — A)?

Now we are able to study the above ratios in the two limiting cases considered in the
previous subsection. For this purpose we have analyzed the explicit expressions for the
overlap integrals (46)-(49) and the hy-factors (52). In this way we have deduced that in

both limits, (i} and (ii). the overlap integrals increase to infinity. On the other hand one

13



can verify that, this behavior is compensated consistently in the ratios (54) and (55), where
the contribution of the integrals is finite.
For the case (1) (A — o, with g finite) we have obtained the following analytic limits

of the A,-factors:

: 2934
im hy; = =00, 56
Ao 6920 — gap(p ~ 2) (56)
. I
fim b = =5 %)

(As in the previous subsection here we consider g3 < 0.} Note that hy; is a constant. By

using this result we obtain the analytic limits of R;(2) and R3(2) in case (i):

. B(E22, -2,

Jm B(E2.2, >0, _ 0 (58)
. B(E22,>2,) 10 (p+2)°

S B(E22,—0,) ~ 7\ 2¢ J ° (59)

Thus, in this case we find that the relative magnitude of the g— interband transition is
zero, while the ratio H»(2) obtains finite values depending on the quantum number p. We
remark that for 4 = 2 one has Ry(2) = 10/7, which is the standard Alaga value.

In case (ii) (1 = A — o) we have (g5 < 0):

hlg = ¢ =—4-— \/1_ = —7.606 ; (60)
hs = ;= —4+4113 ~ ~0.394 (61)

i.e. h;p do not depend on the quantum numbers ) and . Then we obtain the following

limits:

B(E2;2 2 10 24+4 2

im ( iy 7 g) = — 2(62+ C2+1) 301?2 ) (62)
A=p—oo B(E2;2, — 0,) T (B4 e+ 1){eg—1)2

- B(E22,—52) _ 10(+4c+ 1) +c +1)
A=p—oo B{E2;2, — 0,) 7 (2 + e + 1)y — 1)2

~ 0.304 . (63)

In this case one finds that both ratios, R,(2) and Ry(2), remain finite.
We remark that, except for the sign of g, all obtained limits do not depend on the

model parameters. (It is assumed that g;, g;, and g5 are finite.)
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4 The (A, 2)-direction

4.1 SU(3) sphitting in L > 2 states

For the (A.2)- irreps the g- and the y-bands are the only possible ones appearing in the

corresponding SU(3) multiplets. They are labeled by the quantum numbers az =landa; =

0 respectively [See inequality (6)]. In the even angular momentum states the Hamiltonian

matrix 1s always two-dimensional, while for the odd states of the ¥- band one has a single

matrix clement. Hence for the {A,2})- multiplets one is able to derive analytic expressions

for the spectroscopic characteristics of the full sef of states (L > 2) in a way similar to

that of the previous section. That is why we do not explain in detail all steps of analytic

calculations and report only the final results in this direction.

So. for a given (X,2) multiplet the energv levels ES(L) and E™(L) of the ¢ and the

v-band can be written in the following form:
E(L)y = B+ AL(L+1)—-|B|R"®
E’Y(Leven) = .é + AL(L + 1) + |B|R(L) :
E"(Loaa) = 2B 4 (A+g3)L(L+1),

where
/‘i = fi(ghgzaga) =a — (2/\ + 5)92 — g3,
B = B(/\,gz,g;;) = 6(2/\ + 5)9‘2 hant 2(;\ + 3)293,
and
RY = /T4 aL(L+1)+bL3L 1 1) .
with
4
a=a(} g2, 93) = % {(A+3)[(A +3)gs — 692193 — 3(95 — 692)92} ,
]
b= b(A'g‘Zag3) = E (9‘3 — 692)2 .

Now we introduce the following energy ratio

Ej - £}

AE; =
L El

15

(64)

(70)

(71)



which is more general compared to Eq.(2%) and characterizes the magnitude of the energy
splitting 10 any cven angular momentum state of a given SU(3) mmliplet.
By using Eqs.(61) and (65) we obtain AL} in the following analvtic form
2| B{R)
AR, = — 2P _ (73)
6A— |B|R®) + B

which in the SU(3) contraction limit goes to

2
limAE, = ——M—— | (74)
o —93/lgal — 1
P
For g5 < 0 one has
lim AF; = oo. (75)
i

Thus we find that for all even states of a given (A, 2)- multiplet the SU(3) splitting goes
to infinity in the same way [see also Egs.(31) and (32)].

4.2  Transition ratios in the (A, 2)-direction

For the (A, 2)-direction the B(E2) transitions between the states of a given multiplet can be
examined through the following [more general compared to (36) and (37)] transition ratios:

B(E2 L, — L,)

(L) BEL L, - (L-2),) L = even (76)
B B(E2, L, — L,) _

Ry{L) = BEL L, - (L-2),) L = even | (77)

Ry(1) = BUELL = (L+1)) L=odd. (78)

B(E3; L, = (L - 1))

The first two ratios, Ry(L) and Ry(L), have the same physical meaning as the ratios
(36) and (37) of the previous section. The third ratio, Rs(L), involves the odd angular
momentum states in the study. In such a way we investigate the transition characteristics
of the full set of states in a given SU(3) multiplet.

In the case of a (A, 2)-multiplet the Hamiltonian eigenstates are constructed as

AL\ A (A2) (| (A 2) . _ .

| > = () 0.1 + 5 1L , t=1,2, L =even; (79)
: A2

wid) = @3(m3>, L = odd. (30)
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The necessary transition matrix clements are derived in {he form

__._“_12—4__ h[\ 9= [,)((,'.“'))2
(L+ D20 +3) U 4

+ 2045+ L(L — D) olb

(] 00 )

+ LL-1)(ERY] ) [oPe - ced] | (81)
(L= gy (0 _ 6 _ el (L)
<*1 !QO! =1 > L('ZL — 1) [M +4 L)Cu sz
- (2= Doy
+ 20 ebelp - ciPe )] (82)
-6
(L= o (LN [y 44— oD
<-1 lQo[ 5 > Tl D) [()\+1 L)Cyy ey,
- (+2-Lici el
+ ekl [ebe - ce] s s
(7 Qulf?) = - e fa - L4 il
| (L+2VI+r1 °
£ A= LaneT ]y (eIl - eftic] s
(A @l el =~ [0 - L (L= o] | (s5)
i (L+1)VLcE
with the wave-function coeflicients
_i
R (R A T 2 I A (86)
cy = wPcF | L=cven,i=12 (87)
Cort = USENF,  L=odd. (88)
The corresponding overlap integrals are obtained in the form
o (A2) 1 (L2)\ | oz [(L2+L+1)/\+L3+4L2+2L+2]_
no < 0. L 0, L = 5(A) L(L — 1) ;o (89)
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iy ) (A, 2) oL 1.
fy = < Ll ‘ 0.1 >_S (AMA+ 1 +1); (90}

Ly A2 N2\ RO L A+ L4y + (L + 1)L+ 2)] ‘
w _ N2 D+ 2)(A +2)
fodd - < O’ L O,L - Sodd(’\) QL(L _ l) H (92)
with
GLiy) - 2L = L+ 2)MA + L 4+ 1)
A= (2L + 1)!
LA =L+ DA+ L+ 231
Seial’
odd(\) (2L + 1)” (93)
Also we have
By = [~6g2l(27 +5) + L(L = 1)] + ga[2(A + 3)* — L(L +1)]
+ (—1)"BR(L)] /12g2L(L — 1)} . (94)
The following expressions for the transition ratios (76) - (78) are then obtained:
B{E2; L, — L) _ 24
B(E2: L, — (L-2),)  L(L+1)2L - 1)(2L + 3)
{L-2) (i~2) hL 2)y2 p(L—2)

1+ 2h2’5’ 0+ (R )
2
(A+2- L)+ 22 +5+ L(L - YRS + (L - yaPy]”
(A +4 - LAY — (42— L)AL 4 op{L-Dp(D) ’

X

B(E%L,— L) 24
B(E2 L, = (L—-2),)  L(L+1)(2L-1)(2L +3)

(2 2 )
L
+2h52 + (A1) f)
I 2
[fn + WP+ Ry

2
{A+2-L)+[2A+5+L(L~l)Jhé’i)H( L—1)(h55? |
(A4 = Dbz’ - (A+2— DAE™ +on250 ]

X

(96)
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BUE2 L, > (L + 1)) 1L~ 1L+ 1)(2L +3)
BILL L, —(L—1);) 4 LIL+2)(2L+1)
< < U A )
(fodd)

% (f(L ])+2h(L_l)féL U-I--(h(L 1)) (;4“‘1))
2
(20— L + )AL+ 4 (A—L+1)]

(97)

.
!

(R ™Y = AT~ L 43— (L - 1)alk- ”J

We have obtained the SU(3) contraction limits of these ratios in a way similar to the

previous section. Here we have

1_9‘3 )\2

lim Ay = L—n =~ (98)
1
}52 CERE 0
p=2
and then
_ B(E2; L, — L)
. . 1
)1:—:% BIE2 Ly — (L - 2),) . o
lim B2 L~ L) (L-1RLE D) (101)
A—-w B(EQ L,— (L - 2)g) (L +1)(2L + 3)
-1

g BUEZ L, > (Lt 1)) (L-1) (102)

2 B(E2 Ly —» (L-1),) — (L+7)°

Thus, we find that for all the states (L > 2) of the Hamiltonian the relative magnitude
of the g—v interband transitions goes to zero. Also, we see that the ratios Ry(L) and Rs(L)

go to the corresponding standard Alaga rules.

5 Results and Discussions

The theoretical results given above allow one to examine the mechanism of the SU(3)
symmetry reduction in the space of the (A, 4} irreps as well as to identify its manifestation

in reference to the experimental data on heavy deformed nuclei.
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The analytic study of the Hamiltonian matnx elements shows {1qs. (30) and (33)] how
the increase in the quantum numbers A and/or g is connected with the corresponding de-
crease in the g-v band-mixing interaction within the framework of the SU(3) symmetr-
Generally this result illustrates the behavior of the energy-mixing in the (A, g)-plane. In
both limits, (i) and (ii), the g—y mixing decreases asymptotically to zero. Similar limit-
ing behavior of the L > 2 matrix elements in (), 2)-direction has been established in our
previous work (See Sec. IV-C of Ref. [16]). Thus in all limiting cases the SU(3) symme-
try disappears completely and the two bands do not belong to the same SU(3) multiplet
anymore.

It is appropriate at this point to elucidate the meaning of the above consideration in
terms of the SU(3) group contraction process [18]-[22]. This process corresponds to a

renormalization of the quadrupole operator, @ « Q/+/{C3), with
(Coy = (A +2u)(A + 24+ 6) + 30X +2) (103)

being the eigenvalue of the second order Casimir operator of SU(3). The following commu-
tation relations between the angular momentum and the renormalized quadrupole operators

are then valid:

{LmaLn] = _\/icllr’:zlﬁ-;an+n$ (104)

L, @n) = V6O Qi (105)

(@ @a] = VOO Lmtn (106)
(Ca)

They differ from the standard SU(3) commutation relations by the factor {C) in the right-
hand side of (106). Taking into account Eq. (103), one finds that in both limits (i) and
(i1), considered in the present work, the commutator (106) vanishes and the commutation
relations of the algebra of the triaxial rotor group TsASO(3) hold. In such a way the
vanishing g-v band-mixing could be interpreted as a transition from a compact to a non-
compact DS group.

Let us now analyze the behavior of the splitting and transition ratios of Secs. 3 and 4 in

the (A, u)-plane. For this purpose we use the analytic expressions for numerical calculations.
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In the particular casc of L > 2 states in (g = A — 20) direction, which is not accessible
analytically, we apply numerically the algorithm developed in Ref. [16]. All caleulations are
carried out for the same set of fixed model parameters g, = I,gs = =02, gy = —0.25. These
values belung to the corresponding parameter regions obtained for a group of rare earth
nuclei and actinides [See Table 2 in Ref. [16]]. In this respect they can be considered as an
overall set of model parameters. Also, it should be emphasized that in the SU(3)} contraction
limiting cases the various sets of (finite) parameter values give the same asymptotic behavior
of the model quantities.

In Fig. 1 the splitting ratio AE; [Eq. (29)] is plotted as a function of the quantum
numbers A and g. In the limiting case (i) (A — oo, with p finite) the two-dimensional
surface shows a rapid increase of AF;, while in case (i) (¢ = A — o) the splitting ratio
gradually saturates towards the constant value ~ 5.17 [See Eq. (35)]. In Fig. 2 the splitting
ratio AFy [Eq. (72)] is plotted as a function of the quantum number A for L = 2,4...12. In
the case A — oo, u = 2 the energy splitting goes to infinity with almost equal values for all
angular momenta (Fig. 2(a)). In case (ii) ALy trends to finite values which increase with
L {Fig. 2(b)). So, in the first limiting case the complete reduction of the SU(3) symmetry
leads to a large energy separation between the bands in the multiplet, while in the second
case {for finite angular momenta) the bands remain close to each other, but their mutual
disposition does not depend on the Hamiltonian parameters anymore, so that it should not
be associated with any band coupling.

In order to assess the above results, we refer to the experimental values of the splitting
ratio and the numerical analysis of SU(3) multiplets which has been carried out in [16].

The experimental AFE; ratios of several rare earth nuclei and actinides are given in
Table 3. They vary within the limits 5 < A, < 20, for the rare earths and 13 < AFE, <25,
for the actinides. The behavior of the splitting ratios is clear: The AE, ratio generally
increases towards the middle of the rotational region. This is illustrated in Table 3 through
the number of the nucleon pairs (or holes) in the valence shells, V. (The number N is a well
established characteristic of nuclear collectivity used in the IBM [8].) A clearly pronounced

increase of AE; with increasing N is observed for the isotopes of Sm, Gd, Er, Yb, and W.
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Similar behavior of the energy splitting is observed in the L > 2 states of these nuclei [28].
One concludes that the data show that the SU(3) splitting increases toward the midshell
regions.

On the other hand, it has been shown that the SU(3) properties of nuclei can be system-
atized according to the observed splitting values [16]. In nuclei with small band-splitting
ratios (AE; < 10, as for example in '*Er), one finds clearly outlined regions of “favored”
SU{3) multiplets with relatively small A-values {A =14 - 20) and p = 2,4.6. For these
multiplets the model descriptions of the energy levels and transition probabilities are essen-
tially better than in the other irreps. With the increase of the splitting energy (for example
AE; ~ 12, as in '"®Hf), the favored multiplets are shifted to larger A- values (A ~ 40). For
nuclel with large band-splitting (AE, > 12, as for example in ?Yb and 2381J), one obtains
almost equally good descriptions in all (A, g)-multiplets with A > 60 — 80 without presence
of any upper limit for the quantum number ).

Summing up the above considerations, one deduces the following physical picture. The
SU(3) splitting, as well as the numerically established (favored) A- values 116] as a whole,
increase with the increase of the valence pair number N, i.e. towards the middle of the
valence shells in rare earth nuclei. [Some increase is indicated also for the quantum number
1. However, due to the restrictions in the numerical calculations, only the multiplets with
# < 8 have been examined in [16].] In such a way the changes in the SU(3) characteristics of
nuclei towards the middle of the rare earth region could be associated with the corresponding
decrease in the g—v band mixing interaction towards the SU{(3) contraction limits. In terms
of our considerations the strong g-v splitting, observed in the middle of a given rotational
region, corresponds to the weak mutual perturbation of the bands. This is consistent with
the respectively good rotational behavior of the g-band, which in this case could belong
to a separate SU(3) multiplet. {See the experimental energy ratios, R, = E]/Ej, given in
Table 3.

We turn now to the analysis of the interband transition ratios. In Fig. 3 the ratio B,(2),
Eq. (34), is plotted as a two-dimensional function of the quantum numbers A and g. In the

limiting case (i} (A — oo, with x finite) the R, surface shows a rapid decrease to zero. In

[N
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case (i) (g = A — oo) 111(2) decreases gradually and saturates towards the constant value
~ 0072 [See g, (62)]. Tn Fig. 4 the transition ratio £y(L) [Eq. (76)] is plotied as a function
of the quantum number A for L = 2,412, In the case A — o, j0 = 2 it goes Lo zero with
almost cqual values for all angular momenta (Fig. 4(a)). In case (11) By(L) obtains finite
values which decrease with L (Fig. 4(b)). Thus in the first limiting case the g— interband
transition link vanishes rapidly, while in the second case (for finite angular momenta) the
relative magnitude of the interband transition probability remains non-zero. However, as in
the energy splitting, the R;-ratios do not depend on the Hamiltonian parameters anymore.
Therefore, they should not be treated in terms of the SU(3) symmetry anymore.

The experimental R;(2)-values for several rare earth nuclei and actinides are given in
Table 3. Here one observes a rather spectacular decrease of R;(2) towards the midshell
regions. The best examples (with the largest number of available data) occur in the cases
of the Gd, Er and Yb isotopes. Note that the decrease in the experimental g-~ transition
probabilities is well consistent with the corresponding increase in the SU(3) splitting. Iu this
way, the experimental data strongly support the VBM predictions in the SU(3) contraction
fimit.

The two-dimensional surface obtained for the theoretical Ry(2) ratio, Eq. (35), is shown
in Fig. 5. We see that Ry(2) gradually decreases with A and y and trends towards the
finite values, obtained in the limiting cases (i) and (ii) [See Eqs. (59) and (63)). In Fig. 6
the transition ratio Ry(L) [Eq. (77)] is plotted as a function of the quantum number A for
L =2,4...12. In the case A - oo, u = 2 it gradually goes to the Alaga values for the
corresponding angular momenta (Fig. 6(a), see also Eq. (101)). In case (it) Ry(L) trends
to finite values which (in the numerically investigated A- range) exhibit a complicated
behavior as a function of L (Fig. 6(b)). In both limiting cases the lack of dependence on
the Hamiltonian parameters indicates the complete reduction of the SU(3) symmetry. The
experimental data on £9(2), given in Table 3, show a slightly expressed trend of decreasing
towards the midshells, but one could not draw any definite conclusions about the systematic
behavior of this quantity.

In Fig. 7 the transition ratio %3(L) [Eq. (78)] is plotted as a function of the quantum

number A for the odd angular momenta L = 3,5...11. For A — oo, g = 2 it goes to
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the corresponding Alaga values in a way similar to the Ry(L)- ratio (Fig. 7(a), see also
Fq. {102)). In the second direction, {3i). f3( L) saturates to finite values (Fig. 7(b)). Tt is
clear that towards the SU(3) contraction limit the B(E2) transition characteristics of the
odd ~ band states should be consistent with the even angular momentium ones.

We remark that the above analyses are based mainly on data in the rare earth region.
Actually Table 3 includes only nuclei for which the g-7 interband transition probabilities are
measured. That is why only four actinides (330332}, B4.23807) are considered. Nevertheless,
they give an indication for similar behaviors of the splitting and the interband transition
ratios as the ones in rare earth nuclel. On the other hand, the stronger energy splitting,
observed in the actinide region (See also [28]), suggests a generally weaker g—y coupling
compared to the rare earth nuclei.

We are now able to discuss the physical significance of the considered SU(3) contrac-
tion limits as well as to depict the physically meaningful directions in the (A, x)- plane,
which could be appropriate for studying the transition between the different band coupling
schemes. The theoretical analyses and experimental data show that the limiting case (i)
(A — oo, with 4 finite) has a rather clear physical interpretation. It is consistent with the
observed continuous increase of the g-v band splitting and the corresponding continuous
decrease of the interband transition probabilities towards the midshell regions in rare earth
nuclei. The limiting case (i) (A = ¢ — o0) does not have any similar direct interpreta-
tion. It suggests finite values for the splitting and the interband transition probabilities,
while the bands do not interact in the framework of SU(3) symmetry. In addition, it is
well known that the case A = p does not correspond to deformed nuclei, for which the
inequality g < A is satisfled. Nevertheless the study of this limit is useful from the fol-
lowing viewpoint: It implies that the strong suppression of the band interaction as well as
the transition between the different band coupling schemes could be realized at reasonable
(finite) SU(3) splitting. Based on the above considerations, we deduce that the possibly
interesting physically meaningful directions in the {A, p)-plane should be associated with
a consistent increase in the quantum numbers A and u. Thus, any particular direction
of interest could be easily estimated by using 1ts intermediate behavior between the two

considered limiting cases.
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Some discussion concerning the Interacting Boson Model {IBM) ciassification scheme
(8] s appropriate at this point. In Ref. 6] it has heen suggested that for deformed
nuclei both the VBN scheme (with g-+ band coupling) and the IBM one {(with 3-~ band
coupling) could be considered as complementary schemes. It has also been pointed out that
the SU(3) scheme of the VBM is naturally applicable to nuclei with weak energy splitting,
while strong splitting invokes the SU(3) scheme of the IBM, in which the g- band is situated
In a separate irrep. Furthermore, the theoretical results and the experimental data given
in the present work suggest that the VBM band coupling scheme is more appropriate near
the ends of the rotational regions, while in the midshell regions the coupling scheme of the
IBM is realized. In this respect the detailed comparison of both band-coupling mechanisms
would be of interest. For example, the analytic expressions for the g— interband transition
probabilities, obtained in the framework of the IBM in {51], would be useful. [See Egs. (5)
and (6) of [51].] They give a behavior of the transition ratios R;(L), Ry(L) and Ry(L
(Eqs. (95), (96) and (97)] in the infinite valence pair number limit (N — oc) similar to the
behavior obtained in the limiting case (i) (A — oo, with u = 2) [Eqgs. (100), (101) (102)] of
the present VBM scheme.

As an extension of the present studies it would be worthwhile to examine. in a similar
way, the link between the y- and the 8- band. Furthermore, besides the VBM scheme,
one could refer in this case to the modifications of the IBM in which higher-order terms
conserving the SU(3) symmetry are added [52]. The consistent study (within both models)
of the ways in which the SU(3) symmetry is reduced could give important information
about the rearrangement of rotational bands into different SU(3} irreps.

In the above context, we emphasize that the analyses implemented in the presented pa-
per give a general prescription to handle the fine behavior of the band coupling interactions
in any collective algebraic scheme in heavy deformed nuclei. Actually, the group contrac-
tion process should play a major role in a transition between two different band coupling
schemes. The transition from the compact SU(3) group to the non-compact TsASO(3)
rotor group could be considered as a starting point in a process of reconstruction of various

multiplets in a more general symplectic group of dynamical symmetry. (It is interesting to
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mention that the meaning of SU(3) contraction has been also discussed (though in a rather
different aspect) in reference to a possible phase transition between a superconductor and

rigid rotor collective motion of nuclei [53].)

6 Conclusions

We have derived analytic expressions for the energies and B(E?2) transition probabilities in
the ground- and +-band states of even deformed nuclei within the Vector-Boson Model with
SU(3) dynamical symmetry. On this basis we applied both analytic and numeric analyses
to examine the behavior of the corresponding energy splitting and B(E2) transition ratios
in the two SU(3) contraction limits of the model, (i) (A — oo, with g finite), and (ii)
(A = p — oc). It has been shown that in both limits the g~ band mixing decreases
asymptotically to zero. In case (i) this is associated with the corresponding continuous
increase in the splitting of the multiplet and the rapidly vanishing g-~ interband transition
link. Case (i) gives finite values for the energy splitting and the interband transition ratios
which, however, should not be associated with any band coupling. The latter result implies
that a strong reduction of the band interaction could be possible at finite SU(3) splitting.
Thus, the present analyses outline the possible directions in the {A, u)-plane in which the
g~ band coupling is reduced.

The experimental data on the ground- and ¥- band states in deformed even—even nuclei
show clearly a pronounced increase in the g—+ band splitting and a corresponding decrease
in the interband transition probabilities towards the midshell regions. They suggest that
the SU(3) contraction effects in the g— band coupling scheme should be sought in the best
rotational nuclei, in which the mutual perturbation of the bands is weak. In this way the
data strongly support our theoretical analyses.

Based on the presented investigation, we conclude that the transition from the gy
band coupling scheme to a scheme in which the g-band is situated in a separate irrep
should be realized towards the midshell regions. In this respect the complementarity of

the classification schemes of the Vector-Boson Model with SU(3) dynamical symmetry and




the IBM becomes clear. The consistent study of the rearrangement of collective bands in

deformed nuclei, iucluding the 3- exeited bands. will be the subject of forthcoming work.

Acknowledgments

['he authors are thankful to P. Van Isacker for stimulating discussions and D. N. Kadrev
for the help in collecting the experimental data. This work has been supported by the
Bulgarian National Fund for Scientific Research under contract no MU-F-02/98.

[ R]
|



References

[11]

(12}
[13]
[14]
[15]

16]

] A O. Barut. Phys. Rev, B 135, 839 (1961).

Y. Dothan. M. Gell-Mann and Y. Neeman, Phys. Lett. 17, 148 (1965).

N. Mukunda, L. O’ Raifeertaigh and E. Sudarshan, Phys. Rev. Lett. 15, 1041 (1965);
Phys. Lett. 19. 322 (1965).

R. I Dashen and M. Gell-Mann, Phys. Lett. 17, 142 (1965).

L. Weaver and L. C. Biedenharn, Phys. Rev. Lett. 32B, 326 (1970).
P. P. Raychev, Sov. J. Nucl. Phys. 16, 643 (1972},

G. Afanasjev and P. Raychev, Part. and Nucl. 3, 436 (1972).

F. lachello and A. Arima, The Interacting Boson Model (Cambridge University Press,
Cambridge, 1987).

G. Rosensteel and D. J. Rowe, Ann. Phys. (N.Y.) 96, 1 (1976).

} G. F. Filippov, V. 1. Ovcharenko and Yu. F. Smirnov, Microscopic Theory of Nuclear

Collective Ezcitations (Naukova Dumka, Kiev, 1981).

C. L. Wy, D. H. Feng, X. G. Chen, J. Q. Chen and M. W. Guidry, Phys. Lett. B 168,
313 (1986).

J. P. Draayer and K. J. Weeks, Ann. Phys. (N.Y.) 156, 41 (1984).

P. P. Raychev and R. P. Roussev, Sov. J. Nucl. Phys. 27, 1501 (1978).

5. Alisauskas, P. P. Raychev and R. P. Roussev, J. Phys. G 7, 1213 (1981).
P. P. Raychev and R. P. Roussev, J. Phys. G 7, 1227 (1981).

N. Minkov, 5. Drenska, P. Raychev, R. Roussev and D. Bonatsos, Phys. Rev. C 55,
2345 (1997).



(28]
[29]
[30]
[31]
32]

133]

R. Gilmore, Lie Groups, Lic Algcbras and Some of Their Applications (Wiley, New
York. 1971},

J. Carvalho, R. Le Blane, M. Vassauji and D. J. Rowe, Nucl. Phys. A452, 240 (1986).
O. Castaiios, J. P. Draayer and Y. Leschber, Z. Phys. A 329, 33 (1988).

D. J. Rowe, M. G. Vassanji and J. Carvalho, Nucl. Phys. A 504, 76 (1989).

M. Mukerjee, Phys. Lett. 251B, 229 (1990).

J. P. Draayer, in Algebraic Approaches to Nuclear Structure: Interacting Boson and
Fermion Models, Contemporary Concepts in Physics VI, edited by R. F. Casten (Har-
wood, Chur, 1993} p. 423.

L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics, Ency-
clopedia of Mathematics and its Applications 8 {Addison Wesley, Reading, 1981).

B. R. Judd, W. Miller, J. Patera and P. Winternitz, J. Math. Phys. 15, 1787 (1974).
P. P. Raychev, R. P. Roussev and Yu. F. Smirnov, J. Phys. A 24, 2943 (1991).
V. Bargmann and M. Moshinsky, Nucl. Phys. 23, 177 (1961).

M. Moshinsky, J. Patera, R. T. Sharp and P. Winternitz, Ann. Phys. (N.Y.} 95, 139
(1975).

M. Sakai, At. Data Nucl. Data Tables 31, 399 (1984).
A. Artna-Cohen, NDS 79, 1 (1996).

R. G. Helmer, NDS 69, 507 (1993).

W. Andrejtscheff and P. Petkov, private communication.
R. G. Helmer, NDS 65, 65 (1992).

M. A. Lee, NDS 56, 199 (1989).



[31] M. A. Lee and R. L. Bunting, NDS 46, 187 (1985).

[35] 8. Raman, C. II. Malarkey. W. T. Milner. . \W. Nestor Jr.. and P. H. Stelson. At.
Data Nucl. Data Tables 36, 1 (1987).

[36] R. G. Helmer, NDS 64, 79 (1991).

[37) E. N. Shurshikov, NDS 47, 433 (1986).

[38] E. N. Shurshikov and N. V. Timofeeva, NDS 67, 45 (1992).
[39] V. S. Shirley, NDS 53, 223 (1988).

40} C. M. Baglin, NDS 77, 125 (1996).

[41] G. Q. Wang, NDS 51, 577 (1987).

(42) E. Browne, NDS 62, 1 (1991).

[43] E. Browne, NDS 60, 227 (1990).

[44] E. Browne, NDS 54, 199 (1988).

[45] R. B. Firestone, NDS 58, 243 (1989).

[46] R. B. Firestone, NDS 55, 533 (1988).

[47] Y. A. Ellis-Akovali, NDS 40, 385 (1983).

[48] M. R. Schmorak, NDS 36, 367 (1982).

[49] Y. A. Ellis-Akovali, NDS 40, 523 (1983).

[50] E. N. Shurshikov, NDS 53, 601 (1988).

[51] P. Van Isacker, Phys. Rev. C 27, 2447 (1983).

[52] G. Van den Berghe, H. E. De Meyer and P. Van Isacker, Phys. Rev. C 32, 1049 (1985}.

(53] C. Bahri, D. J. Rowe and W. Wijesundera, Phys. Rev. C 58, 1539 (1998).

30



Table 1: Matrix elements of the operators L - @ - L and A* A between the basis states of

Eq. (5).

(A m) (A, 1)
< a+s L. L IL-Q'}L a,L L >

da[l{(L+1)-3(L+2a~p+3)*|-20rA+p-L -3 - 20)[L(L+1)
=3{p — 20)4 - (L - 2u + 4o+ B)2L + 3)(L + 1 + 38)

—6(A+p-L—-8-2a)(n-2a—-8)p-2a~4-1)

12a(L + 20 — p)(L + 20 — i - 1)

(}‘-)u) +
<Q+S,L,L A4

o)

1

—3of(a - DL+ -3(L+2a~p+ 8% - (A+p—L-5-2)L(L+1)
=3(p = 2a)%) = H(L = 2u + 4o+ BY(2L + 3)(L + 1 + 38)}

+ 20 A+ 20+ 3 —dk)[(A+ 2 +3 - 4k)2 + 3 - 2L(L 4+ 1) = A(A + 2)]
(Atp-L-B-20)(p~20-B)u~20-B~1)(L+ X +p+20+3+2)

—dofa—1)(L+20 — p)(L+2a —p—1)
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Table 2: Analytic form of the coefficients a* [Eq. (8)).

k=0
5

Ao{L{L+1)~3(L-p+20+8)?} - 2A+p—L-20=3){L{L+1)~3(u—2a)?}

0 (L+1)(2L%3)
—6plkmetietl) _ f L9y~ 4o + 28
1 8 tpu—-L-20-B)(u—2a—B){u~2a-[~1)
{(L+1)(2L+3)
| 120(L—p+2a)(£-—p+2a—l)

(T+1)(2L43)

S a’s‘:1
6 208(L—p+2041)+ (A u—L-2a—0)(u~2a)
0 ~7t T+2 +8}
] 64‘3(,\+u—L—2u—1)(u‘20—1)
(L+2)v/LH

12 (L~ p4-2cx

-1 (L+2)VL11

8 af=2

0 6 /\+,u~L—?O-6!
V(E52)(2L+3)

1 0

—1 12

(L+2)(2L+3)




Table 3. Lxperimental values of the cnergy splitting (Fa. (23). column 1) and B(E2)-
interband transition ratios in the 2, and 2., states (Eq- (36) in column 5, Eq. (37) in column
6) of deformed rare earth nuclei and actinides. The corresponding valence pair number,
N, as well as the Ry = E7/E] energy ratio are also given in columns 2 and 3 respectively.

Data are taken from [28], for the energies and from the Refs. in the last column, for the
transition probabilities.

Nulll N Ri=g AF,= SIE R (2) = 78 R(2)=hzh Ref.
"ISm 100 3.009 7.915 0.065 (5) 2.56 (26) [29]
5iSm 11 3.253 16.565 0.022 1.35 [30], [31]
BiGd 11 3.015 7.093 0.083 (6) 2.15 {24) [30]
5Gd 12 3.239 11.969 0.039 (3) 1.56 (12) (32]
B8Gd 13 3.288 13.932 0.029 (4) 1.71 (41) [33]
WOGd 14 3.298 12.128 <1073 1.69 (19) [34], [35]
8Dy 13 3.207 8.567 0.103 (23) 3.22 (133) [33]
19Dy 14 3.270 10.131 0.028 (9) 1.93 (112) (34]
%Dy 15 3.294 10.007 <1073 1.66 [36)
Dy 16 3.301 9.379 0.038 (4) 2.00 (38) (37]
$Er 13 3.229 7.822 0.067 (11) 2.37 (35) [36]
YiEr 14 3.277 8.412 0.052 (7) 2.19 (48) (37]
SEr 15 3.289 8.751 0.045 (5) 1.76 {26) (38]
SEr 16 3.309 9.291 0.0410 (3) 1.80 (12) [39]
WEr 17T 3.310 10.853 0.034 {7) 1.93 (36) (40|
%8Yb 14 3.266 10.218 0.046 (6) 2.09 (72) [39]
"Yb 15 3.293 12.594 0.024 (6) 1.78 (77) {40]
72Yb 16 3.305 17.602 0.011 (3) 1.45 (65) [41], [31]
YL 17 3.310 20.356 0.012 (3) 2.40 (94) [42)
8Ybh 16 3.308 14.358 0.018 (4) 1.94 (70) [43]
MHT 15 3.268 12.481 0.049 (12) 1.54 (63) [42]
8Hf 15 3.291 11.604 0.028 (2) 1.18 (19) [44)
BW 13 3.291 11.203 0.053 (6) 1.90 (19) [31]
BIW 12 3274 7.123 0.071 (5) 1.91 (19) [45]
BSW 11 3.242 5.030 0.181 (13) 2.27 (32) [46)
Th 11 3.272 13.586 0.028 (5) 1.83 (53) [47]
Th 12 3.984 14.893 0.036 (6) 2.73 (62) [48]
2400 13 3.206 20.304 0.021 (5) 1.69 (69) [49]
S/ 15 3.304 22.614 0.019 (1) 1.75 (17) [50]
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Figure Captions

Figure 1. The theoretical energy splitting ratio AL, [Eq. (29}] is plotted as a two-

dimensional function of the quantum numbers A and u for ¢, = 1, g = —0.2 and gs = —0.25.

Figure 2. The theoretical energy splitting ratio AE; [Eq. (72)] is plotted as a function of
the quantum number A for £ = 2,4...12 with ¢, = [, g2 = —0.2 and g3 = —0.25 in the
cases: {a) p=2; (b) p= A

Figure 3. The theoretical R;({2) ratio [Eq. (54)] is plotted as a two-dimensional function

of the quantum numbers A and u for g, = 0.2 and g3 = —0.25.

Figure 4. The theoretical R;(L) ratio [Eq. (76)] is plotted as a function of the quantum
number A for L = 2,4...12 with g, = —0.2 and g3 = —0.25 in the cases: (a) u = 2: (b)
w= A

Figure 5. The same as Fig. 3 but for the theoretical Ry(2) ratio [Eq. (53)].
Figure 6. The same as Fig. 4 but for the theoretical Ry(L) ratio [Eq. (77)].

Figure 7. The theoretical Ra(L) ratio [Eq. (78)] is plotted as a function of the quantum
number A for L = 3,5...11 with g, = —0.2 and g5 = —0.25 in the cases: (a) u = 2; (b)
po= A
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