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Abstract

A time-dependent temperature map is derived for the primary jaw of the momentum
collimation system during the high transient loss period which is to occur at the beginning of
the ramp of acceleration. An adequate margin factor is obtained for a loss of 5% of the nominal
stored beam and for the nominal parabolic ramping curve.
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1 Introduction
In LHC, the protons which are not captured by the RF system will not be accelerated

and will be lost on a momentum collimation system soon after the beginning of the ramp
of acceleration. The number of protons which are off the buckets can be large and the
duration of the flash of the transient losses will be short, i.e. last approximately one
second. The aim of this note is to derive a time-dependent three dimensional heat load
map in the primary momentum collimator associated to these off-bucket protons.

We do our calculations for a fraction of the beam which is off-bucket ∆NRF = 5%
and for the nominal stored intensity Nstored = 3 1014 protons.

Our derivation is made in three steps. We first analyse the 6D-motion of the off-
bucket protons near the momentum cut made by the collimator and get a primary time-
dependent impact map on the collimator (Section 2). We then develop hadronic showers
in the collimator to produce a map of power deposition to which the primary ionisation
of the impacting protons is added (Section 3). We then derive a semi-analytic model of
heat diffusion in the collimator to get a time-dependent 3D map of temperatures (Section
4). We finally discuss the consequences for the design of the collimator, associated to the
maximum temperature which can be reached in the collimator (Section 5).

2 Time-dependent impact map of the primary losses
2.1 Time structure of momentum losses at ramping

The off-bucket protons are lost at the beginning of the acceleration ramp. Their
central relative momentum difference with respect to the accelerated central momentum
increases with the time dependence [1]

|δp(t)| =
δp

p
= αt2 . (1)

The nominal value of α is chosen to control the ’snap-back’ effect of the magnets [1]
and is given in Table 1. The protons touch the primary momentum collimator when
|δp(t)| = δcut = 3 · 10−3 , a value fixed to match the momentum aperture of the LHC ring
[2]. With (1), a proton with null initial momentum offset δp(0) = 0 and null betatronic
amplitude reaches δcut at time

to =

√
δcut

α
. (2)

With the conservative assumption that the initial momentum distribution is a δ-
function at δp = 0, the time distribution of the losses is fixed by the betatronic distribution
of the beam. In a regime of slow enough ramping, protons with a large betatronic ampli-
tude touch the collimator sooner than those with small betatronic amplitude. We make
the likely hypothesis that the betatronic distribution of the beam is Gaussian with a rms
size σβ,x =

√
εβx. With the slow transverse drift associated to the slow ramping, the beta-

tronic distribution is cut on its two-sides simutaneously when approaching the collimator.
The time distribution of the impacts is therefore the left side half of a Gaussian, or

f(t) =
2Θ(tc − t)Θ(t)√

2πσt

exp−(t−tc)
2/2σ2

t (3)

with Θ(t) the Heavyside function and tc the time of the end of the process. To handle
the process numerically we cut off the left tail of f(t) at 2.5σt, thus neglecting 1% of the
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Figure 1: The horizontal betatronic motion combined with the drift associated to the accel-
eration for the protons which are off-bucket. In abscissa the turn number and in ordinate the
horizontal position in micron with arbitrary origin. The drift speed is here ẋ = 1.7 103 µms−1 =
0.15 µ/turn, computed with 4 using the intermediate intermediate value α = 6 · 10−5 s−2 of
Table 1.

energy deposition and fix tc = 2.5σt to start the process at t = 0. The rms of f(t) is
σt = σβ,x/ẋ with ẋ = d(Dδp)/dt = d(Dαt2))/dt = 2Dαt computed at t = to and the
dispersion D at the primary collimator. With

dotx(t = to) = 2D
√

αδcut, (4)

σt =
1

2D

√
εβx

αδcut
. (5)

We used D = 2 m , β = 100 m at injection, and the nominal emittance ε = .0078π mm·mrad.

2.2 Impact parameter distribution on the primary collimator
The impact parameter distribution is obtained by combining the smearing of the

betatron amplitude to the drift in the horizontal plane associated to the growth of |δp(t)|.
Sixtrack tracking data for LHC Version 6.-2 were provided to us by F. Schmidt [3]. Protons
of betatronic amplitudes Ax = Ay = 1 σβ,x and fixed relative momentum offset δp = 2·10−3

were tracked over N=4000 turns. At each turn the 6 coordinates were recorded. Two seeds
of the LHC machine were used, a ’good’ and an ’average’ one, where ’good’ and ’average’
qualify their respective dynamic aperture near the edge of the bucket. To the horizontal
betatronic excursion xβ,i at turn i the quantity D|δp(ti)| is added, with ti = i/fr and fr

the frequency rotation of the beam. An exemple is shown in Figure 1. With i growing, the

2



-5

-4

-3

-2

-1

0

1

2

3

0 10 20 30 40 50

ln
 d

n/
db

b
 

[mum]

 

Figure 2: Simulated impact parameter distribution for the average seed (see text). An exponen-
tial function fits quite well the data, except near b = 0.

quantity xi = xβ,i +D|δp(ti)| is compared to the former largest value xj = xβ,j +D|δp(tj)|.
When xi > xj , the impact parameter distribution is added the contribution

dN

db
=

dN

db
+

Θ(x − xj)Θ(xi − x)

i − j
(6)

with b the impact parameter and Θ(x) the Heavyside function. The function (6) reflects
the fact that the collimator can occupy randomly any position between two consecutive
maxima of x. Only one impact can occur between two consecutive maxima, justifying
the relative weight 1/(i − j). For three ramping speeds and for the two seeds (see Table
1), the impact parameter distribution is well approximated by an exponential function
dn/db = a exp(−kb) truncated at some impact parameter bmax, see an exemple in Figure
2. The result of the fit of the k values is given in Table 1. As it can be expected, the b
distribution is steeper for small ramping speeds, but with a quite weak dependence on α.
Contrary to what might be expected, the seed qualified as being good at δp < δbucket has
a more shaky motion at δp = 3 · 10−3. A small deviation at low b values will be taken into
account by keeping the slope k as fitted, but multiplying the number of lost protons by a
correction factor

ccorr =
dn

db
(b = 0)tracking/

dn

db
(b = 0)fit. (7)

For every value of α, we will use the steepest of the two distributions, i.e. the k
values of the average seed, see Table 1. To simplify the parametrisation of the time-
dependant impact map, we use the same correction to the normalisation as fixed by the
largest deviation observed , i.e. the case displayed in Figure 2 for which ccorr = 1.9.

2.3 Vertical distribution of impacting protons
With the hypothesis of uncoupled betatronic motion, the vertical distribution of

impacting protons is simply given by the vertical betatronic distribution, a Gaussian dis-

tribution of rms width σβ,y =
√

εβy = 0.88 mm with βy = 100 m. The vertical distribution
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Table 1: The parameter k as a function of the ramp speed α and for the two seeds ’average’ and
’good’. The first value of α is the nominal one. The two other ones correspond to worse cases,
for which the duration of the flash of losses is shorter, as shown in Table 2.

α [s−2] kaverage [µm−1] kgood [µm−1]

6 · 10−6 0.25 0.13
6 · 10−5 0.19 0.14
6 · 10−4 0.10 0.09

Table 2: Input parameters for the time dependant impact parameter distribution as a function
of the ramp speed α. Typical impact parameters are given by the quantity bo.

α [s−2] σt [s] k [µm−1] bo = 1/k [µm]

6 · 10−6 1.65 0.25 4.0
6 · 10−5 0.52 0.19 5.2
6 · 10−4 0.165 0.10 10

is then
dn

dy
=

1√
2πσy

exp−y2/2σ2
y (8)

2.4 Longitudinal distribution of impacting protons
In the worst case for energy deposition, the longitudinal distribution of impacts is

a δ-function at the entrance face of the jaw and does not appear explicitely in the overall
time-dependent distribution. This impact distribution is the input for further propagation
of the protons in the jaw. In a good approximation, the longitudinal distribution of energy
deposition is the sum of hadronic showers developed in the collimator and of the primary
ionisation of the impacting protons along their path.

2.5 Time-dependent impact parameter distribution
Combining (3),(6) and (8), we get the factorised time-dependent impact parameter

distribution

d3N(t, b, y)

dtdbdy
=

ccorr∆NlosskΘ(tc − t)Θ(t)

πσtσy

e−(t−tc)2/2σ2
t e−kbe−y2/2σ2

y , (9)

with b the impact parameter (and also the horizontal coordinate with its origin at the
inner face of the jaw), y the vertical coordinate and tc = 2.5σt to cut off the infinitely
long tail of a Gaussian.

3 Energy deposition
We do our calculations in the local Cartesian system (x, y, z) attached to the col-

limator jaw. The coordinate x coincides with the horizontal impact parameter b and y

4



Table 3: Additional parameters for the time dependant distribution .

∆Nloss 1.5 · 1013 protons
ccorr 1.9
σy 0.88 mm

and z are the vertical and the longitudinal coordinates respectively. The collimator jaw
occupies the box :

0 ≤ x ≤ X , −Y ≤ y ≤ Y , 0 ≤ z ≤ L ,

where X = 3.5 cm, Y = 3.2 cm and L = 20 cm. The jaw material is aluminium.
An estimation of the density of energy deposition at the entrance of the jaw (x=0,

y=0, z=0) is obtained by multiplying the beam density (9) by the ionization energy
loss ( 6.1 MeV/cm for 450 GeV proton). The result is a very impressive peak energy in
the range of hundreds kJ/cm3. But this value cannot be used for realistic estimations of
the jaw temperature because of the relatively long duration of the proton pulse which
allows heat to diffuse far from the zone of the heat deposition. We must also consider the
additional component of energy deposition associated to the protons-nuclear interactions
in the jaw. We compute a 3D-map of energy deposition per protons q(x, y, z) including
this effect and then deduce a time integrated map Q(x, y, z) = ccorr∆Nlossq(x, y, z) (see
next alinea). The time-dependent power deposition map PV (x, y, z, t) is obtained by using
Equation (9) in which all the time-independent terms are replaced by Q(x, y, z). This is
allowed by the fact that the energy deposition of each proton is done in a time of the
order of its time-of-flight through the jaw, much smaller than our time-scale fixed by σt.
We therefore use

PV (x, y, z, t) = Q(x, y, z)f(t) with f(t) =

√
2

π

1

σt

Θ(tc − t)Θ(t)e−(t−tc)2/2σ2
t (10)

To consider thermal diffusion we must first compute the map of heat deposition
Q(x, y, z) everywhere in the jaw. Protons deposit energy first by primary ionisation. Then
successive interactions which produce many secondary particles deposit again energy also
by ionisation. This process (the ’hadronic shower’) is simulated by a Monte-Carlo method
using the code MARS [4]. The important feature of the present calculations is that a
special algorithm for the particle tracking near the surface of the material is enabled for
precise description of the ’edge scattering’ of the primary protons. The energy deposition
density is determined as the energy absorbed inside the predefined space cell divided by
the cell volume so that

Q(x, y, z) = qijl, at x ∈ [xi, xi+1], y ∈ [yj, yj+1], z ∈ [zl, zl+1] . (11)

The cell dimensions vary from (∆x = 1µm, ∆y = 1mm, ∆z = 5mm) at small (x, y, z) to
(∆x = 1cm, ∆y = 1cm, ∆z = 3cm).

As can be seen from (9) the incident beam density is a monotonically increasing
function of t. Therefore the maximum temperature must be expected at t = tc. The y-
distribution is a gaussian centered at y = 0, thus Q(x, y, z) is y-symmetric, has a local
maximum at y = 0 and a crest line along (x, 0, z). The plots of Q(x, 0, z) are presented
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in Figure 3 for the minimum and the maximum values of the ramp speed α. Q(x, 0, z) is
found to be a monotonically decreasing function of x for every z. Unfortunately the same
is not true for the z-dependence which is decreasing at very small x but increasing at
bigger x. While the largest energy deposition is Q(0, 0, 0), it is therefore not necessarily
the case for the temperature. We must seek for the maximum temperature by analyzing
its dependence on z at x=0, y=0 and t = tc.

Figure 3: Energy deposition density in the collimator jaw. The ramp speed α [s−2] is
shown in the right upper corner of each frame.

4 Thermal calculations
4.1 Solution of thermal conductance equation

To obtain the temperature distribution T (x, y, z, t) in the jaw material with thermal
conductivity λ , specific heat C and density ρ, the heat conduction equation

∂T

∂t
− λ

ρ C

(
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)
=

1

ρ C
PV (x, y, z, t) , (12)

must be solved for PV (x, y, z, t) taken from (10) and for a set of boundary and initial
conditions related to the design of the collimator.

The collimator jaw is situated in a vacuum box. It is driven by the outside motor
through the gear and the supporting rod. One of the rod ends is connected to the jaw and
the another one is connected to the outside gear. If thermal radiation is neglected then
five out of six jaw surfaces can be considered as thermally insulated. The conditions at
the surface x = X are more complicated because a part of it is in a good thermal contact
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with the outside. They can be simplified if the heat diffusion length

< d >=

√
λtc
Cρ

is less than X. With the numerical constants λ = 2.4 W/(cm·K), C = 1 J/(g·K),
ρ = 2.7 g/cm3 for the aluminium jaw and the longest pulse duration tc = 4.1 s we get
< d > = 1.9 cm. It is less than X = 3.5 cm and any reasonably simple condition at
x = X will not affect much the calculated temperature maximum.

We used the following set of boundary and initial conditions




∂T
∂x

(0, y, z, t) = 0

∂T
∂y

(x,±Y, z, t) = 0

∂T
∂z

(x, y, 0, t) = 0, ∂T
∂z

(x, y, L, t) = 0

T (X, y, z, t) = T0

T (x, y, z, 0) = T0

(13)

where T0 is the room temperature.

The solution of the equation (12) with the conditions (13) is found as the Fourier
series

T (x, y, z, t) − T0 =

=
4

C ρ XY L

∞∑
n=0

∞∑
m=0

∞∑
k=0

e−ξnmk t Inmk(t) Jnmk cos(αn x) cos(βm y) cos(γk z) , (14)

Inmk(t) =

t∫
0

ft(τ) eξnmk τ dτ, (15)

Jnmk =

X∫
0

Y∫
0

L∫
0

Q(x, y, z) cos(αn x) cos(βm y) cos(γk z)dx dy dz . (16)

The parameters in (14), (15) and (16)

αn =
π n

2 X
, βm =

π m

Y
, γk =

π k

L
, ξnmk =

λ

ρ C

(
α2

n + β2
m + γ2

k

)

are determined by satisfying the boundary conditions (13).
The integrals in (15) and (16) are calculated numerically. With Q(x, y, z) made

discrete in (11), the integration of (16) is reduced to triple summations over (i, j, l).
The cosine terms in (16) are integrated analytically into the cells. The convergence of
the triple series (14) was studied by trial computations. A truncation of the series at
nmax = 300, mmax = 60, kmax = 30 was found sufficient to provide an accuracy of 3% for
the maximum temperature.
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4.2 Temperature maximum
In the course of the calculations a monotonic increase of T with z was found with

the maximum at z = L for any time t. The results of T (0, 0, z, t) calculations are presented
in Figures 4-6 as functions of t at z = 0 , L/2 and L for each of three ramp speeds. All
the curves have the sharp maxima at t = tc as it was expected. Their left side (t < tc) is
similar to a Gaussian while the right side (t > tc) is rather similar to an exponential.

The absolute maximum Tmax = T (0, 0, L, tc) increases with the ramp speed α, see
Table 4. To ensure reliable operation, the temperature excursion in aluminum shall not be
larger then ∆T ' 200 K [5]. This limit is respected for the two slow ramping speeds that
we studied. For the nominal one, the margin factor is ∼ 4, which is a quite comfortable
value.

Table 4: The temperature maximum Tmax in the jaw as a function of the ramp speed α and
considering that ∆N = 1.5 1013 protons are captured, or 5% of a stored beam of nominal
intensity.

α [s−2] ∆T = Tmax − T0 [K]

6 · 10−6 52
6 · 10−5 120
6 · 10−4 260

Knowing the temperature maximum obtained by considering only the diffusion of
heat, we can estimate the possible influence of the neglected thermal radiation on our
results. Using the Stefan-Boltzmann law of black body radiation we can express the max-
imum irradiated power as

Prad = Seffσ(T 4
max − T 4

0 ),

where σ = 5.67·10−12 W/(cm2K4) is the Stefan-Boltzmann constant. Taking Seff = 6σyL,
T0 = 300 K and Tmax = 560 K we get Prad= 5.4 W. Let us compare it with the average
power deposition

Pdep = ∆Nloss∆Eabs/tc,

where ∆Eabs is the energy absorbed in the jaw per one incident proton. It is equal ap-
proximately to 600 MeV at any α. Taking tc = 0.41 s which corresponds to Tmax = 560 K
used in the calculation of Prad we get Pdep = 3500 W which is much higher than Prad.
Therefore thermal radiation is negligible in our case.

We estimate the effect of multiturn absorption on the primary collimation to about
8% of the result obtained with only the primary pass of the protons. This marginal factor is
obtained by computing the secondary flux leaving the primary jaw as fsec = exp−L/λabs =
0.5 with the length of the jaw L = 20 cm and λabs = 39.4 cm. The secondary flux is
scattered by multiple coulomb scattering and populates a 2D-Gaussian distribution of
r.m.s width θ = (1.5 10−3/p[GeV/c]) × (L/LR)1/2 with the radiation length LR = 8.9 cm
and the beam momentum p. Normalised to the beam divergence, this width is θmcs/σ

′ = 5.
We use this last number as an approximate dilution factor in phase-space, of which only
one σ escapes the secondary collimators (the secondary jaws are retracted by one σ with
respect to the primar ones). We therefore get a ratio of the multiturn flux to the primary
one of approximately fsec/5 = 0.08.
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Figure 4: Time dependence of the temperature in the collimator jaw for three longitudinal
positions z. The ramp speed α [s−2] is shown in the upper left corner of the frame.
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Figure 5: The same as Fig. 4 for α = 6 · 10−5 s−2
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Figure 6: The same as Fig. 4 for α = 6 · 10−4 s−2
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The x-gradient of the temperature will serve to estimate the thermal expansion of
the jaw towards the beam axis as well as to compute internal stress in the jaw. The results
of T (x, 0, z, tc) calculations are presented in Figures 7-9 at z = 0 , L/2 and L for each of
three ramp speeds. Unlike the energy deposition Q(x, 0, z), the temperature curves have
a flat top at x ≤ 0.5 mm and the volume where T ≈ Tmax has a finite size.

5 Discussion
If we consider that the fraction of the stored LHC beam which lies outside the RF

buckets is smaller than 5%, then with the nominal ramping speed of acceleration the
temperature in the primary jaw of the momentum collimation system would not increase
by more than 50 ◦C, or a factor four below the critical temperature offset.

Would faster initial segment of the ramp be considered, the margin goes down and
becomes marginal for a ramp coefficient 100 times larger than the nominal value.

The ultimate stored current of LHC is 1.6 times larger than the nominal one. In
this case our margin factor drops down to about two.

With these adequate but not outstanding margin factors, a real time control of the
level of losses at the primary jaw must be used and connected to the beam abort system
to ensure the integrity of the collimators.
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