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1 Introduction

The study of electroweak-boson production in hadron colliders provides use-
ful tests of the standard model and estimates of backgrounds to new physics.
For example, Wbb̄ production is the principal background to the associated
Higgs boson production, pp̄ → H(→ bb̄)W , at the Tevatron [1]. The com-
plete calculation of the next-to-leading-order (NLO) cross section for W , Z,
and virtual γ production at large transverse momentum in hadron collisions
has been presented in Refs. [2, 3], following earlier results for the non-singlet
cross section in Ref. [4].

The calculation of hard scattering cross sections near the edges of phase
space (partonic threshold), such as electroweak-boson production at high
transverse momentum, involves corrections from the emission of soft gluons
from the partons in the process. At each order in perturbation theory one
encounters large logarithms that arise from incomplete cancellations near
partonic threshold between graphs with real emission and virtual graphs.
These threshold corrections exponentiate and have been resummed explic-
itly at next-to-leading logarithmic accuracy for a number of processes includ-
ing heavy quark [5, 6, 7, 8, 9, 10], dijet [11, 9], and direct photon produc-
tion [12, 13, 14], using general techniques developed originally for Drell-Yan
production [15, 16]. For a review see Ref. [17].

In this paper we study electroweak-boson production at large transverse
momentum in hadronic collisions where these considerations are of relevance.
Following Ref. [12], we discuss in Section 2 the factorization properties of
the single-particle inclusive cross section [18, 5, 11, 12] and identify its sin-
gular behavior near threshold. We then proceed to resum the leading (LL)
and next-to-leading (NLL) logarithms explicitly to all orders in perturba-
tion theory. In Section 3 we provide full analytical results for the expansion
of the resummed cross section at NLO and at next-to-next-to-leading order
(NNLO). Our NLO expansion agrees near partonic threshold with the ex-
act NLO calculations in Refs. [2, 3] while our NNLO results provide new
predictions.
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2 Factorization and resummation

For the hadronic production of an electroweak boson V of mass mV , where
V = W,Z, γ∗,

hA(PA) + hB(PB) −→ V (Q) +X , (2.1)

we write the factorized single-particle cross section as

EQ
dσhAhB→V (Q)+X

d3Q
=

∑

f

∫

dx1 dx2 φfa/hA
(x1, µ

2
F ) φfb/hB

(x2, µ
2
F )

×EQ
dσ̂fafb→V (Q)+X

d3Q
(s, t, u, Q, µF , αs(µ

2
R)) (2.2)

where EQ = Q0, φf/h is the parton distribution for parton f in hadron h, and
σ̂ is the perturbative cross section. The initial-state collinear singularities are
factored into the φ’s at factorization scale µF , while µR is the renormalization
scale.

At the parton level, the subprocesses for the production of an electroweak
boson and a parton are

q(pa) + g(pb) −→ q(pc) + V (Q) ,

q(pa) + q̄(pb) −→ g(pc) + V (Q) . (2.3)

The hadronic and partonic kinematic invariants in the process are

S = (PA + PB)2, T = (PA −Q)2, U = (PB −Q)2, S2 = S + T + U −Q2,

s = (pa + pb)
2, t = (pa −Q)2, u = (pb −Q)2, s2 = s+ t+ u−Q2, (2.4)

where S2 and s2 are the invariant masses of the system recoiling against the
electroweak boson at the hadron and parton levels, respectively. s2 = (pa +
pb−Q)2 parametrizes the inelasticity of the parton scattering: for one-parton
production, s2 = 0. Since xi is the initial-parton momentum fraction, defined
by pa = x1PA and pb = x2PB, hadronic and partonic kinematic invariants
are related by s = x1x2S, t−Q2 = x1(T −Q2), and u−Q2 = x2(U −Q2).

In general, σ̂ includes distributions with respect to s2 at nth order in αs

of the type
[

lnm(s2/Q
2)

s2

]

+

, m ≤ 2n− 1 , (2.5)
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defined by their integral with any smooth function f by

∫ Q2

0
ds2 f(s2)

[

lnm (s2/Q
2)

s2

]

+

=
∫ Q2

0
ds2

lnm (s2/Q
2)

s2
[f(s2) − f(0)] . (2.6)

These plus distributions are the remnants of cancellations between soft and
virtual contributions to the cross section.

We now consider the partonic cross section, with the colliding hadrons
in Eq. (2.2) replaced by partons. To organize the plus distributions in σ̂,
we introduce a refactorization [5, 11, 12] using new functions ψf/f and J
that describe the dynamics of partons moving collinearly to the incoming
and outgoing partons respectively, and functions H and S which describe
respectively the dynamics of hard partons and of soft partons which are
not collinear to ψf/f and J . This factorization is shown in Fig. 1 in cut
diagram notation, showing contributions from the amplitude and its complex
conjugate, with H = hh∗. At partonic threshold we find the relation

S2

S
≃ −(1 − x1)

u

s
− (1 − x2)

t

s
+
s2

s

≡ w1

(

−u

s

)

+ w2

(

−t

s

)

+ wJ + ws , (2.7)

where in the second line of the equation the weights w identify the contri-
butions of the functions in the refactorized cross section. At fixed S2, the
partonic cross section factorizes into

EQ
dσfafb→V

d3Q
= H

∫

dw1dw2dwJdws ψfa/fa
(w1)ψfb/fb

(w2) J(wJ)S(wsQ/µF )

× δ
(

S2

S
− w1

(

−u

s

)

− w2

(

−t

s

)

− wJ − ws

)

. (2.8)

If we take moments of the above equation, with N the moment variable, we
can write the partonic cross section as

∫ dS2

S
e−NS2/SEQ

dσfafb→V

d3Q
= H

∫

dw1e
−N1w1ψfa/fa

(w1)

×
∫

dw2e
−N2w2ψfb/fb

(w2)
∫

dwJe−NwJJ(wJ)
∫

dwse
−NwsS(wsQ/µF )

≡ ψ̃fa/fa
(N1) ψ̃fb/fb

(N2) J̃(N)H S̃(Q/(NµF )) , (2.9)
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h h*

fa

fb

ψfa/fa

ψfb/fb

J

V

(a)

S

c c*

S

(b)

Fig. 1. (a) Factorization for V + jet production near partonic threshold.
(b) The soft-gluon function S, in which the vertices c link eikonal lines rep-
resenting the partons in the process.

with N1 = N(−u/s) and N2 = N(−t/s) for either partonic subprocess.
Taking moments of Eq. (2.2) with the incoming hadrons replaced by

partons, and using the first line of Eq. (2.7), we also have the relation

∫

dS2

S
e−NS2/SEQ

dσfafb→V

d3Q
=

∫

dx1 e−N1(1−x1)φfa/fa
(x1, µ

2
F )

×
∫

dx2 e−N2(1−x2)φfb/fb
(x2, µ

2
F )
∫

ds2

s
e−Ns2/sEQ

dσ̂fafb→V (s2)

d3Q

≡ φ̃fa/fa
(N1)φ̃fb/fb

(N2)EQ
dσ̂fafb→V (N)

d3Q
.(2.10)

Note that s2/s = s2/S up to quadratic terms in (1 − x1) and/or (1 − x2)
and/or s2. Comparing Eqs. (2.10) and (2.9) we then may solve for the
moments of the perturbative cross section σ̂:

EQ
dσ̂fafb→V (N)

d3Q
=
ψ̃fa/fa

(N1) ψ̃fb/fb
(N2)

φ̃fa/fa
(N1) φ̃fb/fb

(N2)
J̃(N)H S̃(Q/(NµF )) . (2.11)

The plus distributions in σ̂ produce, under moments, powers of lnN as high
as ln2nN . The LL corrections are included in ψ/φ and J , while the NLL
corrections are included in ψ/φ, J , and S.

The resummation of the N -dependence of the jet and soft functions in Eq.
(2.11) depends on their renormalization properties [5, 11]. The factor ψ̃/φ̃
is universal between electroweak and QCD-induced hard processes and its
resummation was first done in the context of the Drell-Yan process [15, 16].
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It contributes an enhancement to the cross section, while the final-state jet
J̃ gives a negative contribution [11, 12]. The UV divergences induced by
factorization in the hard and soft functions cancel against each other since
there are no additional UV divergences aside from those already removed
through the usual renormalization procedure. The renormalization of the
hard and soft functions can be written as

H(0) =
∏

i=a,b

Z−1
i Z−1

S H(Z∗

S)−1 , S(0) = Z∗

S SZS , (2.12)

where ZS is the renormalization constant of the soft function, and Zi is the
renormalization constant of the ith incoming partonic field. Then S satisfies
the renormalization group equation

(

µ
∂

∂µ
+ β(g)

∂

∂g

)

S = −2(Re ΓS)S , ΓS(g) = −
g

2

∂

∂g
Resǫ→0ZS(g, ǫ) ,

(2.13)
where ΓS is the soft anomalous dimension. We may then evolve S from the
scale Q/N to µF as

S̃

(

Q

µFN
,αs(µ

2
F )

)

= S̃
(

1, αs(Q
2/N2)

)

exp

[

∫ Q/N

µF

dµ′

µ′
2ReΓS

(

αs(µ
′2)
)

]

.

(2.14)

The resummation of the N -dependence of each of the functions in the refac-
torized cross section, Eq. (2.11), in the MS factorization scheme, then gives
[5, 11, 12]

EQ
dσ̂fafb→V (N)

d3Q
= exp







∑

i=a,b

[

E(fi)(Ni)

−2
∫ 2pi·ζ

µF

dµ′

µ′

[

γfi
(αs(µ

′2)) − γfifi
(Ni, αs(µ

′2))
]

]}

× exp
{

E ′

(J)(N)
}

H
(

αs(µ
2
F )
)

× S̃
(

1, αs(Q
2/N2)

)

exp

[

∫ Q/N

µF

dµ′

µ′
2ReΓS

(

αs(µ
′2)
)

]

,(2.15)
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with ζµ = pµ
c /Q. The incoming parton-jet anomalous dimensions [11, 10],

defined through

µ
dψ̃f/f(N,Q/µ, ǫ)

dµ
= 2γf(αs(µ

2)) ψ̃f/f(N,Q/µ, ǫ) (2.16)

and

µ
dφ̃f/f(N, µ

2, ǫ)

dµ
= 2γff(N,αs(µ

2)) φ̃f/f(N, µ
2, ǫ) , (2.17)

are given by

γq =
3

4
CF

αs

π
; γqq = −

(

lnN −
3

4

)

CF
αs

π
,

γg =
β0

4

αs

π
; γgg = −

(

CA lnN −
β0

4

)

αs

π
, (2.18)

for quark and gluon jets, respectively. β0 = (11CA − 2nf)/3 is the one-
loop coefficient of the β function, with nf the number of quark flavors. The
exponents for the incoming jets are [5, 11, 12]

E(fi)(Ni) = −
∫ 1

0
dz
zNi−1 − 1

1 − z

{

∫ 1

(1−z)2

dλ

λ
A(fi)

[

αs

(

(2pi · ζ)
2λ
)]

+
1

2
ν(fi)

[

αs

(

(2pi · ζ)
2(1 − z)2

)]

}

. (2.19)

At next-to-leading order accuracy in ln(N), we need ν(f) = 2Cfαs/π and

A(f)(αs) = Cf

(

αs/π + (K/2) (αs/π)2
)

, with Cf = CF (CA) for an incoming

quark (gluon), and K = CA(67/18 − π2/6) − 5nf/9.
The exponent for the final-state jet is [11, 12]

E ′

(J)(N) =
∫ 1

0
dz
zN−1 − 1

1 − z

{

∫ (1−z)

(1−z)2

dλ

λ
A(J)

[

αs(λQ
2)
]

+B′

(J)

[

αs

(

(1 − z)Q2
)]

+B′′

(J)

[

αs

(

(1 − z)2Q2
)]}

(2.20)

where2

B′

(q) =
αs

π

(

−
3

4

)

CF , B′′

(q) =
αs

π
CF [ln(2νq) − 1] ,

2Note that Eq. (2.20) corrects the arguments of αs in B′ in Eqs. (11) and (12) of
Ref. [12].
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B′

(g) =
αs

π

(

−
β0

4

)

, B′′

(g) =
αs

π
CA [ln(2νg) − 1] . (2.21)

The νi terms are gauge dependent. They are defined by νi ≡ (βi · n)2/|n|2,

where βi = pi

√

2/s are the particle velocities and n is the gauge vector, chosen

so that pi · ζ = pi · n for i = a, b [12]. In our calculations we use Feynman
rules for eikonal diagrams in axial gauge (resummation calculations have also
been done in covariant gauge [19]).

The soft anomalous dimensions are calculated explicitly by evaluating
one-loop vertex corrections [5, 17]. For the qg −→ qV channel in the kine-
matics (2.4) we find [12, 17]

Γqg→qV
S =

αs

2π

{

CF

[

2 ln
(

−u

s

)

− ln(4νqa
νqc

) + 2
]

+ CA

[

ln
(

t

u

)

− ln(2νg) + 1 − πi
]}

. (2.22)

The soft anomalous dimension for qq̄ −→ gV is [12, 17]

Γqq̄→gV
S =

αs

2π

{

CF [− ln(4νqνq̄) + 2 − 2πi] + CA

[

ln
(

tu

s2

)

− ln(2νg) + 1 + πi
]}

.

(2.23)
Eqs. (2.22) and (2.23) coincide with the corresponding soft anomalous dimen-
sions for direct photon production [12, 17]. Substituting Eqs. (2.19) through
(2.23) in the resummed cross section, Eq. (2.15), we see that at NLL accu-
racy all the gauge-dependent terms cancel out in the exponent, for both the
qg −→ qV channel and the qq̄ −→ gV channel.

We can rewrite the resummed cross section in a form which is more con-
venient for the calculation of the fixed-order expansions. Using the renor-
malization group behavior of the product HS from Eq. (2.12),

µ
d

dµ
ln [H(µ)S(Q/(Nµ))] = −2

[

γa(αs(µ
2) + γb(αs(µ

2))
]

, (2.24)

and the relation

H(αs(Q
2)) = H(αs(µ

2
R)) exp

[

∫ Q

µR

2
dµ′

µ′
β(αs(µ

2))

]

, (2.25)
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with β(αs) ≡ µd ln g/dµ = −β0αs/4π + ..., we can write Eq. (2.15) as

EQ
dσ̂fafb→V (N)

d3Q
= H

(

αs(µ
2
R)
)

exp

[

2
∫ Q

µR

dµ′

µ′
β(αs(µ

′2))

]

× exp







∑

i=a,b

[

E(fi)(Ni) − 2
∫ 2pi·ζ

µF

dµ′

µ′

[

γfi
(αs(µ

′2)) − γfifi
(Ni, αs(µ

′2))
]

]







× exp
{

E ′

(J)(N)
}

exp

[

2
∫ Q

µF

dµ′

µ′

(

γa(αs(µ
′2)) + γb(αs(µ

′2))
)

]

× S̃
(

1, αs(Q
2/N2)

)

exp

[

∫ Q/N

Q

dµ′

µ′
2ReΓS

(

αs(µ
′2)
)

]

. (2.26)

3 Next-to-next-to-leading order expansion of

the resummed cross section

In this section, we expand the NLL resummed cross section up to NNLO, in-
vert back from moment space to momentum space, and perform a comparison
with the NLO results of Ref. [2, 3]. At the parton level, the subprocesses for
the production of an electroweak boson and a parton are given in Eq. (2.3).

We can write the NLO corrections from Eq. (2.26) for qg −→ qV in
single-particle inclusive kinematics at NLL accuracy as

EQ

dσ̂NLO
qg→qV

d3Q
= σB

qg→qV

αs(µ
2
R)

π

{

(CF + 2CA)

[

ln(s2/Q
2)

s2

]

+

−

[

(CF + CA) ln

(

µ2
F

Q2

)

+
3

4
CF + CA ln

(

tu

sQ2

)]

[

1

s2

]

+

+ δ(s2)

[

ln

(

µ2
F

Q2

)(

−
β0

4
+ CF

(

ln

(

−u

Q2

)

−
3

4

)

+ CA ln

(

−t

Q2

))

+
β0

4
ln

(

µ2
R

Q2

)]}

.

(3.1)

Here the Born term is

σB
qg→qV =

ααs(µ
2
R)CF

s(N2
c − 1)

Aqg
∑

f

(|Lffa
|2 + |Rffa

|2) , (3.2)
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Aqg = −

(

s

t
+
t

s
+

2uQ2

st

)

,

with L and R the left- and right-handed couplings of the electroweak boson
to the quark line, f the quark flavor and

∑

f the sum over the flavors allowed
by the CKM mixing and by the energy threshold. We choose for the L ,R
couplings the conventions of Ref. [3]. The Born differential cross section is
EQdσ

B
qg→qV /d

3Q = σB
qg→qV δ(s2).

We have kept the factorization and renormalization scales separate. The
expansion gives all [ln(s2/Q

2)/s2]+ and [1/s2]+ terms but only scale-dependent
δ(s2) terms.

Our one-loop expansion can be compared with the exact NLO cross sec-
tion [3] in the proximity of the partonic threshold, s2 → 0, i.e. with the sin-
gular terms of the type (2.5) in the contribution of the subprocess qg −→ qV g
to the cross section for qg −→ qV . We find full agreement3 with the results
of Ref. [3].

Then we expand the resummed cross section, Eq. (2.26), for qg −→ qV to
two-loop order and compute the NNLO corrections in single-particle inclusive
kinematics at NLL accuracy, including all the factorization and renormaliza-
tion scale dependent terms. We obtain

EQ

dσ̂NNLO
qg→qV

d3Q
= σB

qg→qV

(

αs(µ
2
R)

π

)2 {
1

2
(CF + 2CA)2

[

ln3(s2/Q
2)

s2

]

+

+

[

−
3

2
(CF + 2CA)

(

(CF + CA) ln

(

µ2
F

Q2

)

+
3

4
CF + CA ln

(

tu

sQ2

))

−
β0

2

(

CF

4
+ CA

)

] [

ln2(s2/Q
2)

s2

]

+

+ ln

(

µ2
F

Q2

)[

(CF + CA)2 ln

(

µ2
F

Q2

)

+
3

4
C2

F + 2CA(CF + CA) ln

(

tu

sQ2

)

+ (CF + 2CA)

(

CF ln

(

−u

Q2

)

+ CA ln

(

−t

Q2

)

−
β0

4

)] [

ln(s2/Q
2)

s2

]

+

+ ln

(

µ2
R

Q2

)

β0

2
(CF + 2CA)

[

ln(s2/Q
2)

s2

]

+

3Note that Gonsalves et al. [3] use “A+” distributions, which are related to our “+”
distributions by [lnn(s2/Q2)/s2]+ = [lnn(s2/Q2)/s2]A+ + (1/(n + 1)) lnn+1(A/Q2)δ(s2).
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+ ln2

(

µ2
F

Q2

)

(CF + CA)

[

CF

(

− ln

(

−u

Q2

)

+
3

4

)

− CA ln

(

−t

Q2

)

+
3β0

8

]

[

1

s2

]

+

−
β0

2
(CF + CA) ln

(

µ2
R

Q2

)

ln

(

µ2
F

Q2

)

[

1

s2

]

+

}

. (3.3)

Our expansion gives all [ln3(s2/Q
2)/s2]+ and [ln2(s2/Q

2)/s2]+ terms but
only scale-dependent terms for [ln(s2/Q

2)/s2]+ and [1/s2]+. However we
can derive all the [ln(s2/Q

2)/s2]+ terms by matching with the exact NLO
cross section4. Including the µR,F -dependent terms given above, the full
[ln(s2/Q

2)/s2]+ terms are

σB
qg→qV

(

αs(µ
2
R)

π

)2 {
1

2Aqg
(CF + 2CA) [Bqg

1 +Bqg
2 nf + Cqg

1 + Cqg
2 nf

+Bqg
3

(Lfafa
− Rfafa

)
∑

f(Lff − Rff )
∑

f (|Lffa
|2 + |Rffa

|2)

]

+

[

(CF + CA) ln

(

µ2
F

Q2

)

+
3

4
CF + CA ln

(

tu

sQ2

)]2

+ (CF + 2CA)
β0

4
ln

(

µ2
R

Q2

)

+
1

2
K(CF + 2CA) − ζ2(CF + 2CA)2

+ β0
CF

4

(

3

4
− ln

(

s

Q2

))

+ β0
CA

2
ln

(

tu

sQ2

)}[

ln(s2/Q
2)

s2

]

+

, (3.4)

with ζ2 = π2/6, and with Bqg
1 , Bqg

2 , Bqg
3 , Cqg

1 , and Cqg
2 as given in the Ap-

pendix of Ref. [3] but without the renormalization counterterms and using
fA ≡ ln(A/Q2) = 0.

Next, we consider the qq̄ −→ gV partonic subprocess, and compute the
NLO corrections from Eq. (2.26) in single-particle inclusive kinematics at
NLL accuracy,

EQ

dσ̂NLO
qq̄→gV

d3Q
= σB

qq̄→gV

αs(µ
2
R)

π

{

(4CF − CA)

[

ln(s2/Q
2)

s2

]

+

−

[

2CF ln

(

µ2
F

Q2

)

+ (2CF − CA) ln

(

tu

sQ2

)

+
β0

4

]

[

1

s2

]

+

4In Eq. (2.12) of Ref. [3] there is a typo: the term Cqg
2 should be replaced by

δ(s2)C
qg
2 nf + Cqg

3 .
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+ δ(s2)

[

ln

(

µ2
F

Q2

)

CF

(

ln

(

tu

Q4

)

−
3

2

)

+
β0

4
ln

(

µ2
R

Q2

)]}

. (3.5)

Here the Born term is

σB
qq̄→gV =

ααs(µ
2
R)CF

sNc

Aqq̄ (|Lfbfa
|2 + |Rfbfa

|2) , (3.6)

Aqq̄ =
u

t
+
t

u
+

2Q2s

tu
,

and the Born differential cross section is EQdσ
B
qq̄→gV /d

3Q = σB
qq̄→gV δ(s2).

The one-loop term can be compared with the singular terms of the type
(2.5) in the contribution of the subprocesses qq̄ −→ gV g and qq̄ −→ V qq̄ to
the cross section for qq̄ −→ gV . We are in agreement with Ref. [3].

The NNLO corrections from Eq. (2.26) for qq̄ −→ gV in single-particle
inclusive kinematics at NLL accuracy, including all the factorization and
renormalization scale dependent terms, are

EQ

dσ̂NNLO
qq̄→gV

d3Q
= σB

qq̄→gV

(

αs(µ
2
R)

π

)2 {
1

2
(4CF − CA)2

[

ln3(s2/Q
2)

s2

]

+

+

[

−
3

2
(4CF − CA)

(

2CF ln

(

µ2
F

Q2

)

+ (2CF − CA) ln

(

tu

sQ2

))

−
β0

2

(

5CF −
3

2
CA

)

] [

ln2(s2/Q
2)

s2

]

+

+ ln

(

µ2
F

Q2

) [

CF

(

4CF ln

(

µ2
F

Q2

)

+ (4CF − CA)

(

ln

(

tu

Q4

)

−
3

2

)

+ 4 (2CF − CA) ln

(

tu

sQ2

))

+ CFβ0

] [

ln(s2/Q
2)

s2

]

+

+ ln

(

µ2
R

Q2

)

β0

2
(4CF − CA)

[

ln(s2/Q
2)

s2

]

+

+ ln2

(

µ2
F

Q2

)

CF

[

CF

(

−2 ln

(

tu

Q4

)

+ 3

)

+
β0

4

]

[

1

s2

]

+

− β0CF ln

(

µ2
R

Q2

)

ln

(

µ2
F

Q2

)

[

1

s2

]

+

}

. (3.7)

Again, only scale-dependent terms for [ln(s2/Q
2)/s2]+ and [1/s2]+ are in-

cluded in Eq. (3.7). The full [ln(s2/Q
2)/s2]+ terms are found by matching
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with the exact NLO cross section,

σB
qq̄→gV

(

αs(µ
2
R)

π

)2 {
1

2Aqq̄
(4CF − CA)

[

Bqq̄
1 + Cqq̄

1 + (Bqq̄
2 +D(0)

aa )nf

+Bqq̄
3 δfafb

(Lfafa
−Rfafa

)
∑

f (Lff −Rff )

(|Lfbfa
|2 + |Rfbfa

|2)

]

+

[

2CF ln

(

µ2
F

Q2

)

+ (2CF − CA) ln

(

tu

sQ2

)

+
β0

4

]2

+ (4CF − CA)
β0

4
ln

(

µ2
R

Q2

)

+ (4CF − CA)
K

2
+
β2

0

16
− ζ2(4CF − CA)2

+ β0

(

CF −
CA

2

)

ln

(

tu

sQ2

)

− CA
β0

4
ln

(

s

Q2

)} [

ln(s2/Q
2)

s2

]

+

, (3.8)

with Bqq̄
1 , Bqq̄

2 , Bqq̄
3 , Cqq̄

1 , and D(0)
aa as given in the Appendix of Ref. [3] but

without the renormalization counterterms and using fA = 0.

4 Conclusion

We have presented the resummed cross section at NLL accuracy for electroweak-
boson production at large transverse momentum near partonic threshold.
The expansion of the resummed cross section at NLO agrees with previous
exact NLO results while the NNLO expansion provides new predictions at
higher order. In future work we plan to study the numerical significance
of resummation for W+ jet production. Related studies for other processes
have shown reduced factorization scale-dependence, expected on theoretical
grounds [20], and increases over the NLO cross section.
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