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Abstract

The study of the directional dependence of two-particle correlations in the
hadronic decays of the Z0 boson is performed using the data collected by the
DELPHI experiment in the 1992{1995 running periods. The comparison be-
tween the transverse, R?, and longitudinal, Rk, correlation radii con�rms the
string model prediction that the transverse correlation length is smaller than
the longitudinal one, with the measured values of R? = 0:53 � 0:08 fm and
Rk = 0:85 � 0:08 fm, for selected Z0 ! q�q events.
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1 Introduction

Detailed studies of the two-particle Bose-Einstein correlations (BEC) in Z0 hadronic
decays in e+e� annihilation allow the determination of the shape of the source of bosons,
which gives the possibility to analyse the spatial and temporal characteristics of the
hadronisation region. These studies are of considerable interest mainly due to the recent
predictions of possible inuence of BEC on the measured value of the W boson mass in
e+e� annihilation [1,2]. Estimates of the strength of this e�ect have been made using
the Monte Carlo particle generator Jetset [3], involving a simple algorithm for the two-
particle BEC simulation which uses a correlation function in terms of the invariant four-
momentum di�erence of identical partons, Q. This algorithm is known to reproduce well
basic features of BEC in experimental data, like the shape of the correlation function in
terms of Q [4] and the shift of the �0 mass [5], but it does not describe other related e�ects,
like the higher order correlations [6], neither it reproduces its own input parameters in
a wide range [7]. More detailed tests are necessary in order to establish the extent of
applicability of the mentioned algorithm and the reliability of its predictions.

In the two-jet hadronic decays Z0 ! q�q, the comparison between the transverse and
longitudinal radii of the BEC (with respect to the initial parton direction of motion) can
test the string model prediction [8] that the transverse correlation length is considerably
smaller than the longitudinal one.

Until recently, studies of the identical-boson correlations in e+e� annihilation process
at LEP energies have concentrated on the shape of the two-particle correlation function in
terms of Q [4]. At lower energies, several collaborations have studied Bose-Einstein cor-
relations using two-dimensional distributions of components of Q [9]. Multidimensional
analyses of the BEC are now being made by the LEP experiments as well. Studies per-
formed by the L3 [10] experiment and preliminary results by DELPHI [11] and OPAL [12]
at LEP1 energies indicate that the transverse size of the boson source in e+e� annihilation
is smaller than the longitudinal one.

Here, the two-dimensional analysis of BEC in Z0 hadronic decays is presented, using
DELPHI data collected in the 1992{1995 running periods. Two-particle correlations are
studied in terms of di�erent components of the four-momentum di�erence. Results are
compared to those obtained from the analysis of events generated by Jetset.

2 Correlation function de�nition

The correlation function, C2, of two identical bosons is de�ned as [13]

C2(p1; p2) =
P (p1; p2)

P (p1)P (p2)
; (1)

where p1 and p2 are the four-momenta of the two particles, P (p1; p2) is the two-particle
probability density and P (p1) and P (p2) represent single-particle probability densities.
The invariant four-momentum di�erence Q is de�ned as

Q =
q
(E1 � E2)2 � (~p1 � ~p2)2 ; (2)

where ~p1 and ~p2 are the momenta of the two particles, and E1, E2 are their energies.
As long as bosons, which are subject to BEC, have similar momenta, one would expect
to observe an enhanced production of pairs with low values of Q as compared to the
non-correlated case.
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The most commonly used [13] parametrization of C2 is:

C2(Q) = n(1 + �e�R
2
Q
2

) ; (3)

where the parameter � is interpreted as the strength of the correlation, and R as the size
of the source of bosons, or the correlation radius. n is the overall normalisation.

In expression (3), R corresponds to an average over the spatial and temporal source
dimensions. To probe the actual shape of a boson source, Bose-Einstein correlations
must be studied in terms of the various components of the three-momentum di�erence
~Q = ~p1 � ~p2 in a chosen coordinate system.

Q
long

Qt,s
ide

t,o
ut

Q

p+p

p

Quark / jet / thrust

1

p
1

2

21

p-p
2

Figure 1: The Longitudinal Centre-of-Mass System is de�ned, for each pair of particles,
as the system in which the sum of the two particles' momenta is perpendicular to a
selected reference axis. The reference axis has to be a physical axis of the process.

For this purpose, the Longitudinal Centre-of-Mass System [8,14] (LCMS) is often used.
The LCMS is de�ned for each pair of particles as the system in which the sum of the two
particles' momenta is perpendicular to a selected reference axis (see Fig. 1). The reference
axis has to be a physical axis of the process: for example, in e+e� annihilation it can be
the direction of a primary parton, or of the corresponding jet. In this analysis, the thrust
axis was chosen as the reference (see Section 4). In such a system, ~Q is decomposed
into the following components: Qlong, parallel to the thrust axis; Qt;out, collinear with
the sum of the two particles' momenta, and the complementary Qt;side, perpendicular
to both Qlong and Qt;out. This system is convenient for calculations and interpretations.
The projection of the momentum sum of the two particles is non-zero only in the \t; out"
direction. The spatial dimensions of the source e�ect all components of Q. However
the energy di�erence and hence the temporal dimension of the source, couples only to
the Qt;out component. If the string model is considered, the longitudinal direction of the
LCMS has to be aligned with the direction of motion of the initial partons, so that the
system itself will be the local rest frame of a string.

By analogy with Eq.(3), the three-dimensional correlation function in LCMS can be
parametrized as:

C2(Qt;out; Qt;side; Qlong) = n(1 + �e�Q
2

t;outR
2

t;out�Q
2

t;side
R
2

t;side
�Q2

long
R
2

long) : (4)

In this analysis, the two-dimensional projection of the LCMS is used, with longitudi-

nal component Qk � Qlong and perpendicular component Q? =
q
Q2

t;out +Q2
t;side

. The

parametrization of C2 in the two-dimensional case is chosen here as:

C2(Q?; Qk) = n(1 + �e
�Q2

?
R
2

?
�Q2

k
R
2

k) : (5)
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3 Data selection

Data collected by the DELPHI detector [15] in 1992{1995 at centre-of-mass energies
around

p
s = 91:2 GeV were used.

Only charged particles in hadronic events were considered in the analysis [15]. The
tracks were taken into account if their impact parameter was below 1 cm in the transverse
plane and below 5 cm along the beam axis (to reduce contributions from long-living
resonance decays), the measured track length was above 50 cm, the momentum p was in
the range of 0.1 GeV=c < p <50 GeV=c and the polar angle between 25� and 155�. All
particles were assumed to be pions.

Hadronic events were selected by requiring that: (a) they contained at least 5 charged
particles with momentum above 0.2 GeV=c; (b) the total energy of all charged particles
exceeded 15 GeV; (c) each hemisphere with respect to the sphericity axis contained a
total energy of charged particles larger than 3 GeV; (d) the polar angle of the sphericity
axis was between 40� and 140�, so that the events are well contained inside the TPC.

In this analysis two-jet events were selected in order to compare the result with the
theoretical prediction [8]. These events are also convenient because the procedures of
preparing the reference sample (see Section 4) and the de�nition of LCMS are easier to
apply and to understand in this case. Since the thrust axis of the two-jet events is well
aligned with the direction of motion of the initial partons, its direction can be selected as
the physical axis of the hadronization process, and the possible inuence of hard gluon
radiation can be neglected. The two-jet event selection was done using the LUCLUS [3]
clustering algorithm (with parameter djoin = 8 GeV=c), requiring that the thrust value
be more than 0.95, and, that the jet acollinearity shall not exceed 5�. A total of about
810 000 events satis�ed these criteria.

To purify the reference sample and to reduce the background, additional selection
criteria were applied for each pair of particles. To stay away from the two-particle phase-
space limits, where kinematic correlations are signi�cant, a pair of tracks was selected
for the analysis, if both particles had momenta below 5 GeV/c. To exclude the partially
overlapping tracks which can be poorly reconstructed, the angle between tracks was re-
quired to exceed 2�. To reduce the correlations caused by the local transverse momentum
compensation, pairs were rejected if the angle between tracks in a plane, transverse to the
thrust axis, was more than 120�. In addition, to reduce the contribution from resonance
decays and to eliminate the region where the Coulomb correction is substantial, pairs
were rejected if their Q was less than 0.06 GeV.

4 Correlation function measurement

The measurement of the correlation function (1) in the two-dimensional LCMS requires
accumulation of the double-di�erential distributions d2N��=dQ? dQk, where N�� is the
number of like-sign pairs. All the data were corrected for detector e�ects. Events gener-
ated with the Jetset 7.3 PS model with DELPHI tuning [16] were used to estimate the
acceptance corrections and to account for e�ects arising from the limited detector resolu-
tion. The selected events were passed through the DELSIM [17] detector simulation and
the same selection criteria were used as for real data. Correction coe�cients c(Q?; Qk)
were calculated as the ratios of distributions at the generation level (Jetset only) to
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those at the reconstruction level (Jetset+DELSIM):

c(Q?; Qk) =
( d

2
N
��

dQ? dQk
)gen

( d2N��

dQ? dQk
)rec

; (6)

where indices \gen" and \rec" refer to the generation and reconstruction level respectively.
The two-particle correlation function de�nition in Eq.(1) requires the knowledge of

the product of the single-particle probability densities, P (p1)P (p2). Due to the phase
space limitations, it is di�cult to construct this product. Therefore it is often replaced
by P0(p1; p2), which is equal to P (p1)P (p2) in a hypothetical case of no correlations.
Technically this means that one has to construct an arti�cial reference sample of particles
which are not subject to Bose-Einstein correlations, but obey the same kinematics as a
regular event. Several techniques for obtaining a reference sample can be considered, like
using the unlike-sign particle combinations, Monte Carlo simulated events without the
BEC e�ect, or the event-mixing technique. It has been established [9] that the latter is
the most reliable method. To construct the mixed reference sample, all events are rotated
to a new coordinate system, which has the z axis along the thrust axis. The sample is
then obtained by combining a particle from one event randomly with a like-charge particle
from another.
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Figure 2: Comparison of the original Q distributions of like-charge particle pairs, and the
reference ones obtained by the mixing procedure: (a) in DELPHI data (data points are
connected with lines for clarity) and (b) in Jetset generated events without BEC. All
distributions are normalized by the total number of selected events, N.

The mixed reference sample is prepared using the same set of hadronic events as for
the real data. Within the applied selection criteria, the mixed sample does not contain
BEC and satis�es most of the basic requirements for the reference sample [9]. It has no
additional dynamical correlations, like those coming from theK0 and �0 decays in the case
of unlike-charge reference sample. Since only two-jet events are used, and the detector
corrections are applied, the mixed sample contains the correlation due to the jet structure
of events. Correlations due to energy-momentum conservation are also included, since
the pairs close to the phase-space limits are removed (see Section 3). However, the mixing
procedure does not conserve energy and momentum in general, a�ects the normalisation,
and destroys not only the Bose-Einstein correlation but some other kinds of correlations,
like those coming from the local transverse momentum compensation. Figure 2 shows the
e�ect of the mixing on the original Q distributions in detector-corrected DELPHI data,
which contain physical BEC, and Jetset generated events without BEC simulation.
Enhancement with respect to the reference distribution in the region of Q < 0:25 GeV is
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readily seen in data, manifesting the presence of BEC. In the case of the BEC-free Monte
Carlo events (Figure 2(b)), no such enhancement can be observed, with the original and
the reference distributions being identical at smallQ values. This illustrates the reliability
of the mixing technique.

From Figure 2(b) one can see the unwanted feature of the mixing procedure at
Q > 0:25 GeV: the reference sample distribution deviates from the original one. This
di�erence however is not essential for the analysis, since the region of genuine two-particle
BEC lies below that value [4]. To correct for this e�ect, the measured two-particle corre-
lation function C2(Q) is calculated as the double-ratio:

C2(Q?; Qk) =
rdata(Q?; Qk)

rnoBE(Q?; Qk)
; (7)

where

rdata(Q?; Qk) =
( d

2
N
��

dQ? dQk
)data

( d2N��

dQ? dQk
)data;mix

and rnoBE(Q?; Qk) =
( d

2
N
��

dQ? dQk
)noBE

( d2N��

dQ? dQk
)noBE;mix

: (8)

Here (d2N��=dQ? dQk)data is the Q-distribution of the pion pairs with the same charge
in real data, while the subscript \data,mix" denotes the same quantity but for pairs from
the reference sample. The indices \noBE" and \noBE,mix" refer to analogous quantities
in absence of BEC obtained from the Jetset sample without BEC.

The reference sample (d2N��=dQ)data;mix is corrected for the detector e�ects using a
correction coe�cient similar to (6):

cmix(Q?; Qk) =
( d

2
N
��

dQ? dQk
)gen;mix

( d2N��

dQ? dQk
)rec;mix

; (9)

where \mix" denotes the mixed samples. The �nal, corrected, correlation function is then
evaluated from Eq.(7) as:

C2(Q?; Qk) =
rdata(Q?; Qk)

rnoBE(Q?; Qk)

c(Q?; Qk)

cmix(Q?; Qk)
: (10)

5 Results and discussion

The correlation function (10) as measured from the DELPHI data is shown in Fig. 3.
BEC manifest themselves as the enhancement of C2(Q?; Qk) at low values of the Q

components.
The quantitative evaluation of the two-dimensional correlation function parame-

ters was made by �tting the parametrization (5) to the measured correlation function
C2(Q?; Qk). The �t has been performed in the enhancement region of jQkj <0.8 GeV
and 0 GeV< Q? <0.6 GeV. Variation of the �t parameters as a function of the selected
�t region contributes to the systematic uncertainty of the analysis. To estimate this con-
tribution, the maximal value of jQkj was varied in the range from 0.6 GeV to 1.1 GeV,
and the one of Q? { from 0.6 GeV to 1 GeV. Other sources of systematic uncertainties
were evaluated varying the selection criteria. The biggest uncertainty comes from vary-
ing the minimal thrust value requirement in the range between 0.93 and 0.97. The total
systematic error was evaluated by adding all the contributions in quadrature.
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Figure 3: Two-dimensional correlation function, C2(Qk; Q?) (a), as measured by DELPHI
in hadronic decays of Z0. Its transverse (b) and longitudinal (c) slices at the peak are
shown together with the �t to the Eq.(5).

The following values for the correlation radius components were obtained:

R? = 0:53 � 0:02� 0:07 fm ;

Rk = 0:85 � 0:02� 0:07 fm ; (11)

where the �rst error is statistical, and the second is the systematic uncertainty. The
correlation strength is found to be � = 0:261� 0:007� 0:010, and it is slightly correlated
(about 30%) with the radii. The �2 of the �t is 96 for 92 degrees of freedom. The ratio
of the transverse and longitudinal radii from Eq.(11) is R?=Rk = 0:62� 0:10. This ratio
can be obtained as the result of a direct �t, using R?=Rk as a parameter, and Rk as the
complementary one. The correlation between the radii proves to be small (around 10%),
and the �t leads to the value of Rk identical with that of (11), and for the ratio

R?=Rk = 0:62 � 0:02� 0:05 : (12)

The values obtained are in qualitative agreement with the theoretical prediction of [8],
according to which the longitudinal correlation length in Z0 ! q�q hadronic decay has to
be larger than the transverse one, if the string fragmentation model is used.

In the Jetset generator, BEC is simulated by changing the �nal state particle mo-
menta so that the Gaussian distribution of Eq.(3) is reproduced [3]. The procedure is
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performed in terms of Q, not resolving it into components, hence R? and Rk ought to be
similar in the Jetset generated events. Indeed, the two-dimensional �t to the correla-
tion function evaluated from the Jetset generated decays of Z0 gives a ratio of R?=Rk

between 0.9 and 1.1, depending on the generator tuning. This is very di�erent from
the ratio of (12) and reects the fact that the BEC implementation in Jetset is not
appropriate for the multidimensional description of the correlation.

An elongation of the pion source was also observed by the L3 [10] and OPAL [12]
collaborations at LEP1. L3 collaboration used all the hadronic events in the analysis,
without applying additional selection criteria neither for two-jet events, nor for pairs of
tracks. The contribution from the correlations between particles produced in gluon jet-
s and possibly between the two strings is expected to lead to a more spherical source
shape and to a bigger value of the ratio of the radii, close to unity. The ratio mea-
sured by L3 Rt;side=Rlong = 0:81 � 0:02+0:03�0:19 is bigger then the R?=Rk reported in this
work, which con�rms these expectations. The OPAL Collaboration used the unlike-
charge reference sample in their analysis of two-jet events, obtaining the ratio of radii
R?=Rk = 0:77 � 0:02 � 0:07.

The measurement of the shape of the BEC presented here makes use of the LCMS
system to obtain a clear interpretation of the observed di�erence between transverse
and longitudinal correlation radii. Together with analogous measurements done by other
LEP experiments, it represents an improvement in BEC studies compared to previous
studies at lower energies [9], which used the laboratory system. While, the TASSO
and MARK-II collaborations, barely hinted at the possibility of the pion source in the
process e+e� ! hadrons being elliptical, this new result provides clear evidence for the
elongation of the source. The results have implications for the modelling of hadronic �nal
states performed by event generators.

6 Summary

Two-dimensional analysis of the Bose-Einstein e�ect using the 1992{1995 DELPHI
data con�rms the prediction that the longitudinal correlation length, Rk, in Z0 ! q�q
decay is bigger than the transverse one, R?, if the bosons produced in the string frag-
mentation are subject to Bose-Einstein correlations during the hadronization process.
The measured values are:

R? = 0:53 � 0:08 fm ; Rk = 0:85 � 0:08 fm :

The measured ratio of the radii components is R?=Rk = 0:62� 0:06, which is consistent
with qualitative predictions [8]. These results cannot be reproduced by the Jetset gen-
erator because this generator includes only a simpli�ed algorithm for the BEC simulation,
which does not distinguish between the directional components of the correlation radius.
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