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Dynamical evolution of the scalar condensate in heavy ion collisions
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We derive the effective coarse-grained field equation for the scalar condensate of the linear sigma model in
a simple and straightforward manner using linear response theory. The dissipative coefficient is calculated
consistently at tree level on the basis of the physical processes of sigma-meson decay and of thermal sigma
mesons and pions knocking sigma mesons out of the condensate. The field equation is solved for hot matter
undergoing either one- or three-dimensional expansion and cooling in the aftermath of a high energy nuclear
collision. The results show that the time constant for returning the scalar condensate to thermal equilibrium is
of order 2 fm/c.
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I. INTRODUCTION

Scalar condensates often appear in quantum field theo
when a symmetry is spontaneously broken. Prominent
amples include the Higgs condensate and the chiral con
sate. The equilibrium behavior of these condensates a
function of temperature and density has been extensi
studied in the context of cosmology and heavy ion collisio
However, much remains to be learned about how these
densates really evolve in out-of-equilibrium systems.

In this paper, we study the dynamical evolution of t
chiral condensate in theO(N) linear sigma model and appl
it to the expanding matter in a high energy heavy ion co
sion. We recall that the sigma fields represents the quar
condensateq̄q in the sense that they both have the sa
transformation properties forN54, corresponding to two fla
vors of massless quarks. At high temperatures, quarks
gluons exist in a deconfined, chirally symmetric phase.
some critical temperature of order 150 MeV a transition t
hadronic phase occurs. In this confined and symme
broken phase the quark condensate is nonzero. In a colli
between large nuclei the beam energy must be high eno
so that the matter reaches at least approximate thermal e
librium at a temperature greater than the critical temperat
We derive and solve an effective coarse-grained equatio
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motion for the chiral condensate, or mean sigma field, st
ing at the critical temperature and continuing down to t
temperature where the system loses its ability to main
local equilibrium and freezes out.

The equation of motion approach we espouse here
used by Linde in his pioneering work on phase transitions
relativistic quantum field theory@1#, although he did not use
this technique to analyze dissipative processes or fields
of equilibrium. Our derivation of a coarse-grained field equ
tion is based on linear response theory@2#, where the con-
nection between finite temperature averages and the ev
tion of an observable in real physical time is clear a
straightforward. There is less clarity, in our opinion, with th
influence functional@3# and closely related closed time pa
@4# methods as used by many others in this context@5–9#.
Full nonlinear response theory is certainly equivalent to b
of those methods, as indeed it must be since they all desc
the same physics. However, in most cases practical calc
tions can only be performed when the deviation from therm
equilibrium is small. This is true of the influence function
and closed time path methods as well as response the
Still we are able to make several improvements to the m
recent treatment@8# of the linear sigma model. First, th
complications associated with doubling of the field variab
do not arise, nor those arising from paths in the comp
time plane. Second, we make a direct connection with ph
cal response functions. It is clear that these response f
tions should be evaluated in the fully interacting equilibriu
ensemble. Here we shall estimate the relevant response f
tions by including the physical processes of sigma format
and decay via two pions, and the scattering of thermal pi
©2000 The American Physical Society01-1
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and sigma mesons from sigma mesons in the condensat
our knowledge, the latter processes have not been stu
before in this or any related context. The amplitudes
these processes are computed in tree approximation.

In Sec. II we derive the fundamental equation. In Sec.
we calculate decay and scattering contributions to the d
pative term in the coarse-grained field equation for the c
densate. In Sec. IV we solve the equation of motion in
hadronic phase of a high energy heavy ion collision. Conc
sions, and extensions of this paper, are discussed in Se

II. THE FUNDAMENTAL EQUATION

The Lagrangian of the linearO(N) sigma model involves
the sigma field and a vector of (N21) pion fields,p:

L5 1
2 ~]ms!21 1

2 ~]mp!22 1
4 l~s21p22 f p

2 !2, ~1!

wherel is a positive coupling constant andf p is the pion
decay constant. In the vacuum the symmetry is sponta
ously broken: the sigma field acquires a vacuum expecta
value of ^0usu0&5 f p , excitations of the sigma field hav
massms

252l f p
2 , and the pion is a Goldstone boson since

neglect explicit chiral symmetry breaking here. The symm
try is restored by a second order phase transition at the c
cal temperatureTc

2512 f p
2 /(N12).

When one is interested in what happens at a fixed t
perature at and belowTc the sigma field is usually expresse
as

s~x,t !5v1s8~x,t !, ~2!

where the thermal average of the sigma field at temperatuT
is ^s&eq5v so that^s8&eq50. The equation of motion for
the fluctuating components8 is

s̈82¹2s85l f p
2 ~v1s8!2l~v1s8!32l~v1s8!p2.

~3!

We now allow the sigma field to be slightly out of equilib
rium, and write instead

s~x,t !5v1ss~x,t !1s f~x,t !. ~4!

Here^s&5v1ss , wherev denotes the equilibrium value a
before, but the deviation has been split into two pieces
slow partss , whose average is nonzero, and a fast parts f ,
whose average is zero.~Primes have been dropped for clari
of presentation.! The notation̂ s& denotes averaging over th
space-time volume chosen for coarse-graining and thus
precise division between the fast and slow parts of the fi
depends on the choice that is made. For example, one
include in the slow part only those Fourier components w
wavenumber below some cutoff value@10,11#, or one may
average the field fluctuations over some coarse-graining
@12#. We shall not delve into any details here, but only
mark that if the results depend strongly on the coar
graining technique then the procedure is not very usefu
the given context. In any case, the slow part represents
cupation of the low momentum modes by a large numbe
05490
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particles and so may be treated as a slowly varying class
field. The fast part is a fully quantum field. The equilibriu
ensemble average of an operatorO is denoted bŷ O&eq and
is characterized by the temperatureT and the full Hamil-
tonian determined from the linear sigma model Lagrang
in the absence ofss . When this equilibrium ensemble i
perturbed by the presence of the fieldss the Hamiltonian is
modified and the resulting~nonequilibrium! ensemble aver-
age is denoted bŷO&.

It should be noted at this point that we have not allow
for a nonzero ensemble average of the pion field. Suc
nonzero average is usually referred to as a disoriented c
condensate, or DCC. One could certainly allow for a DC
and carry through the following computations in a straig
forward way. However in thermal equilibrium a DCC nev
develops~although it can arise from thermal fluctuations in
small system, but even then the probability is small@13#!.
This is in contrast to the scalar condensate, whose valu
zero above the critical temperature and becomes nonzero
low it. ~A very small pion mass, too small even to affect t
equation of state or correlation functions at the temperatu
of interest, will still tilt the system towards a uniqu
vacuum.! Thus we choose to focus on the behavior of thes
field.

Let us average the sigma field equation over time a
length scales large compared to the scales characterizing
quantum fluctuations of the fieldss f andp, but short com-
pared to the scales typifyingss . It is an assumption tha
such a separation exists, but in any given situation it can
verified or refuteda posteriori. Since^s f&50 we obtain

s̈s2¹2ss5l~v1ss!@ f p
2 2~v1ss!

223^s f
2&

2^p2&#2l^s f
3&. ~5!

The full ensemble averages are

^s f
2&5^s f

2&eq1d^s f
2&, ~6!

^p2&5^p2&eq1d^p2&, ~7!

^s f
3&5^s f

3&eq1d^s f
3&, ~8!

where the deviations are caused byss and are generally
proportional toss to some positive power. Equation~5! must
be satisfied even whenss vanishes. That determines th
equilibrium value ofv to be

v50 if T.Tc ~9!

or

v25 f p
2 23^s f

2&eq2^p2&eq2^s f
3&eq /v if T,Tc .

~10!

We are interested in the second of these because it repre
the low temperature symmetry-broken phase. To first
proximation in either~i! a perturbative expansion inl or ~ii !
an expansion in 1/N @14#, which are the usual approxima
tions for the sigma model, the field fluctuations are
1-2
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DYNAMICAL EVOLUTION OF THE SCALAR . . . PHYSICAL REVIEW C 61 054901
^s f
2&eq5E d3p

~2p!3

1

Es
nB~Es /T!, ~11!

whereEs5Ams
21p2 , andnB(E/T)51/„exp(E/T)21… is the

Bose-Einstein distribution. Note that the sigma mass is
to be determined. The pion fluctuations are

^p2&eq5~N21!
T2

12
. ~12!

The latter follows from the fact that there areN21 Gold-
stone bosons. Corrections to these formulas come from
teractions not included in the effective mass. The sigma m
is very large at zero temperature and vanishes atTc . The
term ^s f

3&eq /v is not zero on account of the cubic se
coupling of thes with coupling coefficientlv. It does have
a finite limit as v→0. However, once the approximation
~11! and~12! have been made it is not legitimate to keep t
term because it is one higher power inl and/or 1/N, and
keeping it would violate theO(N) symmetry. Therefore the
limits are

T→0: v25 f p
2 2~N21!T2/12,

T→Tc : v25 f p
2 2~N12!T2/12, ~13!

where the formula forTc was given earlier. It is, of course
consistent with the above expression.

Using Eqs.~6!–~8! and~10! in Eq. ~5!, the coarse-grained
field equation forss can now be written as

s̈s2¹2ss12lv2ss52l@3vss
21ss

31d^s f
3&1~v1ss!

3~3d^s f
2&1d^p2&!#. ~14!

Note that here the system is assumed to be at a fixed
perature so thatv(T) is a constant. If the temperature
allowed to vary then time derivatives ofv must be included;
see the next section. Equation~14! shows that the sigma
mass and the equilibrium value of the scalar condensate
related byms

252lv2. They are temperature dependent a
determined self-consistently from the formula

ms
252lF f p

2 2~N21!
T2

12
23E d3p

~2p!3

1

Es
nB~Es /T!G .

~15!
05490
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The limits T→0 andT→Tc are readily obtained from thos
of v. An interpolating formula which connects these tw
limits is

ms
2

2l f p
2 5

v2

f p
2 '

12T2/Tc
2

12@3/~N12!#~T2/Tc
2!~12T2/Tc

2!
.

~16!

This is useful when studying solutions of the equation
motion numerically.

The deviations in the fluctuations due to the presence
ss give rise to a renormalization of the parameters in
equation of motion ofss but, more importantly, they lead to
dissipation. Energy can be transferred between the fieldss
and the fieldss f andp. These deviations in the fluctuation
may be computed using linear response theory@2,15# as long
asss is small. Here small means in comparison to eithev
~most relevant at low temperature! or to A^s f

2& ~most rel-
evant at high temperature!. Technically, linear respons
theory is an expansion in powers of the Hamiltonian co
pling the out-of-equilibrium fieldss to the other modes o
the system, and guarantees that symmetries of the theor
respected. This piece of the Hamiltonian consists of posi
powers ofss and so becomes smaller and smaller with d
creasing departures from equilibrium. The coupling betwe
the slow modes and the fast modes are determined stra
forwardly from the potential to be

Hsp5l~vss1
1
2 ss

2!p2 ~17!

and

Hs f5l@ss
213vss13v22 f p

2 1 3
2 ~ss12v !s f1s f

2#sss f .
~18!

In order to apply linear response analysis we need some
tial conditions. In a nuclear collision, or in the early univer
for that matter, it is assumed that the system reaches a
of thermal equilibrium at some negative time, that the syst
expands and cools, and at timet50 the system is at the
critical temperature. This implies the initial conditio
ss(x,t50)50. ~In a finite volume one may wish to conside
an ensemble of initial values chosen from a canonical dis
bution@13#.! From the standard theory of linear response o
immediately deduces that
d^s f
n~x!&5 ilE

0

t

dt8E d3x8@~3v22 f p
2 !ss~x8!13vss

2~x8!1ss
3~x8!#^@s f~x8!,s f

n~x!#&eq

1 i3lE
0

t

dt8E d3x8@vss~x8!1 1
2 ss

2~x8!#^@s f
2~x8!,s f

n~x!#&eq

1 ilE
0

t

dt8E d3x8ss~x8!^@s f
3~x8!,s f

n~x!#&eq ~19!

and
1-3
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d^p2~x!&5 ilE
0

t

dt8E d3x8@vss~x8!1 1
2 ss

2~x8!#^@p2~x8!,p2~x!#&eq . ~20!
e
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The response functions are just the commutators of pow
of the field operators evaluated at two different space-t
points in the unperturbed~equilibrium! ensemble. We should
emphasize that the unperturbed ensembledoes include all
interactions among the fast modes and makes no approx
tion regarding the strength of these interactions. Insertion
these deviations into Eq.~14! represents the fundament
equation of this paper. For very small departures from eq
librium it is sufficient to keep only those terms which a
linear in ss . The high temperature, symmetric phase is o
tained by settingv50.

The time-delayed response of the fast modes to the s
one evident in Eqs.~19! and~20! has two effects: The sigm
mass and self-interactions are modified, and dissipation
curs. These effects may be seen by expanding the slow
ss(x8,t8) in a Taylor series about the point (x,t) in Eqs.~19!
and~20! ~although such an expansion is not required!. Terms
with no derivative or an even number of derivatives eith
renormalize existing terms in the equation of motion or a
new nondissipative ones, such asss¹

2ss and ¹2¹2ss .
Terms with an odd number of derivatives are explicitly d
sipative. Examples areṡs , ssṡs , and¹2ṡs @12#.

Perhaps the closest analysis to ours is due to Rischke@8#.
The differences may be summarized thusly: First, Risc
used the influence functional method@3#, which is closely
related to the closed-time-path method@4#, for deriving the
equations of motion of the classical field. We use linear
sponse theory. Since the former techniques ultimately rely
a perturbative expansion in terms ofss anyway, one might
as well employ linear response theory to begin with. Line
response theory is quicker, easier to use, and more intui
Second, we write down the field equation forss , which is
the deviation of the scalar condensate from its equilibri
valuev. Rischke writes down the equation of motion fors̄
5v1ss . Of course these approaches are equivalent. Th
Rischke’s response functions are valid for free fields on
For example, a response function from Eqs.~19! and ~20!
has the form^@f2(x8,t8),f2(x,t)#&eq . For free fields this
may be written 2@D.

2 (x82x)2D,
2 (x82x)# where theD are

Wightmann functions/propagators and the subscript indic
whethert8 is greater than or less thant. Using our approach
it is clear that these response functions should be evalu
in the fully interacting ensemble~but unperturbed byss!.
Taken together with the second difference this constitute
major improvement over Rischke’s analysis. This will
discussed in more detail in the next section. Fourth, Risc
employed a particular coarse graining technique by sepa
ing soft and hard modes according to the magnitude of
momentum. We have left the coarse graining techniq
open. Finally, with a view towards the formation of diso
ented chiral condensates, or DCC, Rischke allowed for s
classical components of the pion field. We have not done
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here, mainly to keep the analysis as simple and direc
possible, although it could easily worked out in the sa
way as the sigma field.

III. ESTIMATING THE RESPONSE FUNCTIONS

One’s first inclination might be to evaluate the respon
functions using free fields. Suppose, for example, thatss is
so slowly varying in space and time that to first approxim
tion it can be taken outside the integration overy and t8.
Then it is a simple exercise to show that for a free fieldf
with massm and energyE one gets

E
0

t

dt8E d3x8^@f2~x8,t8!,f2~x,t !#&eq

5 i E
0

t

dt8E d3p

~2p!3

1

E2 „2nB~E/T!11…sin@2E~ t2t8!#.

~21!

The temperature-independent piece is a vacuum contribu
and may be dropped for the present discussion. In the c
that m50 the momentum integral is done trivially with th
following result:

i

4p2 E
0

t

dsF 2pT

tanh~2pTs!
2

1

sG .
In the limit that t becomes large compared to 1/2pT this
approaches the asymptotic valueiTt/2p. This corresponds
to the first term of a Taylor expansion ofss and further
terms in the series bring in powers of (t2t8) yielding dissi-
pative coefficients that grow ast2,t3, and so on. This is
clearly unacceptable. The origin of this problem can
traced to the inadequacy of evaluating the response funct
in the free field limit. Indeed, these response functions
closely related to the shear and bulk viscosities via the Ku
formulas which express those quantities in terms of
semble averages of commutators of the energy-momen
tensor density operator at two different space-time points
is known that determination of the viscosities requires su
mation of all ladder diagrams at a minimum@16#.

An alternative is to make a harmonic approximation@7#
instead of a Taylor series expansion which, in this situati
can be formulated as

ss~ t2s!'ss~ t !cos~mss!2ṡs~ t !sin~mss!/ms .

For the applications we have in mind in this paper the dev
tion of the scalar condensate from its equilibrium value is
expected to oscillate significantly; rather, it is expected
decay exponentially to zero. Therefore the harmonic
proximation does not solve the problem.
1-4
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Rather than attempt a sophisticated evaluation of the
sponse functions in this paper we shall proceed to estim
them based on direct physical reasoning. There are two
vious mechanisms for adding or removing sigma mes
from the condensate:~1! decay into two pions or the revers
process of formation via two pion annihilation, and~2! a
meson from the thermal bath elastically scattering of
sigma meson and knocking it out of the condensate. The
of these processes is included in all analyses of the lin
sigma model; the second of these processes has not
studied in the literature to our knowledge. We shall evalu
them consistently at the tree level. This means that the
rameters in the Lagrangian are to be fitted to experime
data also at the tree level. Let us examine each of thes
turn.

The decay rate of a sigma meson into two pions in
sigma’s rest frame is@17#

Gs→pp5
~N21!

8p

l2v2

ms
5

~N21!

16p
lms , ~22!

when account is taken of the relationms
252lv2. The decay

rate for a sigma meson at rest in the finite temperature
tem is Bose-enhanced by a factor of@11nB(ms/2T)#2,
wherenB is the Bose-Einstein occupation number with t
indicated argument of its exponential. The rate for two pio
to form a sigma meson at rest is obtained from detailed
ance by multiplyingGs→pp by nB

2(ms/2T). Therefore the
net rate is

Gspp5
~N21!

16p
lms@~11nB!22nB

2 #

5
~N21!

16p
lms@112nB#

5
~N21!

16p
lms coth~ms/4T!. ~23!

~The argument ofnB is the same as above.! This leads to the
dissipative termGsppṡs in the equation of motion@18#. It
agrees with Eq.~80! of Rischke@8#.

Scattering of a thermal bosonb off a sigma meson with
negligibly small momentum and which is considered to b
component of the background fieldss can be studied by
evaluating the self-energy@19,20#

Psb524pE d3p

~2p!3 nB~E/T!
As

E
f sb

~c.m.!~s!

52
2

p E
mb

`

dEpnB~E/T!As fsb
~c.m.!~s!. ~24!

HereE andp are the energy and momentum of the bosonb,
s5ms

21mb
212msE, and f sb is the forward scattering am

plitude. The normalization of the amplitude corresponds
the standard form of the optical theorem
05490
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s5
4p

qc.m.
Im f ~c.m.!~s!, ~25!

whereqc.m. is the momentum in the c.m. frame. Because
cross section is invariant under longitudinal boosts the s
tering amplitude transforms as follows:

ms f sb
~s rest frame!5As fsb

~c.m.! . ~26!

The imaginary part of the self-energy

Im Psb52
ms

2p2 E
mb

`

dEp2nB~E/T!ssb~s! ~27!

determines the rate at which the field decays@18#:

Gsb52Im Psb /ms . ~28!

The applicability of this expression is limited to those cas
where interference between sequential scatterings is n
gible.

First consider pion scattering. We will calculate to tr
level only and suppose that the parameters of the theory
adjusted to reproduce low energy experimental data at
same level. The invariant amplitude is

M522lF11ms
2 S 1

s
1

1

u
1

3

t2ms
2 D G . ~29!

The s, t, andu are standard Mandelstam variables satisfy
s1t1u52ms

2. Note that the forward scattering amplitud
evaluated at threshold,M(s5ms

2,t50), vanishes in accor-
dance with Adler’s Theorem@21#. The differential cross sec
tion in the center-of-momentum frame is

ds

dVc.m.
5

uMu2

64p2s
. ~30!

The total cross section is given by

4ps

l2 s5
~s811!2

s82 1
s8

22s8
1

9s8

s822s811

2
2~s8223s821!

~s821!3 ln@s8~22s8!#

2
6~s822s821!

~s821!3 lnFs822s811

s8 G , ~31!

wheres has been scaled by the sigma mass:s85s/ms
2. The

total cross section has a branch point and a pole ats52ms
2

due to theu channel exchange of a sigma meson. Go
beyond the tree level is necessary to incorporate the fi
width of the sigma meson and regulate the singularity.
deed, the tree approximation is not reliable at high ener
For example, it is well known that unitarity is violated inpp
scattering at energies of order of one to two timesms @22#.
Therefore we are only allowed to use the low energy lim
which is quite acceptable whenT!ms . In this limit
1-5
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s5
112

3p
l2

p4

ms
6 , ~32!

wherep is the pion momentum in the sigma rest frame. N
tice the workings of Adler’s theorem here: According to th
theorem the forward scattering amplitudef evaluated in the
rest frame of any target particle must vanish likep2 as p
→0. Notice also that the total cross section cannot be
tained from the imaginary part off because we are essential
using a Born approximation. In the limit thatT→Tc we have
the opposite situation wherems!T. Then the three-poin
vertices do not contribute@M522l in place of Eq.~29!#
and so use of

s5
l2

4ps
~33!

may be considered more appropriate.
The contribution to the imaginary part of the self-ener

is readily determined in these two limits. At low energ
temperature

Im Psp52
13 440

p3 z~7!l2
T7

ms
5 , ~34!

and at high energy/temperature

Im Psp52
l2T2

96p
. ~35!

These are the contributions from a single pion and mus
multiplied by N21 to factor in all pions. For the accurac
required in this paper we can construct a Pade´ approximant
to represent these results:

Im Psp'2~N21!
l2T2

96p

T5

@T51~ms/10.568!5#
. ~36!

Notice that this contribution toG diverges asT→Tc on ac-
count of division byms . This ought to come as no surpris
since one is approaching a critical point where certain fl
tuations diverge.

The above analysis may be repeated for a sigma me
knocking another out of the condensate. The invariant a
plitude for ss→ss is

M526lF113ms
2 S 1

s2ms
2 1

1

u2ms
2 1

1

t2ms
2 D G ,

~37!

reflecting the symmetry in thes, t, uchannels. The total cros
section is

8ps

9l2 s5S s812

s821D 2

1
18

s823
2

12~s8223s821!

~s824!~s822!~s821!

3 ln~s823!. ~38!

This expression has no singularities becauses8>4. The low
energy limit is
05490
-
t

b-

e

-

on
-

s5
9

2p

l2

ms
2 , ~39!

which gives rise to the low temperature limit

Im Pss52
9

2p3 l2T2e2ms /T. ~40!

In the high energy limit only the four-point vertex contrib
utes, giving

s5
9

8p

l2

s
, ~41!

which gives rise to the high temperature limit

Im Pss52
3

64p
l2T2. ~42!

This expression is identical to that calculated by Jeon@16#
and Rischke@8# in a symmetricf4 model to which it can be
compared. The two limits can be combined in a Pade´ approx-
imant as

Im Pss'2
9

2p

l2T2

@961p2~ems /T21!#
, ~43!

which is useful for numerical computations.
The total rate is obtained by addition of all componen

namely

G5Gspp1Gsp1Gss , ~44!

where

Gsp52Im Psp /ms ~45!

and

Gss52Im Pss /ms . ~46!

Other works, such as@8#, do not include the latter two scat
tering contributions arguing that they are of orderl2, while
Gspp is of orderl. While this is correct at lowT whenms is
large, it becomes questionable near to the critical temp
ture wherems is small ~see the discussion of Fig. 1 below!.

It should be noted that the scattering contributions dive
at the critical temperature on account of division by the va
ishing sigma mass. This may be a signal of the breakdow
the use of tree-level scattering amplitudes and requires
ther investigation.

IV. SOLUTION IN AN EXPANDING FIREBALL

In this section we shall study solutions to the coar
grained field equation in several limits. First, suppose t
the volume and temperature are fixed in time but that
system is slightly out of equilibrium in the sense thatss
Þ0. The field equation is then

s̈s1G~T!ṡs1ms
2~T!ss52l„3v~T!ss

21ss
3
…, ~47!
1-6
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whereG is the sum of decay and scattering terms as give
the previous section. Whenussu!v this equation can be lin
earized. It is equivalent to a simple damped harmonic os
lator. The system is underdamped ifms.G/2 and over-
damped ifms,G/2. We choosel518 so that the sigma
mass in vacuum is 6f p , corresponding to thes-wave reso-
nance observed in thepp channel. In Fig. 1 we plotms and
the individual contributions toG as functions of temperatur
T. The field is overdamped whenT.0.8Tc .

Next consider the expansion of the system created
high energy nuclear collision. If the beam energy is hi
enough it will form a quark-gluon plasma with temperatu
greater thanTc . This ‘‘fireball’’ will expand and cool, even-
tually reachingTc . At this moment, say at timet5tc , the
initial conditions for the coarse-grained field must be spe
fied. We will assume, for the sake of illustration, that t
system is locally uniform so that spatial gradients are un
portant. Depending on whether the system is expand
spherically or only longitudinally along the beam axis~D
53 or 1, respectively!, we obtain the modified equation o
motion

s̈s1 v̈1
D

t
~ ṡs1 v̇ !1G~T!ṡs1ms

2~T!ss

52l„3v~T!ss
21ss

3
…. ~48!

In this situationt is really the local, or proper, time and th
term proportional toD/t may be thought to arise from eithe
the d’Alembertian or from a volume dilution term

@V̇(t)/V(t)#ṡs @23,24# analogous to the Hubble expansio
@25#. Perhaps the easiest way to obtain this equation is
derive the equation of motion for the total condensates̄
5v1ss and then make the substitution. Most authors ac
ally solve the equation of motion fors̄, but this is a matter of
taste. Note thatv„T(t)… is the instantaneous value of th
equilibrium condensate and that is why no potential for
appears above.

FIG. 1. The sigma mass and the decay and scattering cont
tions to the width of the sigma meson as functions of tempera
from 0 to Tc .
05490
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In addition to the coarse-grained field equation one ne
to know how the local temperature evolves with time. It mu
be assumed that it changes slowly enough so that local e
librium can be maintained by the rapidly fluctuating pion a
sigma fields. In principle one ought to solve the equation

de/dt52Dw/t, ~49!

wheree is the energy density,w5e1P is the enthalpy, and
P is the pressure. Rather than working out a detailed desc
tion of the equation of state, which is really dominated by t
rapidly fluctuating thermal fields, we simply assume a fr
massless gas of pions where the pressure is proportion
T4. The sigma meson has a mass small compared toT only
very near the critical temperature, and its effect is theref
generally unimportant. As a consequence, the tempera
falls with time according to the law

T~ t !5TcS tc

t D D/3

. ~50!

A reasonable numerical value fortc is 3 fm/c @26–29#. The
back reaction ofss on the time evolution of the temperatur
is thereby neglected. This is a quite reasonable approxi
tion because very little of the total energy resides in the fi
ss .

The equation of motion may be solved by numerica
evolving an analytic solution in the neighborhood oftc . As
t→tc the equilibrium condensatev→0, however Eqs.~16!
and ~50! indicate that thev̈ and v̇ are singular, as are th
scattering contributions to the widthG. The analytic behavior
of ss as t→tc is uniquely determined by requiring that th
derivatives ofss exactly cancel these singularities, whi
ss→0. The result is displayed in Fig. 2 forD51 and in Fig.
3 for D53. The deviation from equilibriumss is maximal
less than 1/2 fm/c after the critical temperature is passed, a
it dies away with a time scale of about 2 fm/c. There is a
hint of oscillatory motion in the solutions, but basically the
are overdamped.

u-
re

FIG. 2. The temporal evolution of the deviation of the sca
condensate from its equilibrium valuev in units of MeV for a
one-dimensional expansion of hot matter produced in a high en
nuclear collision.
1-7
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V. CONCLUSION

In this paper we have studied the dynamical evolution
the scalar condensate in theO(N) linear sigma model in
out-of-equilibrium situations. Our method is based on
equation of motion. Dissipation arises because of the
sponse of the correlation functions of the fast modes to
slow modes of the fields. This is treated with standard lin
response theory. These response functions should be
puted exactly and used in the resulting dissipative, coa
grained equation of motion. However, such explicit comp
tations are generally not possible to do. Therefore,
identified the physical mechanisms responsible for the di

FIG. 3. The temporal evolution of the deviation of the sca
condensate from its equilibrium valuev in units of MeV for a
three-dimensional expansion of hot matter produced in a high
ergy nuclear collision.
-
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s.
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pation and estimated the corresponding response funct
based on a consistent tree-level analysis. These mechan
include the decay of sigma mesons in the condensate, an
knockout of sigma mesons in the condensate due to sca
ing with thermal sigma mesons and pions. To our know
edge, the latter physical mechanisms have not been stu
before.

We then studied the dynamical evolution of the conde
sate in heavy ion collisions, after the phase transition fr
quark-gluon plasma to hadrons, and allowing for either o
or three dimensional expansion of the hot matter. Th
showed that thermal equilibrium was reestablished rat
rapidly, with a time constant of order 2 fm/c. Clearly, much
more could be studied along these same lines, including
formation and fate of disoriented chiral condensates~DCC!.

The method we used in this paper is very general, a
may be applied to other theories, including nuclear mat
QCD, and electroweak theory. Such work is underway.
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