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Abstract

The analyses of recent LEP data provide us with a rich ground for pQCD and LPHD tests. A
number of non-trivial effects predicted in the framework of MLLA are experimentally verified.
Recent measurements also enrich our knowledge about the hadronization process.

1 Introduction

Recent LEP results on multiparticle production in hadronic jets enable further important tests
of QCD. One of the most interesting and intriguing outcomes of the pQCD calculations is the
prediction of so-called colour coherence effects [1].

A number of analyses presented here demonstrate that there is an agreement of the data
with the QCD MLLA predictions and provide further support for the concept of local parton
hadron duality (LPHD) [2].

There are also new results in the physics of large distances, where the processes not calcu-
lable within the pQCD provide us with abundant information needed for tuning hadronization
model parameters.

2 Testing analytical predictions of Perturbative QCD

Inclusive charged hadron distributions measured by DELPHI at 189 GeV [3] were presented
as a function of the variables: rapidity, ξp = ln(1/xp), momentum and transverse momentum.
The ξp distribution demonstrates the so-called “hump backed” behaviour predicted for partons
in the framework of the Modified Leading Logarithmic Approximation (MLLA) [2]. The si-
multaneous fit to the ξp distribution with a Fong-Webber distorted Gaussian [4] at different
energies including the present measurement at 189 GeV show very good agreement of the data
and the prediction (χ2/dof = 99.6/97) giving support for the LPHD hypothesis.

MLLA also provides a definite prediction for the energy evolution of the maximum of
the ξ distribution, ξ∗. As hadronization and resonance decays are expected to act similarly at
different centre-of-mass energies, the energy evolution of ξ∗ is expected to be less sensitive to
nonperturbative effects. The ξ∗ values entering in the analysis were determined by fitting a
distorted Gaussian with the parameters given by the Fong-Webber parametrisation. For the
189 GeV data one obtains ξ∗ = 4.157±0.030. A fit of the MLLA prediction again demonstrates
good agreement while ruling out a phase space expectation and the DLA prediction.

The energy evolution of the momentum distribution is well described by the fragmenta-
tion model. An interesting observed feature is the approximate ECM independence of hadron
production at very small momenta p < 1 GeV. This has been explained in [5],[2] to be due to the
coherent emission of long wavelength gluons by the total colour current which is independent
of the internal jet structure and is conserved under parton splittings. Therefore, low-energy
gluon emission is expected to be almost independent on the number of hard gluons radiated
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and hence of the centre-of-mass energy. Provided the LPHD hypothesis is correct, the number
of produced hadrons at small momenta is approximately constant.

A sample of 2.2 million hadronic Z decays, selected from the data recorded by the Delphi
detector at LEP during 1994-1995 was used for a precise measurement of inclusive distributions
of π+, K+ and p and their anti-particles in gluon and quark jets [6]. As observed for inclusive
charged particles, the production spectra of the individual identified particles were found to
be softer in gluon jets compared to the quark jets, with a higher multiplicity in gluon jets. A
significant enhancement of protons in gluon jets is observed. The ratio of the average multi-
plicity in g jets with respect to q jets was found for all identified particles to be consistent with
the ratio measured for all charged particles. The normalised ratio for protons in Y events was
measured to be:

Rp = 1.205± 0.041,

which differs significantly from unity.
The maxima, ξ∗, of the ξ-distributions for kaons in gluon and quark jets are observed to

be different.
A particularly nice illustration of the phenomenon of QCD coherence and a test of LPHD

was obtained by DELPHI using symmetric 3-Jet Events [7]. It is known that soft radiation is
sensitive to the total colour flow in the underlying hard partonic structure. Let’s consider, for
example, two extreme two-jet topologies of a qq̄g event. If the gluon is collinear to one of the
quarks, the colour flow in the event will be identical to the qq̄ case, whereas if the gluon exactly
recoils with respect to the two quarks, the colour flow will correspond to that of a gg event.
In the latter case the soft radiation at large angle is expected to be increased by the colour
factor ratio CA/CF as compared to the qq̄ case. The evolution between those extreme cases
has been calculated as a function of the opening angles between the jets [5]. Thus, the charged
hadron multiplicity in a cone perpendicular to the event plane of symmetric three-jet events
was determined as a function of an inter-jet angle for the data collected at the Z resonance. A
clear dependence of the multiplicity on the opening angle was observed and appears to be in
agreement with QCD predictions [8],[5].

An interesting example of the intra-jet QCD coherence is the restriction of forward gluon
emission for heavy quarks. A calculation in the framework of MLLA predicts the following
angular distribution of gluon emission [1]:

dn

dθ2
∼ θ2/(θ2 + θ2

min)2, θmin ≡ mQ

E

where mQ and E are a quark mass and energy, respectively. Provided LPHD holds, the effect
should be seen, for example, in a comparison of the primary-particle angular distribution for
bb̄ and qq̄ (where q denotes u,d or s quark) Z decays. Delphi has presented preliminary results
that show a difference in this behaviour. Hadrons containing the original quark or originating
from the decay of such particle are carefully excluded from consideration.

The phenomenon of colour coherence is not only a subject for tests, but also may be used
as a tool for reconstruction of the event colour structure on an event-by-event basis. The idea
presented in [9] is based on the fact that soft particles do not originate from a particular parton
but rather their production depends on the whole colour topology of the event. Therefore,
it is possible to define a way to estimate the colour connection strength between the partons
by analysing the behaviour of the soft particles. The method can then be used for parton
identification. The proposed algorithm is described below: first, fast particles are used to
reconstruct cluster directions and then to define a weight wij that a particle i may be connected
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to a cluster j with:

wij =
Ci

k2
ij

where k2
ij = 2E2

i (1−cosΘij), with normalisation Σjwij = 1. Then each particle with wij < 0.95
is assigned to the cluster pair kl for which the sum wikl = wik + wil is maximal. Then parton
pair connectedness is defined as

Wkl = CklΣig(Ei)(wik + wil)

where i runs through all the particles assigned to the clusters kl.
The method was tested by the Delphi collaboration by using double b-tagged 3-jet Mer-

cedes events collected at the Z pole. The gluon jet is known in these kind of events as one which
is not b-tagged. On the other hand, the gluon should have two colour connections and thus
the colour connectedness Wkl of the bb̄ pair must have the smallest value in any given event.
Matching the two gives the purity of the method which is found to be above 60% and could be
improved by requiring the smallest colour connection coefficient to be below a predetermined
threshold value.

The method with various modifications could be used for identifying colour connections
in numerous applications (pairing, background rejection).

One of the approaches to study a parton shower cascade is to employ the multiplicity mo-
ments technique. The oscillations in the ratio of the cumulant factorial to the factorial charged
particle multiplicity moments in Z Decays is known to show a quasi-oscillatory behaviour when
plotted versus the order of the moment, as was observed by the SLD collaboration some time
ago [10]. This peculiarity is also predicted by the NNLLA of perturbative QCD within the
LPHD framework [11].

However, using the jet multiplicity distributions obtained from the Cambridge jet algo-
rithm, in order to vary the dependence on the LPHD hypothesis, the L3 collaboration found
[12] that the oscillations appear only for non-perturbative energy scales, namely ≤ 100 MeV.
From this conclusion it follows that the observed oscillations are unrelated with the behaviour
predicted by the NNLLA perturbative QCD calculations.

Another challenging way to study the cascade is to measure multiplicity fluctuations in
rings around the jet axis and in off-axis cones. The DELPHI collaboration performed the
measurement [13] and compared them with analytical perturbative QCD calculations for the
corresponding multiparton system, using the concept of LPHD. Some qualitative features were
confirmed by the data but substantial quantitative deviations are observed.

3 Fragmentation physics

Our knowledge about the hadronization process has been significantly enriched by recent mea-
surements at LEP.

Thus, results on the production of the Λ(1520) are presented, as obtained from hadronic Z
decays recorded by DELPHI [14]. The Λ(1520) scaled momentum (xp) spectrum is determined.
The relative importance of Λ(1520) production increases with xp similarly to that of orbitally
excited mesons. It is shown that the Λ(1520) primarily originates from fragmentation and not
from heavy particle (b, c) decays. The large Λ(1520) production rate NΛ(1520)/NZ = 0.030 ±
0.004± 0.005 suggest that many stable baryons descend from orbitally excited baryonic states.

The OPAL collaboration measured the helicity density matrix elements ρ00 of ρ(770)±

and ω(782) mesons produced in Z0 decays [15]. Over the measured meson energy range, the
values are compatible with 1/3, corresponding to a statistical mix of helicity −1, 0 and 1 states.
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For the highest accessible scaled energy range 0.3 < xE < 0.6, the measured ρ00 values of the
ρ± and the ω are 0.373 ± 0.052 and 0.142 ± 0.114, respectively.

The ALEPH collaboration performed an extensive study of the production rates and
the inclusive cross sections of the isovector meson π0, the isoscalar mesons η and η′(958), the
strange meson K0

S and the Λ baryon. This was done as function of scaled energy (momentum)
in hadronic events, two-jet events and each jet of three-jet events from hadronic Z decays
and compared the results to Monte Carlo models [16]. The JETSET modelling of the gluon
fragmentation into isoscalar mesons is found to be in agreement with the experimental results
for the measured region. HERWIG fails to describe the K0

S spectra in gluon-enriched jets and
the Λ spectra in quark jets.

An interesting idea which helped to understand the production rates of light-flavour
hadrons was proposed by P.Chliapnikov [17]: the difference between the production rates of
hadrons composed of the same quarks and belonging to the different SU(3) multiplets but the
same SU(6) multiplet is essentially determined by the hyperfine mass splitting. This trend shows
up when the direct production rates are plotted versus the sum of the constituent quark masses
Σi(mq)i. In this case the vector-to-pseudoscalar and decuplet-to-octet suppressions are found to
be the same. In the proposed scenario the strangeness suppression factor, λ = 0.295± 0.006, is
the same for mesons and baryons and related to the difference in the constituent quark masses,
λ = e−(ms−m̂)/T , where m̂ = mu = md, and the temperature T = 142.4± 1.8 MeV/c2.
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