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Dynamical evolution of the scalar condensate in heavy ion collisions
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We derive the effective coarse-grained field equation for the scalar condensate of the linear sigma model in
a simple and straightforward manner using linear response theory. The dissipative coefficient is calculated
consistently at tree level on the basis of the physical processes of sigma-meson decay and of thermal sigma
mesons and pions knocking sigma mesons out of the condensate. The field equation is solved for hot matter
undergoing either one- or three-dimensional expansion and cooling in the aftermath of a high energy nuclear
collision. The results show that the time constant for returning the scalar condensate to thermal equilibrium is
of order 2 fmk.

PACS numbegps): 25.75~q, 11.10.Wx, 11.30.Qc

I. INTRODUCTION motion for the chiral condensate, or mean sigma field, start-
ing at the critical temperature and continuing down to the

Scalar condensates often appear in quantum field theorigemperature where the system loses its ability to maintain
when a symmetry is spontaneously broken. Prominent exocal equilibrium and freezes out.
amples include the Higgs condensate and the chiral conden- The equation of motion approach we espouse here was
sate. The equilibrium behavior of these condensates as wsed by Linde in his pioneering work on phase transitions in
function of temperature and density has been extensivelyelativistic quantum field theorjl], although he did not use
studied in the context of cosmology and heavy ion collisionsthis technique to analyze dissipative processes or fields out
However, much remains to be learned about how these comf equilibrium. Our derivation of a coarse-grained field equa-
densates really evolve in out-of-equilibrium systems. tion is based on linear response thef2y, where the con-

In this paper, we study the dynamical evolution of thenection between finite temperature averages and the evolu-
chiral condensate in th®(N) linear sigma model and apply tion of an observable in real physical time is clear and
it to the expanding matter in a high energy heavy ion colli-straightforward. There is less clarity, in our opinion, with the
sion. We recall that the sigma field represents the quark influence functiona[3] and closely related closed time path
condensatg|q in the sense that they both have the samd4] methods as used by many others in this conf&xt9].
transformation properties foi =4, corresponding to two fla- Full nonlinear response theory is certainly equivalent to both
vors of massless quarks. At high temperatures, quarks amsf those methods, as indeed it must be since they all describe
gluons exist in a deconfined, chirally symmetric phase. Athe same physics. However, in most cases practical calcula-
some critical temperature of order 150 MeV a transition to aions can only be performed when the deviation from thermal
hadronic phase occurs. In this confined and symmetryequilibrium is small. This is true of the influence functional
broken phase the quark condensate is nonzero. In a collisiasnd closed time path methods as well as response theory.
between large nuclei the beam energy must be high enougdtill we are able to make several improvements to the most
so that the matter reaches at least approximate thermal equicent treatmenf8] of the linear sigma model. First, the
librium at a temperature greater than the critical temperaturecomplications associated with doubling of the field variables
We derive and solve an effective coarse-grained equation afo not arise, nor those arising from paths in the complex

time plane. Second, we make a direct connection with physi-
cal response functions. It is clear that these response func-
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and sigma mesons from sigma mesons in the condensate. Pparticles and so may be treated as a slowly varying classical
our knowledge, the latter processes have not been studidild. The fast part is a fully quantum field. The equilibrium
before in this or any related context. The amplitudes forensemble average of an opera@is denoted by O).4 and
these processes are computed in tree approximation. is characterized by the temperatufeand the full Hamil-

In Sec. Il we derive the fundamental equation. In Sec. llltonian determined from the linear sigma model Lagrangian
we calculate decay and scattering contributions to the dissin the absence ofr. When this equilibrium ensemble is
pative term in the coarse-grained field equation for the conperturbed by the presence of the fietd the Hamiltonian is
densate. In Sec. IV we solve the equation of motion in themodified and the resultinghonequilibriun) ensemble aver-
hadronic phase of a high energy heavy ion collision. Concluage is denoted byO).
sions, and extensions of this paper, are discussed in Sec. V. It should be noted at this point that we have not allowed

for a nonzero ensemble average of the pion field. Such a

Il. THE FUNDAMENTAL EQUATION nonzero average is usually referred to as a disoriented chiral
_ ) ) ) condensate, or DCC. One could certainly allow for a DCC

The Lagrangian of the lined(N) sigma model involves  and carry through the following computations in a straight-
the sigma field and a vector oN(-1) pion fields, forward way. However in thermal equilibrium a DCC never

developgalthough it can arise from thermal fluctuations in a

L£=3(3,0)%+ 3 (0,m*~ i No*+a*—12)2 (1)  small system, but even then the probability is sniaB]).

This is in contrast to the scalar condensate, whose value is
where\ is a positive coupling constant arfd is the pion  zerg above the critical temperature and becomes nonzero be-
decay constant. In the vacuum the symmetry is spontangoy it. (A very small pion mass, too small even to affect the
ously broken: the sigma field acquires a vacuum expectatiogquation of state or correlation functions at the temperatures
value of (0[a|0)="f, excitations of the sigma field have of interest, will still tilt the system towards a unique
massm? =2\ f2, and the pion is a Goldstone boson since wevacuum) Thus we choose to focus on the behavior of the
neglect explicit chiral symmetry breaking here. The symme-ield.
try is restored by a second order phase transition at the criti- Let us average the sigma field equation over time and
cal temperaturd2=12f2/(N+2). length scales large compared to the scales characterizing the

When one is interested in what happens at a fixed temguantum fluctuations of the fields; and 7, but short com-
perature at and beloW, the sigma field is usually expressed pared to the scales typifying. It is an assumption that
as such a separation exists, but in any given situation it can be

verified or refuteda posteriori Since(o;)=0 we obtain

ox,t)=v+ao'(xt),
o 75— V2o=Mo+0)[f5—(v+09)°~3(of)
where the thermal average of the sigma field at temperature
is (0)eq=v SO that(c')eq=0. The equation of motion for —(7)]-Nd). (5
the fluctuating component’ is

The full ensemble averages are

o' =V =\ fi(v+a)—Nv+a" ) -Nv+ao')m

(3 (of)=(oeqt &af), (6)
We now allow the sigma field to be slightly out of equilib- (7= (TP eqt+ 72, (7)
rium, and write instead K
3\ _ 3 3
o(x,t)=v+oy(x,t)+ o (X,t). (4) (o) =(0F)eqt &), (8)

where the deviations are caused by and are generally
roportional toog to some positive power. Equati@®) must

e satisfied even whemng vanishes. That determines the
equilibrium value ofv to be

Here(o)=v+ 05, wherev denotes the equilibrium value as
before, but the deviation has been split into two pieces: %
slow partos, whose average is nonzero, and a fast part
whose average is zer(Primes have been dropped for clarity
of presentation.The notatior{o) denotes averaging over the =0 if T>T 9)
space-time volume chosen for coarse-graining and thus the ¢

precise division between the fast and slow parts of the fielg),

depends on the choice that is made. For example, one may

include in the slow part only those Fourier components with v2=1f2— 3<U§>eq_<ﬂ2>eq_<gf3>eq/v if T<T,.
wavenumber below some cutoff val{i#0,11], or one may (10)
average the field fluctuations over some coarse-graining time

[12]. We shall not delve into any details here, but only re-We are interested in the second of these because it represents
mark that if the results depend strongly on the coarsethe low temperature symmetry-broken phase. To first ap-
graining technique then the procedure is not very useful irproximation in either(i) a perturbative expansion kor (ii)

the given context. In any case, the slow part represents o@n expansion in N [14], which are the usual approxima-
cupation of the low momentum modes by a large number ofions for the sigma model, the field fluctuations are
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) d’p 1 The limitsT—0 andT— T, are readily obtained from those
<Uf>eq:JWE—nB(Ea/T), (1) of v. An interpolating formula which connects these two
7 limits is
whereE, = \m2+p?, andng(E/T)=1/(expE/T)—1) is the ) 5 1- 1272
Bose-Einstein distribution. Note that the sigma mass is still My _ 22_~ c _
to be determined. The pion fluctuations are N2 12 1-[3I(N+2)|(T2T)(1-T2T?)
<772>eq:(N_1)1_2' (12 This is useful when studying solutions of the equation of
motion numerically.
The latter follows from the fact that there ake—1 Gold- The deviations in the fluctuations due to the presence of

stone bosons. Corrections to these formulas come from ings give rise to a renormalization of the parameters in the
teractions not included in the effective mass. The sigma maggquation of motion otrg but, more importantly, they lead to
is very large at zero temperature and vanishe¥.atThe  dissipation. Energy can be transferred between the &igld
term (g?>eq/v is not zero on account of the cubic self- and the fieldsr; and . These deviations in the fluctuations
coupling of theo with coupling coefficientv. It does have ~may be computed using linear response th¢ary5] as long

a finite limit asv—0. However, once the approximations asos is small. Here small means in comparison to either
(11) and(12) have been made it is not legitimate to keep this(most relevant at low temperatorer to \/(azf) (most rel-
term because it is one higher power Xnand/or 1N, and evant at high temperature Technically, linear response
keeping it would violate th€©(N) symmetry. Therefore the theory is an expansion in powers of the Hamiltonian cou-

limits are pling the out-of-equilibrium fieldsg to the other modes of
the system, and guarantees that symmetries of the theory are
T—0: v?=f2—(N-1)T%12, respected. This piece of the Hamiltonian consists of positive
powers ofog and so becomes smaller and smaller with de-
T—Te: v?=f2—(N+2)T%12, (13)  creasing departures from equilibrium. The coupling between

the slow modes and the fast modes are determined straight-

where the formula foil ; was given earlier. It is, of course, forwardly from the potential to be

consistent with the above expression.
Using Eqgs.(6)—(8) and(10) in Eq. (5), the coarse-grained

. _ _ — L1142
field equation forog can now be written as Her=A(vost 7 o) m* (7
T~ V204t 2Nv20s=—\[3v02+ o2+ 8o+ (v+ o) and
X(38(a?)+ 8(m))]. (14) Her=A 024300+ 30— 2+ 2 (0s+20) 0+ 0] 0s0 .
(18)

Note that here the system is assumed to be at a fixed tem-
perature so thab(T) is a constant. If the temperature is In order to apply linear response analysis we need some ini-
allowed to vary then time derivatives ofmust be included; tial conditions. In a nuclear collision, or in the early universe
see the next section. Equatidh4) shows that the sigma for that matter, it is assumed that the system reaches a state
mass and the equilibrium value of the scalar condensate and thermal equilibrium at some negative time, that the system
related bymf,=2)\v2. They are temperature dependent andexpands and cools, and at time0 the system is at the
determined self-consistently from the formula critical temperature. This implies the initial condition
o(x,t=0)=0. (In a finite volume one may wish to consider
= ng(E /T)} an ensemble of initial values chosen from a canonical distri-
(2m*E, B¢ ’ bution[13].) From the standard theory of linear response one
(15  immediately deduces that

T? d3p
2_ 2_ (N _
m;=2\|f2—(N—-1) 7 3

o100} =ix [ dt [ @ 1807 2)rsx') 30020 ) + 200N (6,000 e
t
+i3)\f dt’fd3x’[vos(X’)+%05(X’)]<[0f2(><’),0?(X)]>eq
0
. t 3
+|)\fodt’f A3 ag(X" N[ o7(X"),07(X) Deq (19

and
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t
5(w2(x)>=i)\J0dt’f BEx [vo(x )+ 5 o2(X VKT (X'), 7(X) eq- (20)

The response functions are just the commutators of powetsere, mainly to keep the analysis as simple and direct as
of the field operators evaluated at two different space-timgpossible, although it could easily worked out in the same
points in the unperturbe@quilibrium ensemble. We should way as the sigma field.

emphasize that the unperturbed ensenddesinclude all

interactions among the fast modes and makes no approxima- Ill. ESTIMATING THE RESPONSE FUNCTIONS

tion regarding the strength of these interactions. Insertion of e .
One’s first inclination might be to evaluate the response

these deviations into Eq14) represents the fundamental : . :
Vit : q14) rep . functions using free fields. Suppose, for example, thais

equation of this paper. For very small departures from eqU|—SO slowly varving in space and time that o first approxima-
librium it is sufficient to keep only those terms which are y varying P P

i . The hiah t i tric oh ) btion it can be taken outside the integration oyeandt’.
inear in . 1he high temperature, symmetric pnase IS 0brpap jt js a simple exercise to show that for a free figld
tained by setting =0.

with massm and energyE one gets
The time-delayed response of the fast modes to the slow OE g

one evident in Eq9.19) and(20) has two effects: The sigma t s o
mass and self-interactions are modified, and dissipation oc- Odt f X ([H(X" 1), (X, 1) ])eq
curs. These effects may be seen by expanding the slow field

o(X’,t") in a Taylor series about the point,) in Eqgs.(19) (., d®p 1 ) ,
and(20) (although such an expansion is not requjrdderms = J;dt f W E(Z”B(E/T) +1)sin2E(t—t")].
with no derivative or an even number of derivatives either

renormalize existing terms in the equation of motion or add (21

new nondissipative ones, such agVZ?os and V?VZoy.

Terms with an odd number of derivatives are explicitly dis-

sipative. Examples ares, o505, andVZU_S [12. thatm=0 the momentum integral is done trivially with the
Perhaps the closest analysis to ours is due to Ris[8lke following result:

The differences may be summarized thusly: First, Rischke

used the influence functional meth@8], which is closely [ t 2oT 1

related to the closed-time-path methjgd, for deriving the 42 fods[m_ sl

equations of motion of the classical field. We use linear re-

sponse theory. Since the former techniques ultimately rely o, the limit thatt becomes large compared to /P this

a perturbative expansion in terms ef anyway, one might = 55,4ches the asymptotic valiEt/27. This corresponds
as well employ "T‘eaf _response.theory fo begin W'th‘. Lineak, ‘he first term of a Taylor expansion a@fs and further
response theory is quicker, easier to use, and more intuitiv
Second, we write down the field equation fe@g, which is

the deviation of the scalar condensate from its equilibriu

The temperature-independent piece is a vacuum contribution
and may be dropped for the present discussion. In the case

ferms in the series bring in powers df<t’) yielding dissi-
ative coefficients that grow a,t3, and so on. This is

. : . i learly unacceptable. The origin of this problem can be
valuev. Rischke writes down the equation of motion for ._traced to the inadequacy of evaluating the response functions
=v+ 0. Of course these approaches are equivalent. Th'mfn the free field limit. Indeed, these response functions are
Rischke’s response functions are valid for free fields only,qey related to the shear and bulk viscosities via the Kubo
For example, a response function from EG9) and (20)  formyjas which express those quantities in terms of en-
has the form([ ¢ (2X 1), ¢ (thgpeq- For free fields this  gemple averages of commutators of the energy-momentum
may be written D= (x’ —x) —DZ(x’ —x)] where theD are  on50r density operator at two different space-time points. It
Wightmann functions/propagators and the subscript indicateg known that determination of the viscosities requires sum-
whethert’ is greater than or less thanUsing our approach mation of all ladder diagrams at a minimué.

it is clear that these response functions should be evaluated ap ajternative is to make a harmonic approximat[ai

in the fully interacting ensemblébut unperturbed byr). instead of a Taylor series expansion which, in this situation,
Taken together with the second difference this constitutes gan pe formulated as

major improvement over Rischke’s analysis. This will be

discussed in more detail in the next section. Fourth, Rischke o{(t—8)=~o4(t)cogm,s)— o4(t)sin(m,s)/m, .

employed a particular coarse graining technique by separat-

ing soft and hard modes according to the magnitude of th&or the applications we have in mind in this paper the devia-
momentum. We have left the coarse graining technigueion of the scalar condensate from its equilibrium value is not
open. Finally, with a view towards the formation of disori- expected to oscillate significantly; rather, it is expected to
ented chiral condensates, or DCC, Rischke allowed for slovdecay exponentially to zero. Therefore the harmonic ap-
classical components of the pion field. We have not done sproximation does not solve the problem.
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Rather than attempt a sophisticated evaluation of the re- Aar
sponse functions in this paper we shall proceed to estimate o=
them based on direct physical reasoning. There are two ob-

vious mechanisms for adding or removing sigma MesoNghereq,. ., is the momentum in the c.m. frame. Because the
from the condensaté1) decay into two pions or the reverse ¢ross section is invariant under longitudinal boosts the scat-
process of formation via two pion annihilation, a2 a tering amplitude transforms as follows:

meson from the thermal bath elastically scattering off a

sigma meson and knocking it out of the condensate. The first m,, (g rest frame— /g f(cm) (26)
of these processes is included in all analyses of the linear

sigma model; the second of these processes has not be®ne imaginary part of the self-energy

studied in the literature to our knowledge. We shall evaluate

Im f©™)(s), (25)

c.m.

them consistently at the tree level. This means that the pa- m, [~

rameters in the Lagrangian are to be fitted to experimental ImIl,=— ﬁfm dEpng(E/T)oyp(s) (27)

data also at the tree level. Let us examine each of these in °

turn. determines the rate at which the field decpi@]:

The decay rate of a sigma meson into two pions in the
sigma’s rest frame i§17] I',p=—ImII,,/m,. (28
(N—1) \%2  (N—1) The applicability of this expression is limited to those cases
| 87 m. 164 Amg, (22 where interference between sequential scatterings is negli-
a gible.

First consider pion scattering. We will calculate to tree
when account is taken of the relatiarf,=2\v?. The decay [evel only and suppose that the parameters of the theory are
rate for a sigma meson at rest in the finite temperature sysydjusted to reproduce low energy experimental data at this
tem is Bose-enhanced by a factor pf+ng(m,/2T)]>,  same level. The invariant amplitude is
whereng is the Bose-Einstein occupation number with the

indicated argument of its exponential. The rate for two pions (1 1

to form a sigma meson at rest is obtained from detailed bal- M==2M1+my| o+ ot 2 |- (29)
ance by multiplyingl',_. .. by né(m(,/ZT). Therefore the 7

net rate is Thes, t, andu are standard Mandelstam variables satisfying

s+t+u=2m?2. Note that the forward scattering amplitude

r _(N—l) 5 o evaluated at thresholdy1(s= mi,t=0), vanishes in accor-
omT T 1 G Am,[(1+ng)"—ng] dance with Adler's Theorerf21]. The differential cross sec-
( ) tion in the center-of-momentum frame is
N—1
:W)\mg[ﬁ-ZnB] do _ |M|2 =0
(N—1) dQ., 64r°s’
= Am, cothkm/4T). 23 L
167 o COtM,/4T) @39 The total cross section is given by
; i 47s  (s'+1)? ¢ 9s’
(The argument ofg is the same as abovyelhis leads to the . i n
dissipative terml’, ..o in the equation of motiof18]. It A2 s'? 2—s'  s'?-s'+1
agrees with Eq(80) of Rischke[8]. ' .
Scattering of a thermal bosdnoff a sigma meson with _ 2(s'"~3s'-1) In[s'(2—s")]
negligibly small momentum and which is considered to be a (s'—1)°
component of the background field; can be studied by 12t 12
evaluating the self-enerdyl9,20 _6(s"s S (32)
(s'—1)° s’ ’

G

3
Il,,= _477J' d_anB(E/T) _stft-)m-)(s) wheres has been scaled by the sigma mass:s/m?. The
(2m) E total cross section has a branch point and a poha:aZm,Z,
2 [ due to theu channel exchange of a sigma meson. Going
=——| dEpng(E/T)\sf5M(s). (24)  beyond the tree level is necessary to incorporate the finite
™ Jm, width of the sigma meson and regulate the singularity. In-
deed, the tree approximation is not reliable at high energy.
HereE andp are the energy and momentum of the bobpn For example, it is well known that unitarity is violated irr
s=mZ+mz+2m,E, andf,, is the forward scattering am- scattering at energies of order of one to two times[22].
plitude. The normalization of the amplitude corresponds toTherefore we are only allowed to use the low energy limit,
the standard form of the optical theorem which is quite acceptable whéh<m,, . In this limit
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112, p* 9 A?
(TZE)\ F, (32) U:EHZ' (39)

wherep is the pion momentum in the sigma rest frame. No-which gives rise to the low temperature limit
tice the workings of Adler's theorem here: According to that
theorem the forward scattering amplitufievaluated in the
rest frame of any target particle must vanish ligé as p
—0. Notice also that the total cross section cannot be ob- ) o . )
tained from the imaginary part 6because we are essentially In the high energy limit only the four-point vertex contrib-
using a Born approximation. In the limit th@t-T, we have  Utes, giving
the opposite situation whemm,<T. Then the three-point

9
— 53 \*T%e /T, (40)

Im HU’O': 277_3

2
vertices do not contributeM = —2\ in place of Eq.(29)] o= i )\_ (42)
and so use of 8m s
A2 which gives rise to the high temperature limit
o=— (33
41s 3 s
Im HUU——%)\ T-. (42)

may be considered more appropriate.
The contribution to the imaginary part of the self-energy

is readily determined in these two limits. At low energy/ This expression is identical to that calculated by JEDG)

and Rischkd8] in a symmetricg* model to which it can be

temperature compared. The two limits can be combined in a Paplgrox-
13440 T7 imant as
ImTl,,=— TIN’—s, 34
o 77_3 g( ) mi ( ) I . 9 )\2T2 (43)
m oo~ T 5 2(am, T _ ’
and at high energy/temperature 2m [96+m(e 1]
\2T2 which is useful for numerical computations.
ImI,, =——. (35) The total rate is obtained by addition of all components,
96m namely
These are the contributions from a single pion and must be r=r, +I,.+T,,, (44)
multiplied by N—1 to factor in all pions. For the accuracy
required in this paper we can construct a Pagproximant where
to represent these results:
FO"IT:_Im HO'7T/m0' (45)
)\ZTZ T5
~—(N-— . and
ImIl7~=(N=1) 56 75+ m./10.5685 °°
I,,=—ImII,, /m,. (46)

Notice that this contribution td" diverges asT— T, on ac-

count of division bym,,. This ought to come as no surprise Other works, such ag], do not include the latter two scat-

since one is approaching a critical point where certain fluctering contributions arguing that they are of ordét while

tuations diverge. ', is of order\. While this is correct at loil whenm,, is
The above analysis may be repeated for a sigma mesdarge, it becomes questionable near to the critical tempera-

knocking another out of the condensate. The invariant amyyre wherem,, is small(see the discussion of Fig. 1 belpw

plitude forco— oo is It should be noted that the scattering contributions diverge
at the critical temperature on account of division by the van-
o[ 1 1 1 ishing sigma mass. This may be a signal of the breakdown of

M=—-6\1+3m 5+ 5+ 511, 9sig : y 9 (
\s—m{ u-m; t—m; the use of tree-level scattering amplitudes and requires fur-

(37)  ther investigation.

reflecting the symmetry in the t, uchannels. The total cross IV. SOLUTION IN AN EXPANDING EIREBALL

section is
87s s'+2\2 18 12(s'2—3s'—1) In this section we shall study solutions to the coarse-
o2’ |lg—1 + S—3 (s—4)(s—-2)(s -1) grained field equation in several limits. First, suppose that

the volume and temperature are fixed in time but that the
X In(s'—3). (39 system is slightly out of equilibrium in the sense that
#0. The field equation is then

This expression has no singularities becasise4. The low ) _ 5 » 3
energy limit is s+ I(T)ostmy(T)os=—NBv(T)os+oy), (47)
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FIG. 1. The sigma mass and the decay and scattering contribu- FIG. 2. The temporal evolution of the deviation of the scalar
tions to the width of the sigma meson as functions of temperaturgondensate from its equilibrium value in units of MeV for a
fromOtoT,. one-dimensional expansion of hot matter produced in a high energy

nuclear collision.
wherel is the sum of decay and scattering terms as given in » ] ] )
the previous section. WheirJ <v this equation can be lin- In addition to the coarse-grained field equation one needs
earized. It is equivalent to a simple damped harmonic oscill® know how the local temperature evolves with time. It must
lator. The system is underdamped rif,>T"/2 and over- l:_)e _assumed that it ch_anges slowly e_nough SO that Io_cal equi-
damped ifm,<T'/2. We choose\=18 so that the sigma librium can be maintained by the rapidly fluctuating pion and

mass in vacuum is §,, corresponding to the-wave reso- sigma fields. In principle one ought to solve the equation

nance observed in thew channel. In Fig. 1 we plat, and de/dt= — Dw/t (49)
the individual contributions td' as functions of temperature '
T. The field is overdamped when>0.8T. wheree is the energy densityy=e-+ P is the enthalpy, and

Next consider the expansion of the system created in @ s the pressure. Rather than working out a detailed descrip-
high energy nuclear collision. If the beam energy is hightion of the equation of state, which is really dominated by the
enough it will form a quark-gluon plasma with temperaturerapidly fluctuating thermal fields, we simply assume a free
greater tharl;. This “fireball” will expand and cool, even- massless gas of pions where the pressure is proportional to
tually reachingT.. At this moment, say at timé=t., the = T4 The sigma meson has a mass small comparéddnly
initial conditions for the coarse-grained field must be specivery near the critical temperature, and its effect is therefore
fied. We will assume, for the sake of illustration, that thegenera”y unimportant. As a consequence, the temperature
system is locally uniform so that spatial gradients are unim{alis with time according to the law
portant. Depending on whether the system is expanding

spherically or only longitudinally along the beam axI3 t.\P?
=3 or 1, respectively we obtain the modified equation of T="Te P (50
motion
A reasonable numerical value foy is 3 fm/c [26—29. The
D back reaction obrg on the time evolution of the temperature
Fet v+ — (06t 0)+T(T) g+ m2(T) o is thereby neglected. This is a quite reasonable approxima-
t tion because very little of the total energy resides in the field
=—\@Buv(T)oi+0?d). (48 s

The equation of motion may be solved by numerically
evolving an analytic solution in the neighborhoodtgf As
In this situationt is really the local, or proper, time and the t—t, the equilibrium condensate— 0, however Eqs(16)
term proportional td/t may be thought to arise from either and (50) indicate that the) and v are singular, as are the
the d'Alembertian or from a volume dilution term scattering contributions to the widih The analytic behavior
[V(t)/V(t) ] [23,24 analogous to the Hubble expansion of o ast—t. is uniquely determined by requiring that the
[25]. Perhaps the easiest way to obtain this equation is tderivatives ofog exactly cancel these singularities, while
derive the equation of motion for the total condensate o.—0. The result is displayed in Fig. 2 f@@r=1 and in Fig.
=v+ o0 and then make the substitution. Most authors actu3 for D= 3. The deviation from equilibriunerg is maximal
ally solve the equation of motion fer, but this is a matter of less than 1/2 fn¥ after the critical temperature is passed, and
taste. Note thav (T(t)) is the instantaneous value of the it dies away with a time scale of about 2 fon/There is a
equilibrium condensate and that is why no potential for ithint of oscillatory motion in the solutions, but basically they
appears above. are overdamped.
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FIG. 3. The temporal evolution of the deviation of the scalar
condensate from its equilibrium value in units of MeV for a
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pation and estimated the corresponding response functions
based on a consistent tree-level analysis. These mechanisms
include the decay of sigma mesons in the condensate, and the
knockout of sigma mesons in the condensate due to scatter-
ing with thermal sigma mesons and pions. To our knowl-
edge, the latter physical mechanisms have not been studied
before.

We then studied the dynamical evolution of the conden-
sate in heavy ion collisions, after the phase transition from
quark-gluon plasma to hadrons, and allowing for either one
or three dimensional expansion of the hot matter. These
showed that thermal equilibrium was reestablished rather
rapidly, with a time constant of order 2 f/ Clearly, much
more could be studied along these same lines, including the
formation and fate of disoriented chiral condensa@2&C).

The method we used in this paper is very general, and
may be applied to other theories, including nuclear matter,
QCD, and electroweak theory. Such work is underway.

three-dimensional expansion of hot matter produced in a high en-

ergy nuclear collision.

V. CONCLUSION
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