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Abstract

The one-loop four-graviton amplitude in either of the type II super-
string theories is expanded in powers of the external momenta up to and
including terms of order s* log s R*, where R* denotes a specific contraction
of four linearized Weyl tensors and s is a Mandelstam invariant. Terms in
this series are obtained by integrating powers of the two-dimensional scalar
field theory propagator over the toroidal world-sheet as well as the moduli
of the torus. The values of these coefficients match expectations based on
duality relations between string theory and eleven-dimensional supergrav-
ity.



1. Introduction

The wealth of duality symmetries relating different parameterizations of nonpertur-
bative string theory, or M theory, provide severe constraints on its structure. One striking
manifestation of this is the relationship between the low energy expansion of the type II
string theory action and one-loop effects in compactified eleven-dimensional supergravity
[1]. Although the systematics of this relationship becomes very murky at higher loops,
the leading behaviour of the two-loop contribution of the eleven-dimensional theory is
amenable to a detailed analysis (see the companion paper [2]).

This detailed comparison between string theory and eleven-dimensional supergravity
requires, among other things, detailed knowledge of the low energy expansion of the effec-
tive action of the type IIA and type IIB superstring perturbation theories. Surprisingly,
this has scarcely been considered in the literature beyond the most elementary tree-level
terms. In this paper we will obtain terms in the effective action that arise from the mo-
mentum expansion of the one-loop type II superstring theory contribution to the four
graviton amplitude. Since the four-graviton tree and one-loop amplitudes in the ITA and
IIB theories are equal we need not distinguish between the two theories in the following®.

The tree-level amplitude for the scattering of four gravitons with polarization tensors
Q(L) and momenta k# (r =1,2,3,4, u = 0,1,...,9 and k2 = 0) has the very simple form
[3,4]

Affee - K “?0 e*%T, (1.1)

where ¢ is the constant dilaton field so that g = /il_ol e? is the string coupling and

61 T(1-5s)0 (1= 91 (1-5u) .

- a3stu T (1 + %S)F (1 + O‘th) r (1 + %’u) ’
where the Mandelstam invariants are defined by s = —(ky + k2)?, t = —(ky + k4)? and
u = —(ky + ks)2. The overall kinematic factor K is given by

4
K — t/.L1.~~/-LstV1~~~V8 H (r) I{E(T)I{J(T), (13)

rVr "My Vr
r=1
which is the linearized approximation to the standard contraction between four curvature
tensors,

RY = tstgR* = t'1 8¢, RIL2 - RITVS (1.4)

L' The two type II string perturbation theories are equal up to and including two loops [2]
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where the tensor t#1-#s is defined in [5] and in Appendix 9 of [6]>. The value of the
constant k19 in (1.1) is arbitrary since it can be changed by shifting the dilaton field. Tt is
convenient to set it to the value

1
ko = 5 (2m)Ta", (1.5)

which normalizes the D-string tension to the value Tp, = e~ ®Tp, where Tr = 1/27a’ is
the fundamental string tension [7].
The one-loop type Il superstring four-graviton scattering amplitude in ten dimensions
is also very simple and is given by [5]
Ko

one—loo > >
AS = goa T = ki I K, (1.6)

where [ is the integral of a modular function,

d*r _
I:/}_—QF(T,T) (1.7)

)

(where 7 = 11 + i1y and d?7 = dr1dTo = d7d7/2) and F denotes the fundamental domain
of SI(2,7Z),

F=A{ln| <37 >1}. (1.8)
The dynamical factor in (1.7) is given by an integral over the positions v(?) = l/{i) + wé")

of the four vertex operators on the torus,

/7 ’ /7

3 .
d2y(2) a s (6% au
F(T7T>:/7_H 5 (xa2x34)™ * (x1ax23)" " (X13X24)
i=1

-
3 2, 3 42, (1.9)
— / H . / H Y exp(a’sAg + a'tAy + d'uly,),
T, T2 T2 T2

where d?v(") = dl/fi)dvg), v® =1, and

D =a'sAg; + a'tA; + d'uA,, (1.10)
with

As =1In(x12X34), Ay =1In(x14x23), A, = In(x13X24) (1.11)

2 This contraction projects onto the purely traceless components of the curvature, which

constitute the Weyl tensor.



and In Xij(l/(l) — v9); 7) is the scalar Green function between the vertices labelled i and
j on the toroidal world-sheet. These Green functions are integrated over the domain 7

defined by

1 1
T:{—§§V1<§, 0§7/2<7’2} (112)

It is understood that the mass shell condition

s+t4+u=0 (1.13)
is enforced in all expressions which ensures that only conformally invariant ratios of x;;’s
arise in (1.9). For example, substituting u = —s — ¢ the exponent of (1.9) contains
X12X34 X14X23 (1.14)
X13X24 X13X24

This also ensures that the integrand is modular invariant. Many of the following formulae
will be expressed in a symmetric form in terms of s, t and v even though these variables
are related by the condition (1.13). The relative normalization between the two terms in
(1.1) and (1.7) can be determined by unitarity as in [8,4].

The tree-level string amplitude (1.1) is sufficiently simple that it is easily expanded
to all orders in powers of the momentum. Successive terms in this expansion lead to terms
in the effective action that are polynomials in derivatives acting on R*. The expansion of

T begins with the terms
64

T =
o/3stu

+20(3) 4. (1.15)

Substitution of the first term in (1.1) reproduces the tree diagrams of classical ten-
dimensional N = 2 supergravity which have poles in the s, ¢t and u channels. The second
term gives the leading correction to the supersymmetric Einstein—Hilbert theory and deter-
mines a term in the effective action proportional to R*. Subsequent terms give information
on higher derivative interactions. The complete tree-level expansion will be reviewed in
section 2.

The one-loop string amplitude (1.7) also has a remarkably simple form — the overall
kinematic factor multiplies an integral over the moduli space of the toroidal world-sheet
that is constructed entirely from the scalar world-sheet propagator. The leading contribu-
tion is proportional to R* but the nonleading terms in the momentum expansion have not
been calculated up to now. From general principles we can anticipate that the momentum
expansion of the one-loop amplitude has the structure,

o o
I(s,t) =a+ Z]nomml(s?t, u) + bﬁ(s2 + 12 4 u?)
o 3 43 3 ot 4 44 4 ot (1.16)
v t d— t —Inonan 7t7 e
+c64(s + 7 +u’) + 256(3 + +u)+256 2(s,t,u) +

:]an(57 t? u) + ]nonan(s7 t? u)a



where a, b, c,d, ... are constant coefficients. Up to this order the polynomials in the Man-
delstam invariants are the unique expressions that are s, ¢, u symmetric. These make up

the analytic part of the amplitude, I, (s,t,u), whereas the non-analytic threshold terms
o 14
I”O”a”(87 2 u) = Z]nonan 1 (87 t? u) + %

have logarithmic singularities. The presence of such singularities follows very simply as a

Lnonan2(s,t,u) + o(a’*), (1.17)

consequence of perturbative unitarity due to the phase space available for massless two-
particle intermediate states. For energies such that s < 4o’ - (i.e., below the first massive
string threshold) the amplitude AS™? (s, ¢) satisfies the unitarity relation

1
(2m)2

Disc jélzl)nefloop(s7 t) — /d10p1d10p2 Airee(kl, k27 _p17p2) (AiTee(kg, k4,p1, _p2)>T
x 600 (py + py — Ky — k2) 0(p9)6" (p7)0(p3)07 (p3).

(1.18)
Substituting the lowest-order (Einstein—Hilbert) tree-level term from (1.15) into both fac-
tors of AL"¢¢ on the right-hand side of (1.18) leads immediately to the Ionan1 term in
(1.16). Substitution of the term with coefficient {(3) from (1.15) into one of the factors
of A%¢¢ and the Einstein—Hilbert term into the other leads to the I,,onan2 term in (1.16),
which has three extra powers of a’. These terms will be discussed in more detail in sections
3 and 4 (see also [9,10,11]).

The main purpose of this paper is to evaluate a number of terms in the expansion
(1.16). This exercise involves integrating modular invariant combinations products of the
scalar field theory propagators Inx;; over the toroidal world-sheet as well as integration
over the moduli space of the torus. Although the integration of combinations of derivatives
of world-sheet scalar propagators has arisen in the literature, for example, in connection
with the elegant calculation of the elliptic genus [12], in order to perform the integrals
that arise in this paper we will need to use some tricks that that will be presented in
section 4. This will allow us to determine all the terms in (1.16) up to order & Lonan 2
(although the value of the coefficient d will be left as a quadruple sum). The values of
these coefficients are compared in [2] with the values that emerge by considering two-loop
eleven-dimensional supergravity compactified on a two-torus.

2. Overview of the tree amplitude

The tree amplitude for the scattering of four gravitons of momenta k', k4, k% and
k! in either of the type II superstring theories is given by (1.1) and (1.2) where T' can be
written as [5],

64 < 2¢@2n+1) [\
T — exp (Z ¢(2n+1) (a_) (s2n+1 g2+l g g 20ty | (2.1)
n=1

o/3stu 2n +1 4



where we have used the elementary identity InI'(1 — 2) = vz + >, ((n)z"/n.
It is convenient to introduce the notation oy, = (a//4)% (s* +t* +u*) (o1 = 0), which

satisfies the recursion relation

1

1 .
03+5 = 5020]'4_1 + 50305, Vj > 0. (2.2)

3

The solution of these conditions can be expressed by the generating function,

= 2?0y + 2303 9 3 & (p+q)! fo2\P f03\4
ijajzl_laxz_laxsz(z "2+~’”03)Zx Z 1ol <E) <§)
j=1 272 393 E>0 oprag—t I
2.3)
Therefore ( I
_ p+q—1) ro2\P r03\1
Tk =k Z plq! (7) <§> ' (24)

Since o 3stu/64 = 03/3 and every og,41 is divisible by o3, the expansion of the
exponential in (1.1) can be expressed entirely in terms of polynomials of o2 and o3,

T — % +20(3) 4 C(5)os + %g(s)%g + %g(?)(@)? + §<(3)<(5>0203 bl (25)

It will be significant for the later discussion of unitarity that the series of powers of s, t and
u has gaps of three powers of the Mandelstam invariants between the first two terms and
two powers between the second and third terms. Each term translates into a term in the
effective action of the type IIB string theory which is the linearized version of a number
of covariant derivatives acting on R*. These higher derivative terms are part of the full
duality-invariant effective action for the type IIB string.

3. Expansion of the one-loop amplitude

In this section and the next we will consider the low energy expansion of the one-
loop integral (1.7) in powers of s, t and u. Formally, this involves expanding the integrand
F(7,7) (1.9) in powers of the scalar Feynman propagator which are then integrated over
the toroidal world-sheet,

:/F%TF(T,%) / /Hdz”() L (3.1)

where the exponent is given by

D = os In(x12x34) + &'t In(x14X23) + @'u In(x13X24)- (3.2)
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This expansion is only formal since we already know that the amplitude is not analytic at
s =0,t =0 or u=0. This lack of analyticity is manifested by divergent coefficients in
the series (3.1). One way of dealing with this problem would be to consider the expansion
in a power series around a nonzero value of s, t and u ~ €. The terms that are singular in
the € — 0 limit can then be resummed to give the logarithmic singularities.

A more straightforward procedure is to evaluate the coefficients of the derivatives of
I in the small s, t and u limit. We will therefore consider the general term,

I0mm) = Jim (107" — [0y = Jim (40”00 — Lnonan)

nonan

s,t—0 s,t—0
2 3 2. .(4)
~ lim / @ / TT 55 (1A, — 40,)™ (48, — 40,)" exp(a’sh, + a'tA, +a'uls,)
s,t—0 F T3 Tz’:l T2
15, |

(3.3)
where Ag, Ay and A, are defined in (1.11) and I,(L%’Z% = (4@’_1)m+”6§“6flnomn.

Since I,onqn has logarithmic branch points the Ié?nﬁ% terms are singular functions
of s and t which must be extracted from the complete expression, (3.3), before the analytic
terms can be determined. Since the nonanalytic terms originate, via unitarity, from the
logarithmic normal thresholds due to on-shell intermediate states we can anticipate that
they arise from the region of moduli space in which 75 — oo, which is the degeneration
limit of the torus. Our strategy in calculating I™™ will therefore be to introduce a cut-off
L at a finite but large value of 5. The region 75 < L gives a finite contribution to I (m,n)
which includes ]((l;n,n) together with a L-dependent term. In this region the exponential
factor in the integrand on the right-hand side of (3.3) can be replaced by unity. However,
for 79 > L the exponential factor plays a crucial role in regulating the integral, resulting
in the terms in I,(L?n% together with another finite L-dependent piece. Dependence on L
cancels out in the full expression. These nonanalytic terms will be considered in detail in
section 3.3, section 4.3 and the appendix.

Differentiating the analytic terms in (1.16) an appropriate number of times with
respect to s and t we see that the coefficients that will be extracted from (3.3) have the

form (up to fourth order),

R R

Y =—6c, I3V =0 IV =24d=13%, 10 =484, (34

together with the terms obtained by interchanging s with £. The numerical values of the
coefficients a, b and ¢ will be determined in section 4, although d will be left in the form
of a multiple sum that will not be evaluated.
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3.1. The scalar propagator on a torus

The exponent, D = o'(sA; + tA; + uA,,), in the expression (1.9) is a linear combi-
nation of scalar world-sheet propagators joining the locations of the four vertex operators.
The scalar propagator between two complex points, v(*) = l/fi) —f—iuéi) and v9) = ng ) —H’yéj ),
on a torus of modulus 7 is the doubly periodic function of v(¥) = p() — p(9) in the domain

7T that has a logarithmic short distance singularity. Thus, the propagator,
P D7) = In (V' 1), (3.5)

satisfying toroidal boundary conditions can be written as a sum over image propagators
as

2
1 TV
Y

P(v|r) = -5 Y Iny4+mtnr|— Y Injm+n7] + o5 (3.6)
nmez (m,m)#£(0,0) 2

where the last term is the zero mode of the Laplacian. The propagator can also be expressed

as )
1. [61(v|7) ez
=—-1
Plir) i 61(0|7) 279 (3.7)
_mvs 1 |sin(nv) 2 Z ¢™  sin®(mnv) tee '
C2my 4 s = 1—qgm m )

where ¢ = exp(2in7) and 6, (v|7) is a standard Jacobi theta function.
Another representation of the propagator that we will use is obtained by Fourier
transforming with respect to v, which leads to an expression in terms of the sum over the

discretized momentum mr + n,

1
Pir) T ir Z |m7'7_7—|2—n\2 xp [2m’m (V1 - 7’1@) — 2m’n2] + C(7,7)

(m.n)£(0,0) E & (3.5

X .
- ) — 2 exp | = (#(m + n) — v(m7 +n))| +C(r, 7).

s |mT + n|? To

(m,1)#(0,0)

The zero mode is given by
1 2
C(r,7) = 5 In|@m) (7] (3.9)

where 7(7) is the standard Dedekind function.
The combination of propagators that enters the amplitude is one for which the zero

mode, C, cancels out. This is a crucial point in considering the modular invariance of the
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integrand. The group SI(2,Z) is generated by the two elements T': 7 — 7+ 1, v — v and

S:7— —1/7, v — v/7. Under these transformations the propagator transforms as

T: Pr+1)="P|r)

52 (2 L) =soi i

so the propagator has a modular anomaly which comes from the zero mode, C, in (3.8).
However, the sum over propagators in the exponent D is modular invariant since the zero
modes cancel after using the on-shell condition, s +¢ + u = 0. Therefore, it is very

convenient to use the subtracted propagator,

which is modular invariant. The expression (3.8) can be written as a Poincaré series,?

Pv|r) = Z > W (7)), with@z;(y,f):i—;e*%w% (3.12)

YEL\T
where Uy = 15 /79 and the SI(2,Z) transformation acts on v and 7 by

at +b v

3.13
cr+d’ v cr+d’ ( )

T —

where a, b, c and d are integers and ad — bc = 1.

We will also need to express the propagator as a Fourier series in powers of e2¥™7,

which has the form,

o 1 N
P(V’T) _ ;—_; Z n2 2z7rm/2 + = Z |m| 2z7rm(k7—1+1/1) e—27r7—2|m||k—1/2| (314)
Ao ‘g

In analyzing the singular terms in the amplitude it will be important to make use of

the leading contribution to this expression for the propagator at large values of 7o,

47 n2 2

. 1 oirns 1
Po(lr) = 2y e = 12 (A2 IDo] + ) (3.15)

3 Recall that the Poincaré series associated with a function 1 defined over F is T (1) =

1
Zwerw\rw(gmvz) forr=m+ineH={n=Sm7>0}and ' = {j: (O T) ,n € Z}.
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3.2. The diagrammatic rules

The calculation of I(™™) in (3.3) involves integration of powers of the propagators,
ﬁ(y(ij)lr), contracted between various combinations of the points i,j (i, € {1,2,3,4})
which are the locations of the vertex operators.

It is easy to deduce a set of diagramatic rules at any given order. A term of order A™
(where each power of A may be any of the three A,’s with r = s, ¢, u) contains a product
of n propagators which join pairs of points (which we will call ‘vertices’) i,j(=1,...,4)
with positions v(®) that are to be integrated over the torus. We will represent each vertex
of a diagram by a dot and each propagator linking two vertices by a line. The complete
nth order contribution requires a sum over all ways in which the propagators can join the
vertices. For any term in this sum every vertex that is not connected to any propagator
contributes a factor of [, d?v;/m = 1.

More generally, we need to isolate divergent contributions by dividing the 7 integra-
tion domain into two regions,

F=F,+Rg. (3.16)

The domain Fy, defines the ‘restricted’ fundamental domain of the 7 plane in which 7 < L,
whereas the domain R, defines a semi-infinite rectangle in the 7 plane, in which 75 > L. As
stated earlier, the terms L(L?n% that have threshold singularities at vanishing Mandelstam
invariants arise from the domain R; and will be dealt with separately by integrating over
this large-19 region.

For the finite contributions that come from the domain F, the integrations over the
positions, v(V) enforce overall conservation of the discrete momentum p = m7 + n in any
diagram. This means, for example, that any propagator with a free end-point gives a van-
ishing contribution since it has been normalized to have a vanishing zero mode. Therefore,
non-zero contributions only come from diagrams in which two or more propagators end on
every vertex. Various combinatorial factors are associated with each diagram and will be

described for each case separately.

3.3. The threshold term, I, onan

The lack of analyticity of the low energy expansion of the one-loop amplitude (1.7)
due to the logarithmic thresholds makes the integral representation (1.7) ill-defined. Since
there is no region of the Mandelstam invariants in which the amplitude is real the only way
of making sense of the integral is to decompose the integration domain into three domains,
Tst, Ty and 7,4, so that the amplitude is separated into real analytic terms that have
thresholds in the (s,t), (¢t,u) and (u, s) channels, respectively. The integral representation
for each of these terms can then be defined in the region of physical scattering, s > 0;
t,u < 0, by analytic continuation. For example, the (s,t) term is defined by continuation
from the region s,t < 0 (with w = —s —t > 0) where it is real. This decomposition follows
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very naturally in an operator construction of the loop amplitude but does not manifestly
preserve modular invariance [9].

The leading logarithmic singularity in I is the leading term in lims; o [(e? — 1).
This can be extracted by first differentiating the integral representation with respect to s,

d2 3 42,
as]nonanl = lim —27—/ H Y 4857) GD
F T2 JTi T2

s,t—0 T

) >t S a2y®
= llm —5 H
$t=0JF T3 JT 5 T2

The contribution from the domain F;, vanishes due to the integration over the v(%). How-

(3.17)
(4A, — 4A,) €P.

ever, the region R leads to a nonzero result. In this region we can approximate D by
using the asymptotic expression for the propagator (3.15) which is proportional to 7. In
the term with thresholds in the (s,t) channels the variables Véi) are ordered in such a
manner that the rescaled variables,

Vs
, = ) 3.18
Wi 7_2 ( )
span the range
Tap: 0<wi <wy<w3z<wy=1 (3.19)

(where we have used the conformal symmetry to fix v = 7). The various permutations of
this ordering are relevant in the (¢, ) and (u, s) regions so that the whole range, 0 < w; <1
is covered by adding the three regions, 7, 73, and 7, together. In terms of these variables
we have, in the region 7,

D ="D(s,t) = lim s(As—A,) +t(Ar—Ay)

=717y (sw1 (w3 — we) + t(way —w1)(1 — w3)) (3.20)
=m12Q(s,1),
where
Q(s,t) = swi(ws — wa) + t(we — w1 ) (1 — w3). (3.21)

Similar expressions for the functions D(t,u) = t(Ay — As) + u(A, — Ag) and D(u,s) =
u(Ay — Ay) + s(Ag — Ay), define D when expressed in the 7y, and 7,5 regions. In the
R, domain of (3.17) the 7y integration is trivial since the integrand has no 7 dependence.
The 7 integration (from L to oo) simply gives

*d
OsInonan 1 :47/ o H dw; w1 (ws — w2) edmm2Q(s,t)

-
L "2 g<w <ws<ws<1

:47r/0< <H< <1dw7; w1(ws —wz) (—y —In(—47Q(s,t)) — In L) + o(s).
I (3.22)
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The In L terms cancel out in the complete contribution to 19 = 9,1 — 9,I. It it is easy

to integrate (3.22) together with the corresponding expression for 0;lonan 1, giving

1
Emmmzf 11 cmgwwmg@w+/ [  dw: O u Ot u)

0<wi <w2<w3<1 0<w3z<w2<wi1<1

+/ H dw; Q(u, s) In Q(u, s).

0<fwo<wi <ws<1
(3.23)
The scale of the logarithm cancels out of the sum of terms in the full expression. This

threshold term is exactly the same as that obtained from the one-loop calculation of the
four-graviton amplitude in either of the type II supergravity theories in ten dimensions
[11,10]. The corresponding discussion of the higher-order threshold term, I,0nan 2, Wwhich
is intrinsically stringy since it involves higher powers of o, will be given in the appendix.

Such threshold terms are contained in the large-mo region of the integration over
moduli space, which means that they are contained in the coefficients 17({2’”) that are
defined by integration over the domain Ry. So long as 1 < m + n < 4 it will be sufficient

to substitute the asymptotic form of the propagator which will produce contributions of

the form,

(m,n) d>r S a2y
lim 1" (s,t) = lim —2/ 11 (404 —4A,)™ (40 — 4A,)" P
v Ry T2 JT i—1 2

s,t—0 s,t—0 T
0o

3
= lim d7'27'2m+”2/ Hdwi (470,Q)™ (470, Q)" ™ 2€
7 i=1

s,t—0 L

00 L 3
= lim / dry —/ dry 7'2m+n_2/ Hdwi (470,Q)™ (410, Q)" ™22

Lm+n71
= lim I\™m) (5,4) — 2 x (4m)™ " ————
5,6—0 m+n-—1
plq!
om oy Pd 4 (—1)9sP (s 4 )7 4 (=1)P(s + t)Pt?
X tpﬂg;ﬁxmn+2n+3ﬂb + (=175 (s + )7+ (=1)" (s + 1)"t7] :

(s,t)=(0,0)
(3.24)

with p, ¢ > 0. The L-dependent term in this expression will cancel with a term that arises
from the integration over the domain F;. When m +n = 4 it is no longer adequate to use
the leading 7 contribution to the propagators and a sub-leading contribution of the form
In L. arises. This leads to the term I, ,54n2, as will be seen in more detail in section 4.3

and the appendix.
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4. The analytic terms, LS’,?’”)

The analytic terms are extracted from the integration over Fj which is finite. In
this domain we can first perform the v() integrals to obtain a density on the moduli space
and then integrate this over 7 and 7.

The first term in the expansion of (1.9) using (3.3) is the trivial constant term. The
result of the integrations is simply the finite volume of F. This defines the first constant
in (1.16),

d’r o

100 — ¢ = (4.1)

F 7'22 n g,

which is the well-known coefficient of the loop contribution to the R* term.
The next terms in the expansion are 119 and I®1) which are given by (3.17). As

remarked earlier, the () integrations in (3.17) cause the integrand to vanish in the domain

Fr, and the integral only contributes to L(llo}?()m.

4.1. Terms of order s>

=A
Fig. 1: The diagram that contributes to IC(L;?’”) with m +n = 2.

The only non-vanishing contribution to the integrand of I,,, at order o’ ? is the bubble
diagram of fig. 1. This term multiplies (s% + t? 4+ 4?) in the expansion (3.1) and therefore

contributes to LS?;O), L(J{l) and LS?;”. The density on moduli space arising from fig. 1 is

d2v® q2,,0) L 2
A(r, T) :/ aravy ~ Y [ln)z(y(”)lr)}
T

)

1 T2 1 _
-y : __ 1 g

167 |mT +nl2 1672
(m,n)#(0,0)

(4.2)

The function Z5 an Epstein zeta function which is an example of a non-holomorphic Eisen-

4

stein series®*. More generally these are non-holomorphic modular functions that are also

eigenfunctions of the Laplace operator in the fundamental domain of SI(2,Z),
82

V2Z, = 47‘22WZS = s(s —1)Z,. (4.3)

4 This is related to the function Es in [13] by Z, = 2((2s) E.
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These functions have 7, expansions in which there are two power-behaved terms together

with an infinite set of exponentially suppressed, non-perturbative, terms,

(s —1/2)

Ty S@s Dm0, (44)

7_8
Zy = 2 —2¢(2s)T§+ 271 /?
(m n)z#(o 0) fm o+ nf 2

Diagrams of this type with vertices at (1, 2), (3,4), (1,3) and (2,4) contribute equally
to [, ((131,0)‘ Integrating (4.2) over the restricted fundamental domain, F,, and summing over
these four contributions gives

720 _y 1 d*r _
Fo =A% 5 i T—szg(T, 7), (4.5)
L
where the factor of 4 comes from 92 (s? +t2 + (s +t)?). This expression is easily integrated
by substituting Zo = V2Z,/2 using (4.3) so that the integrand is a total derivative and
(4.5) reduces to an integral over the boundary. The restricted fundamental domain has a
single boundary which is at 7 = L and the result is

26 72
2,0 _

This L-dependent term cancels the corresponding L-dependence arising from I 7(3;0) which is
given by (3.24). Since there is no residual L-independent piece we conclude that LS%’O) =0,

which implies that
b=0. (4.7)

This means that there is no s? term in the expansion (1.16).
In a similar manner it is easy to verify that the cross term 1, (51;1) also vanishes, which

is consistent with (3.4).

4.2. Terms of order s3

Fig. 2: Diagrams that contribute to L(Izl’n) with m +n = 3.
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The diagrams in fig. 2 are the ones that survive the v(¥) integrations. These con-
tribute to terms in the expansion (3.1) with coefficient ' (s3 +¢3 +u3). The first diagram
is the product of three propagators joining three distinct vertices and gives contributions
to the integrand of I;_-2L’1) (and Ig_-lf)) of the form (k> j > 1)

1
(4m)? mz fmr - ae ~ mp 2T (4.8)

Bl(T,f) =

This is again a non-holomorphic Eisenstein series satisfying (4.3), here with s = 3, so it is
an eigenfunction of the Laplace equation with s(s — 1) = 6. The integration of the density
(4.8) over the the restricted fundamental domain can again be performed using Gauss’ law.
This gives,
2T O(L™?) (4.9)
3- 8! ’ ’
where the factor of —6 arises from 929;(s® + 3 — (s +1)?).

The second diagram of fig. 2 involves only two distinct vertices and potentially gives
a contribution to the integrand of both IgL’O) and IgL’l) (as well as Ié_E)L’S) and Ié_-lL’Q)) of the

form

d? (2)d2 (7)
Ba(r7) = [ g (PO

1 3 S(m+k+pon+1+q)
(4m)3 2 ImT + n|2|kT + 1]2|pT + ¢|*°

(4.10)

(m,n),(k,1),(p,q)7#(0,0)

In fact, 3% involves the combination 93(s% 4 t> — (s 4+ t)3) = 0, so it automatically
vanishes as in (1.16). However, the integrand of I(>") is proportional to Bs.

Unlike the earlier examples, this expression is not an eigenfunction of the Laplacian
on the fundamental domain so a new idea is needed in order to perform the integration over
Fr. We will make use of the well-known ‘unfolding procedure’ by using the representation
of the propagator by a Poincaré series (3.12). This relates the integral of ¥ x f over F

(where 1 is any Poincaré series) to an integral over the semi-infinite line,

/ T ) f(r) = / ), (4.11)
F t

Ot2

where the expression (Cf) is the zero 71 mode of the function f(7),

1/2
Cf(m) = / dry f (7). (4.12)

—1/2

14



The relationship (4.11) is derived by making use of the identities,

/ / / (4.13)
F\H 1—\ \F oo\H T2>0

Since the integration in (4.10) is over the restricted fundamental domain, F,, some care
has to be taken in using the unfolding procedure. For an integral such as (4.10), which
diverges like a power of L as L — oo, it turns out to be consistent to simply set f(7) =0
for 79 > L, which cuts off the divergence at 75 — 00.% Using this procedure we can express
the contribution of (4.10) to I(2L’1) in the form,
129(By) = —6 x 2 iB 7,7
FrL ( 2) 6 3 }_L 7_2 2( )

2,V g2,(2) /. 3
_ —128/ /d v d v ('P(V(l2)’7')> (4.14)

d21/(1)d2y(2) t o .
= —1928 — haa 1 7, 21 25 C 2
Z_:p2/0 t2/ 2 Ar (P%),

where the overall factor of —6 comes from 920;(s® 4¢3 — (s + t)3). The expression for the
integral over 1/51) and 1/5 ) of the zero 71 Fourier mode is
2

1

2
(1) (2) 2 t 1 27'rznA§12) i L 747'rt\m||k713§12)|
/ dvydv” C(P?) = £ — > = e + 15 D 3t . (4.15)
2 n;ﬁo mZSO
Substituting the first term on the right-hand side into (4.14) leads to the L-dependent

term,

2 3 ’
13(By) = —128 % % /21 iV di? ﬁ 3 le 2y
"2 n#0 (4.16)
B L? 6(n1 +ng+n3z) 28 7T3L2
o8 Z ninin3 3.8
n; €Z\{0}

Substitution of the second term on the right-hand side of (4.15) into (4.14) gives the
L-independent term,

dt —zﬂ'l/ —4ant|m 1%
152%)(32):__2 / / dikV di <2>Z 2impis ,—Amt|m||k—ba|

e (4.17)
2 1

p 1m7$0

> Although this cut-off leads to the correct answer when the integral grows as a power of L,
more care is needed in regularizing logarithmic growth of the kind we will meet in section 4.3. In
that case the integral diverges at the points on the 72 = 0 axis that are the images under SL(2,7Z)

transformations of the point 7 — oo.
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The sum of the L-dependent terms, [1(?77_—12(B2> + IgL’l)(Bl) (see (4.16) and (4.9)),

again cancels with the corresponding term in the integration over the domain Ry, (]7(12;1),

in (3.24)). However, in this case there is also a finite contribution to 152]’_-1)

which determines
L )
the coefficient of the o/®(s3 + 3 4+ u3) term in (1.16) to be

e = 3-C2)(3). (4.18)

4.3. Terms of order s*

OO= OO

Fig. 3: The set of diagrams that contribute to I™™ with m 4+ n = 4.

The four kinds of diagrams that give non-zero contributions proportional to o’ : (s*+
t* +u*) in the expansion (3.1) are shown in fig. 3. These each have four propagators and
contribute to LS’,?’”) with m +n = 4. Upon evaluating the () integrations these give the

following densities for the moduli space integrals

1

Ci(r.7) = (2 (4.19)
Cafr.7) = pr(Za)” (4.20)
Cs(7,7) = (4#24, (4.21)
Cutrr) = | M (Pen) G>9)
1 L Sm+p+r+u)dn+qg+s+w) (4.22)

= > > T -
(4m)4 S0 i o) 2 |m7 + nl2|pr + q|?|rT + s|?|vT + w|?
(p,a)#(0,0) (v,w)#(0,0)

16



The term Cs(7,7) is once again a non-holomorphic Eisenstein series which can be
integrated over the restricted fundamental domain using,

/ d*r 2 3 4
g Za= @ 0L, (4.23)

)
Inserting the appropriate combinatoric factors gives rise to the L-dependent contributions,

210 .3 71_4
10!

210.3 74

IGV(Cs) =0, ISP (Cs) = 10!

L3, I49(0y) = L3, (4.24)

The integration of the expressions Cy and C'5 over the restricted fundamental domain
involves the integration of the square of an Eisenstein series, (Z5)2. This can be evaluated
by using Green’s theorem in the fundamental domain. For general real values of s, > 1/2

this states that

1 d*r Lst+s -1 15— ) I5—¢ / s —s
4¢(25)C(2) /ﬁ 72l = g T sy e 10O Tl ) — T els) ol
(4.25)
where @ NI L) .
S — S — T
d)(s) - 71-8—1/2 C(QS)F(S) . (426)

The symbol o(1) means that the remainder goes to zero when L becomes infinite (for a
more general statement see exercise 12, page 216, of volume I of [13]). It follows from this
that

; d2_7_ 2:1 3 ﬂ_@ 0 Y.
4¢(4)? /}'L 3 (22) 3L + <(4)1 L—¢'(2). (4.27)

The last term gives a L-independent contribution to the coefficient d in (1.16). The other
terms in (4.27) give another contribution that behaves as L? as well as a new L-dependent
term proportional to In L. Such a term is implied by the presence of a new logarith-
mic threshold of order o/* s% Ins which is contained in ILonan 2 that is evaluated in the
appendix. Taking into account the combinatorial factors, the contribution of these L-
dependent terms is

IBD(C) = IEY(Cy) =0

29. 7 7 48
= 1—0,L3 + ;C(?’)C(‘l) In L, (4.28)

B 210-;771'4
10!

I1Z:2(0y) = 21322 (Ch)
[49(Cy) = 2149 (Cy) 23+ D ¢@)c) L.
vis

The last remaining term to consider is Cy. As with the two-loop term (4.10) this gives
an expression which is not an eigenfunction of the Laplacian on the fundamental domain.
Once again the d?7 integration may be performed by using the unfolding procedure as
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in the previous sub-section. However, in this case we have to take greater care of the
divergence of the integrand at 7 = L — oo (as pointed out in the footnote in section 4.2).
The integral can be rendered finite by subtracting a suitable linear combination of Z4 and
Z2 from the integrand. Consider, for example,

d2y (1)d2 @ /. 4
I89(Cy) = 48 x — /f / <'P(l/(12)]7')> : (4.29)
L

where the factor of 48 comes from 9%(s? + t* + (s + t)4). It is easy to extract the terms
in the integrand that are divergent in the limit L — oo from explicit form of P(v(1?)|r)

given in (3.14) and (3.15). This gives explicit L and In L terms that can be subtracted in
a modular invariant manner by defining a regularized value of I(49(Cy),

Iy (Ca) = LA (Cy) — 157 (C), (4.30)
where
2..(1) 72,,(2)
7(4,0) d°v d v 2 3 )
= - Zi+——(Z 4.31
Lg; " (Ca) = 1024/ﬁ / ( amitet (47T)4( 2)” |, (4.31)

and the integrals of Z; and Z3 are given in (4.23) and (4.27), respectively.
Since the expression (4.30) is finite and its integrand is modular invariant it is
straightforward to evaluate using the unfolding procedure. This gives

2D d2y2) ¢ .
L (C4) _10242 / /—” — e o (Piv)?)

2. (31,72, ,(4) R R R
49 / V)V (P(29) P(3) P(40)) (4.32)

t2

3 RS VIO N
Gy / e 8. <73(1/(12))Zz>] .

This term can be evaluated by using the explicit definitions of P and Zs, giving the L-

independent result,

12 Injp—n
() = - g Y e

2
p#0,n#0 pn
pP#n

4 1 =1 /°° dt
+ —_ - N -
@ Z |mimaoms| ; p?Jo t (4.33)

m;#0, m1+mo+mg=0
k;€Z, mi1kyi+moko+mgksz=0

/ dyél)dﬁf)exp( 227rp1/2 —QWtZ]mZHk —1?(12)]> .

0
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The L-dependent terms are contained in

_29-57r4 48

DT @)L - @2 (2) . (434)

145, (Ca) = 2132(Ca) ;
™

div

The L? term is connected, as expected, to the presence of ]T(Li’,?()m 1

again connected to the appearance of [ fjﬁ,ﬁing.
The sum of the L3 contributions arising in L(zi’o)(Cl) and If(li’)o)(Czl) indeed cancels
the contributions from the integration of 17(140’7?31” , over the R, domain in (3.24). Similarly,

the total coefficient of In L arising in the sum of L%Q)(Cl), L(l?{Q)(Cg) and L(l?{Q)(CLL) is

while the In L term is

2.2 96
157, = S¢E)@ L, (4.35)
which will be cancelled by the presence of the new threshold term Ifiﬁ?mQ. The general

expression for I,onan 2 is fairly complicated but we see from the appendix that at ¢ = 0 it
reduces to

Seem@s (m (%) rm(=22)). @

Taking four s derivatives leads to the same coefficient of In L as that in (4.35).

The finite term IP(;Le’gO)(C’Al) (4.33), together with the L-independent parts of (4.34)
and I+0)(Cy) and I*9)(C3) (which come from the finite last term of (4.27)), determine
the value of the coefficient d in the expansion of the loop amplitude in the form,

Inonan2(87t - 0) -

4 9 1 In|p—n|
d:_ﬁ (4) ¢/(2>—R (B)ZW
1 (IR /00 dt
_|_ - N N

k;€Z, m1ki+mokog+mgks=0
1 3
/ doiM dil? exp (—inppgu) —2mt Y Jm[k; — 19512);) .
0 i=1

We have not extracted the numerical value of this complicated looking expression.

5. Summary and conclusion

In summary, we have determined the first few coefficients in the expansion (1.16) of
the four-graviton one-loop amplitude in either of the ten-dimensional type II string theories.
After explicitly subtracting the non-analytic threshold terms I,,nan1 and Inonan2, We
found that

T 1
5’ b=0, c= §C(2)C(3), (5.1)
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and d is given by the expression (4.37) that we have not evaluated.

These coefficients give a little more insight into the structure of the low energy
expansion of four-graviton interactions in the M theory effective action. The leading term
of this type is the R* term about which a great deal is known [14,15,16,17,18,1]. For
example, in the ten-dimensional limit corresponding to the type IIB string theory, it has
dependence on the complex coupling, Q@ = C(© + ie=®" (where C(®) is the R ® R scalar
and ¢? is the type IIB dilaton), that enters by an overall factor of Ej 2(2, Q), where E,
is the modular invariant Eisenstein series that is proportional to Zs (see the footnote in
section 4.1). This function has an expansion for large {25 (weak coupling) that begins with
the tree-level term with coefficient ((3) in (2.5) and is followed by a one-loop term with a
coefficient that is precisely the value of @ in (5.1). There are no further perturbative terms
in the expansion but there is a precisely defined sequence of D-instanton contributions.

One method by which the exact form of the the R* interaction was determined [1]
by calculating the one-loop contribution to four-graviton scattering in eleven-dimensional
supergravity compactified on a two-torus. Recently this method has been generalized to
evaluate the two-loop contribution in eleven-dimensional supergravity which contributes
at leading order in the low energy expansion to the D* R* interaction, where the notation
symbolically indicates four derivatives acting on four powers of the curvature. In the limit
that gives the ten-dimensional type IIB theory the interaction is given by a term in the
effective action density of the form [2]

C(B) VP EsQ,Q) (s* +1° + u”) R (5.2)

(where the factors of s2, t2 and u? represent appropriate derivatives acting on the cur-
vature tensors). In this case the modular function Ej/, has an expansion for large €2y
(weak coupling) that begins with the tree-level term with coefficient {(5) in (2.5) and is
followed by a two-loop term — the one-loop contribution is absent. Again there are no fur-
ther perturbative string theory contributions but there is an infinite series of D-instanton
contributions. The vanishing of the one-loop contribution in (5.2) is confirmed by our
statement that the coefficient b in (5.1) vanishes.

The value of ¢ in (5.1) is the coefficient of the one-loop contribution to the (s34 3+
u3) R* interaction. This is not a term which has yet been motivated from any argument
based on duality or supersymmetry. In particular, it is not yet clear how this term packages
with the tree-level ¢(3)? term in (2.5) to make a modular invariant expression in the type
IIB limit.

More generally, one might ask whether there is a simple modular invariant expression
for the complete four-graviton amplitude that generalizes the tree amplitude (2.1). An
obvious candidate is obtained by replacing the coefficients 2{(2n+ 1) in the tree amplitude

(2.1) by 72_2”_1 2¢(2n +1)Ey41/2 [19,20]. The resulting amplitude has s, ¢ and u-channel
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poles at values corresponding to the mass of every excited state of all the (p, q) D-strings.
This expression has been conjectured [19] to be some sort of approximation to the exact
four-graviton amplitude of the type IIB theory. It does indeed reproduce the first few of
the known coefficients in the low energy expansion: by definition, it contains the exact
tree-level amplitude and it also contains the correct ratio of the Es/9 R* term and the
Es5/5df 2 (s + t2 + u?) R* term. However, it produces a value for the coefficient of the
one-loop part of the o/ (s3 + 3 4+ u3) R* interaction that is twice the value of ¢ in (5.1).
It is not surprising that the naive modular invariant conjecture of [19] fails since there is
no obvious sense in which it can approximate the exact amplitude. After all it purports
to describe an infinite number of highly unstable non-BPS states in a non-perturbative
manner but lacks all of the (massless and massive) threshold cuts that are required by
unitarity.
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Appendix A. Massless normal thresholds

The thresholds that arise from massless on-shell intermediate states come from the
region of integration over near the boundary of moduli space at which the toroidal world-
sheet pinches in such a manner that the four vertex operators are separated into two
bunches. At this degeneration point the world-sheet is the product of the two tree-level
world-sheets that enter in the right-hand side of (1.18).

In order to extract these thresholds from the expression (1.9) for the loop amplitude
it is very useful to change the definition of the moduli from v(") and 7 to n(") by defining

yO g @ ) @ ) (D) @) 4 (),

(A.1)
where we have used the conformal invariance of the loop amplitude to fix »*) = 7. The n
variables are the ones that arise naturally in the operator construction of the loop amplitude
as a trace over a string tree. In such a construction the propagator describing each leg of

the loop is written as

/ > _
o) dzdz ; p.

, (A2)

Com g« [RP

where z = 2™,
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The degeneration limit of relevance to the s-channel thresholds is the one in which

né) (3)

— oo and 75’ — oo, which puts the two s-channel propagators in the loop on shell.

This corresponds to the region of integration 7g:
Vél) < V£2) < l/ég) < V£4) =Ty (A.3)
with 79 — oco. In this limit we may substitute the asymptotic values,

Ay~ A, = PR L P W) AL~ A, = PRI L PR (RD) (A4)

and
2
(12) (34)
A & <V2 ) L sin(rv(12)) ? N 7T <V2 ) L sin(rv(3Y) ?
s ™ - —--m|—
279 4 T 279 4 T (A.5)
= As + 557
where
Ay =P (1) + P (BY), (A.6)
and 1 (12) (12) (34) (34)
65 — ( 2i7r(mv112 +i|m\1/212 ) 2i7r(m1/134 +i|m|u234 )) ) A7
2 e (A7

The sum over m in (A.5) and (A.7) gives the effect of the massive string states that
propagate between the vertices for the particles 1 and 2 or the vertices for the particles 3
and 4, i.e. in the legs of the loop that are not degenerating. These terms are the ones that
give rise to the stringy corrections to the low-energy field theory thresholds.

The contribution to the one-loop amplitude in the 7, region can be rewritten as

/ / dQV( i exp (a s(Ag — Ay) + /t(A, — Au)> exp ('sds)  (A.8)
Rer Tt j— T2

The o' expansion is obtained by expanding the last exponential in powers of 5. The leading
term reproduces the field theory s-channel threshold given by the first term in (3.23). The
next contribution, linear in d,, vanishes due to the integration over V§2) or V§4). The next
term has a factor of (a’s §)? and gives a non-zero contribution to the logarithmic behaviour
at order (a/s)*. After a little algebra (and adding the contributions of the 73, and 7,
domains) this gives the threshold contribution

dr:
Imm(mg(S?t,—S—t) = Z 32m2/ 2/ Hdw R 'T2Q(s,t)

sz 1 (A9>

<€747T77’LT2((4}270J1) + 6747rm7'2(17w3)) + tu term + us term,
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where the integration variables w; are defined in (3.18). This integral is complicated but

for the special case t = 0 it reduces to the simple expression

Lnonan 2(5,0, —s) = %g(s)g(zg (%"”)4 (m (%) +1n (-%)) . (A.10)
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