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Abstract

We calculate two-loop matching conditions for all the operators that are relevant to

B → Xsl
+l− decay in the Standard Model. In effect, we are able to remove the ±16% uncer-

tainty in the decay spectrum, which was mainly due to the renormalization-scale dependence

of the top-quark mass. We find 1.46× 10−6 for the branching ratio integrated in the domain

m2
l+l−/m

2
b ∈ [0.05, 0.25], for l = e or µ. There remains around 13% perturbative uncertainty

in this quantity, while the non-perturbative effects are expected to be smaller.
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1 Introduction

The forthcoming measurement of the inclusive decay mode B → Xsl
+l− is expected to

provide an important test of possible new physics effects at the electroweak scale. However,

the existing theoretical predictions for the branching ratio in the Standard Model (SM) still

suffer from many uncertainties, some of which are larger than the expected experimental

errors.

The most important theoretical uncertainties are due to intermediate cc̄ states. Because

of the non-perturbative nature of these states, the differential decay spectrum can be only

roughly estimated when the invariant mass of the lepton pair m2
l+l− is not significantly below

mJ/ψ. It remains questionable whether integrating the decay rate over this domain can

reduce the theoretical uncertainty below ±20% [1].

On the contrary, for low ŝ = m2
l+l−/m

2
b,pole (accessible to l = e or µ), a relatively precise

determination of the decay spectrum is possible using perturbative methods only, up to

calculable HQET corrections. The dominant HQET corrections were evaluated in refs. [2]–

[6] and found to be small (smaller than 6% for 0.05 < ŝ < 0.25). Effects of similar size are

found in this region when purely perturbative expressions for cc̄ contributions are compared

with the ones obtained via dispersion relations in the factorization approximation (see fig. 1

in section 4). Thus, the B → Xsl
+l− decay rate integrated over this region of ŝ should be

perturbatively predictable as precisely as the B → Xsγ decay rate, i.e. up to about 10%

uncertainty.

Unfortunately, the presently available perturbative calculations [7, 8] have not yet reached

this precision, even though they are performed at the next-to-leading (NLO) order in QCD.

The formally leading-order term is (quite accidentally) suppressed, which makes it as small

as some of the NLO contributions. Consequently, some of the formally next-to-next-to-

leading (NNLO) terms can have an effect larger than 10% on the differential decay rate. It

can be easily verified by varying the renormalization scale at which the top quark mass is

renormalized in the formulae of refs. [7, 8].

The formalism of effective theories, which is conventionally used in the analyses of weak B

decays, allows the identification of three types of NNLO contributions to B → Xsl
+l−. The

first type originates from two-loop matching between the Standard Model and the effective
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theory amplitudes, i.e. to two-loop contributions to the Wilson coefficients in the effective

theory at the scale µ0 ∼ MW . The second type is due to the three-loop renormalization group

evolution of the Wilson coefficients down to the scale µb ∼ mb. The third type originates

from two-loop matrix elements of the effective theory operators between the physical states

of interest. One should include one-loop Bremsstrahlung corrections as well. Performing a

complete NNLO calculation is thus a very involved task.

In the present paper, we shall calculate only the first type of corrections, i.e. those

originating from the two-loop matching conditions. Our results will allow us to remove the

significant uncertainty of the former NLO prediction stemming from the dependence on the

scale µ0. The remaining uncalculated NNLO effects will be estimated in section 4.

Our paper is organized as follows. In section 2, we introduce the effective theory and

present a complete set of the matching conditions up to two loops. The resulting formulae

for the so-called effective coefficients are given in section 3. Section 4 is devoted to discussing

phenomenological implications of our results for B → Xsl
+l−. Technical details of the

matching computation are relegated to section 5. There, one can find an extensive description

of the two-loop matching procedure for the photonic penguin diagrams, which has been the

most involved original part of our calculation. Section 5 can serve as a practical guide for

performing any two-loop matching computation, not necessarily in the domain of flavour

physics.

2 Summary of the two-loop matching conditions

The effective theory lagrangian relevant to B → Xsl
+l− decay has the following form

Leff = LQCD×QED(u, d, s, c, b, e, µ, τ)

+
4GF√

2
[V ∗usVub(C

c
1P

u
1 + Cc

2P
u
2 ) + V ∗csVcb(C

c
1P

c
1 + Cc

2P
c
2 )]

+
4GF√

2

10
∑

i=3

[(V ∗usVub + V ∗csVcb)C
c
i + V ∗tsVtbC

t
i ]Pi. (1)

For further convenience, we refrain from using unitarity of the CKM matrix V̂ in all the

analytical formulae here. The first term in eq. (1) consists of kinetic terms of the light SM

particles as well as their QCD and QED interactions. The remaining two terms consist of
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∆B = −∆S = 1 local operators of dimension ≤ 6, built out of those light fields:1

P u
1 = (s̄LγµT

auL)(ūLγ
µT abL),

P u
2 = (s̄LγµuL)(ūLγ

µbL),

P c
1 = (s̄LγµT

acL)(c̄Lγ
µT abL),

P c
2 = (s̄LγµcL)(c̄Lγ

µbL),

P3 = (s̄LγµbL)
∑

q(q̄γ
µq),

P4 = (s̄LγµT
abL)

∑

q(q̄γ
µT aq),

P5 = (s̄Lγµ1
γµ2

γµ3
bL)

∑

q(q̄γ
µ1γµ2γµ3q),

P6 = (s̄Lγµ1
γµ2

γµ3
T abL)

∑

q(q̄γ
µ1γµ2γµ3T aq),

P7 = e
g2
mb(s̄Lσ

µνbR)Fµν ,

P8 = 1
g
mb(s̄Lσ

µνT abR)Ga
µν ,

P9 = e2

g2
(s̄LγµbL)

∑

l(l̄γ
µl),

P10 = e2

g2
(s̄LγµbL)

∑

l(l̄γ
µγ5l),

(2)

where sums over q and l denote sums over all the light quarks and all the leptons, respectively.

The Wilson coefficients can be perturbatively expanded as follows

CQ
i = C

Q(0)
i +

g2

(4π)2
C
Q(1)
i +

g4

(4π)4
C
Q(2)
i + O(g6), Q = c or t. (3)

Their values are found in the matching procedure, which amounts to requiring equality of

b → s+(light particles) Green functions calculated in the effective theory and in the full

Standard Model, up to O[(external momenta and light masses)2/M2
W ]. Contributions of

order g2n to each Wilson coefficient originate from n-loop SM diagrams, which follows from

the particular convention for powers of gauge couplings in the normalization of our operators.

Dimensional regularization with fully anticommuting γ5 has been used in our matching

computation. Using this simple scheme could not cause any difficulties, because the choice

of the four-quark operator basis in eq. (2) allowed us to avoid the appearance of Dirac traces

containing γ5 in the effective theory diagrams [9]. No such traces were present in the SM

diagrams, either.

The MS scheme with scale µ0 ∼ MW was used for all the QCD counterterms, both in

1 The s-quark mass is neglected here, i.e. it is assumed to be negligibly small when compared to mb. Of
course, no such assumption is made concerning mc or mτ .
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the SM and in the effective theory.2 In addition, several non-physical operators had to be

included on the effective theory side, because the calculation was performed off-shell (see

section 5 and the appendix for details).

The ’t Hooft–Feynman version of the background field gauge was used for all the gauge

bosons. It allowed us to perform the matching without making use of the CKM-matrix

unitarity.

The only relevant off-shell electroweak counterterm (on the SM side) proportional to s̄D/ b

was taken in the MOM scheme, at q2 = 0 for the s̄∂/b term, and at vanishing external

momenta for the terms containing gauge bosons.

The obtained matching conditions are the following. At the tree level, all the C
Q(0)
i vanish,

except for

C
c(0)
2 = −1. (4)

The one- and two-loop matching conditions are summarized below:

C
c(1)
1 = −15 − 6L,

C
c(1)
2 = 0,

C
c(1)
3 = 0, C

t(1)
3 = 0,

C
c(1)
4 = 7

9
− 2

3
L, C

t(1)
4 = Et

0(x),

C
c(1)
5 = 0, C

t(1)
5 = 0,

C
c(1)
6 = 0, C

t(1)
6 = 0,

C
c(1)
7 = 23

36
, C

t(1)
7 = −1

2
At0(x),

C
c(1)
8 = 1

3
, C

t(1)
8 = −1

2
F t

0(x),

C
c(1)
9 = − 1

4s2w
− 38

27
+ 4

9
L, C

t(1)
9 = 1−4s2w

s2w
Ct

0(x) − 1
s2w
Bt

0(x) −Dt
0(x),

C
c(1)
10 = 1

4s2w
, C

t(1)
10 = 1

s2w
[Bt

0(x) − Ct
0(x)] ,

C
c(2)
1 = T (x) − 7987

72
− 17

3
π2 − 475

6
L− 17L2,

C
c(2)
2 = −127

18
− 4

3
π2 − 46

3
L− 4L2,

C
c(2)
3 = 680

243
+ 20

81
π2 + 68

81
L + 20

27
L2, C

t(2)
3 = Gt

1(x),

C
c(2)
4 = −950

243
− 10

81
π2 − 124

27
L− 10

27
L2, C

t(2)
4 = Et

1(x),

2 The only exceptions were the top-quark-loop contributions to the renormalization of the light-quark and
gluon wave functions on the SM side. The corresponding terms in the propagators were subtracted in the
MOM scheme at q2 = 0. In consequence, no top-quark loop contribution remained in the (W-boson)–(light
quark) effective vertex after renormalization.

4



C
c(2)
5 = − 68

243
− 2

81
π2 − 14

81
L− 2

27
L2, C

t(2)
5 = − 1

10
Gt

1(x) + 2
15
Et

0(x),

C
c(2)
6 = − 85

162
− 5

108
π2 − 35

108
L− 5

36
L2, C

t(2)
6 = − 3

16
Gt

1(x) + 1
4
Et

0(x),

C
c(2)
7 = −713

243
− 4

81
L, C

t(2)
7 = −1

2
At1(x),

C
c(2)
8 = − 91

324
+ 4

27
L, C

t(2)
8 = −1

2
F t

1(x),

C
c(2)
9 = − 1

s2w
− 524

729
+ 128

243
π2 + 16

3
L+ 128

81
L2, C

t(2)
9 = 1−4s2w

s2w
Ct

1(x) − 1
s2w
Bt

1(x,−1
2
) −Dt

1(x),

C
c(2)
10 = 1

s2w
, C

t(2)
10 = 1

s2w

[

Bt
1(x,−1

2
) − Ct

1(x)
]

,

where

x =





mMS
t (µ0)

MW





2

, L = ln
µ2

0

M2
W

, sw = sin θw (5)

and

At0(x) = −3x3+2x2

2(1−x)4 ln x+ 22x3−153x2+159x−46
36(1−x)3 , (6)

Bt
0(x) = x

4(1−x)2 ln x+ 1
4(1−x) , (7)

Ct
0(x) = 3x2+2x

8(1−x)2 ln x+ −x2+6x
8(1−x) , (8)

Dt
0(x) = −3x4+30x3−54x2+32x−8

18(1−x)4 ln x + −47x3+237x2−312x+104
108(1−x)3 , (9)

Et
0(x) = −9x2+16x−4

6(1−x)4 ln x+ −7x3−21x2+42x+4
36(1−x)3 , (10)

F t
0(x) = 3x2

2(1−x)4 ln x+ 5x3−9x2+30x−8
12(1−x)3 , (11)

At1(x) = 32x4+244x3−160x2+16x
9(1−x)4 Li2

(

1 − 1
x

)

+ −774x4−2826x3+1994x2−130x+8
81(1−x)5 ln x

+−94x4−18665x3+20682x2−9113x+2006
243(1−x)4

+
[

−12x4−92x3+56x2

3(1−x)5 ln x+ −68x4−202x3−804x2+794x−152
27(1−x)4

]

ln
µ2

0

m2
t

, (12)

Bt
1(x,−1

2
) = −2x

(1−x)2Li2
(

1 − 1
x

)

+ −x2+17x
3(1−x)3 ln x+ 13x+3

3(1−x)2 +
[

2x2+2x
(1−x)3 ln x + 4x

(1−x)2
]

ln
µ2

0

m2
t

, (13)

Ct
1(x) = −x3−4x

(1−x)2 Li2
(

1 − 1
x

)

+ 3x3+14x2+23x
3(1−x)3 ln x+ 4x3+7x2+29x

3(1−x)2

+
[

8x2+2x
(1−x)3 ln x + x3+x2+8x

(1−x)2
]

ln
µ2

0

m2
t

, (14)

Dt
1(x) = 380x4−1352x3+1656x2−784x+256

81(1−x)4 Li2
(

1 − 1
x

)

+ 304x4+1716x3−4644x2+2768x−720
81(1−x)5 lnx

+−6175x4+41608x3−66723x2+33106x−7000
729(1−x)4

+
[

648x4−720x3−232x2−160x+32
81(1−x)5 ln x+ −352x4+4912x3−8280x2+3304x−880

243(1−x)4
]

ln
µ2

0

m2
t

, (15)

Et
1(x) = 515x4−614x3−81x2−190x+40

54(1−x)4 Li2
(

1 − 1
x

)

+ −1030x4+435x3+1373x2+1950x−424
108(1−x)5 ln x

+−29467x4+45604x3−30237x2+66532x−10960
1944(1−x)4
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+
[

−1125x3+1685x2+380x−76
54(1−x)5 ln x+ 133x4−2758x3−2061x2+11522x−1652

324(1−x)4
]

ln
µ2

0

m2
t

, (16)

F t
1(x) = 4x4−40x3−41x2−x

3(1−x)4 Li2
(

1 − 1
x

)

+ −144x4+3177x3+3661x2+250x−32
108(1−x)5 ln x

+−247x4+11890x3+31779x2−2966x+1016
648(1−x)4

+
[

17x3+31x2

(1−x)5 ln x+ −35x4+170x3+447x2+338x−56
18(1−x)4

]

ln
µ2

0

m2
t

, (17)

Gt
1(x) = 10x4−100x3+30x2+160x−40

27(1−x)4 Li2
(

1 − 1
x

)

+ 30x3−42x2−332x+68
81(1−x)4 ln x

+−6x3−293x2+161x+42
81(1−x)3 +

[

90x2−160x+40
27(1−x)4 ln x+ 35x3+105x2−210x−20

81(1−x)3
]

ln
µ2

0

m2
t

, (18)

T (x) = −(16x+ 8)
√

4x− 1 Cl2
(

2 arcsin 1
2
√
x

)

+
(

16x+ 20
3

)

ln x+ 32x + 112
9
. (19)

The integral representations for the functions Li2 and Cl2 are as follows:

Li2(z) = −
∫ z

0
dt

ln(1 − t)

t
, (20)

Cl2(x) = Im
[

Li2(eix)
]

= −
∫ x

0
dθ ln |2 sin(θ/2)|. (21)

Our matching results for all the C
Q(2)
k are new, except for k = 7, 8 and 10. In the cases

k = 7 and k = 8, we agree with the previously published results [10]. The k = 10 case has

already been discussed by us in ref. [11], and the original calculation [12] has been corrected

in ref. [13].

3 The effective coefficients

Once the matching conditions are found, the Wilson coefficients should be evolved from

µ0 ∼MW to µb ∼ mb, according to the Renormalization Group Equation (RGE)

µ
d

dµ
~CQ =

(

γ̂Q
)T ~CQ, (22)

which has the following general solution

~CQ(µb) = ÛQ(µb, µ0) ~C
Q(µ0), (23)

where

ÛQ(µb, µ0) = Tg exp
∫ g(µb)

g(µ0)
dg′

(γ̂Q(g′))T

β(g′)

= ÛQ(0)(µb, µ0) +
αs(µ0)

4π
ÛQ(1)(µb, µ0) +

αs(µ0)
2

(4π)2
ÛQ(2)(µb, µ0) + ... . (24)
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In the intermediate step of the above equation, Tg denotes ordering of the coupling constants

such that they increase from right to left.

The anomalous dimension matrices γ̂Q have the following perturbative expansion

γ̂Q =
αs
4π
γ̂Q(0) +

α2
s

(4π)2
γ̂Q(1) +

α3
s

(4π)3
γ̂Q(2) + ... . (25)

The one- and two-loop anomalous dimension matrices have already been evaluated in refs. [7,

8]. However, transforming them to the “new” operator basis (2) is quite non-trivial (see

ref. [9] for the 6 × 6 submatrix). In the “new” basis (and in the MS scheme with the

evanescent operators specified in the appendix), the matrices γ̂c(0) and γ̂c(1) read3

γ̂c(0) =



























































−4 8
3

0 −2
9

0 0 0 0 −32
27

0

12 0 0 4
3

0 0 0 0 −8
9

0

0 0 0 −52
3

0 2 0 0 −16
9

0

0 0 −40
9

−100
9

4
9

5
6

0 0 32
27

0

0 0 0 −256
3

0 20 0 0 −112
9

0

0 0 −256
9

56
9

40
9

−2
3

0 0 512
27

0

0 0 0 0 0 0 32
3
− 2β0 0 0 0

0 0 0 0 0 0 −32
9

28
3
− 2β0 0 0

0 0 0 0 0 0 0 0 −2β0 0

0 0 0 0 0 0 0 0 0 −2β0



























































, (26)

γ̂c(1) =
























































−355
9

−502
27

−1412
243

−1369
243

134
243

− 35
162

−232
243

167
162

−2272
729

0

−35
3

−28
3

−416
81

1280
81

56
81

35
27

464
81

76
27

1952
243

0

0 0 −4468
81

−31469
81

400
81

3373
108

64
81

368
27

−6752
243

0

0 0 −8158
243

−59399
243

269
486

12899
648

−200
243

−1409
162

−2192
729

0

0 0 −251680
81

−128648
81

23836
81

6106
27

−6464
81

13052
27

−84032
243

0

0 0 58640
243

−26348
243

−14324
243

−2551
162

−11408
243

−2740
81

−37856
729

0

0 0 0 0 0 0 4688
27

− 2β1 0 0 0

0 0 0 0 0 0 −2192
81

4063
27

− 2β1 0 0

0 0 0 0 0 0 0 0 −2β1 0

0 0 0 0 0 0 0 0 0 −2β1

























































, (27)

3 Note that the matrices given here correspond to the normalization of operators P7, ..., P10 as in eq. (2)
and to their ordinary Wilson coefficients, not to the so-called “effective” ones that will be introduced below.
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where β0 = 23
3

and β1 = 116
3

. The analogous matrices γ̂t(0) and γ̂t(1) can be obtained from

the ones above by removing the first two rows and the first two columns.

The complete NNLO prediction forBR[B → Xsl
+l−] depends on two entries of Û c(2)(µb, µ0),

i.e. on U
c(2)
72 (µb, µ0) and U

c(2)
92 (µb, µ0) that are generated by the three-loop matrix γ̂c(2). Unfor-

tunately, the only entries of γ̂c(2) that have been calculated so far are the ones corresponding

to the mixing {P1, ..., P6} → {P7, P8} [14]. Therefore, U
c(2)
72 (µb, µ0) is known but U

c(2)
92 (µb, µ0)

is not. Below, we shall include the unknown U
c(2)
92 (µb, µ0) in our analytical formulae. Its po-

tential numerical relevance will be tested in the next section.

After performing the RGE evolution, one evaluates the perturbative expression for

dΓ[b → Xsl
+l−]/dŝ. It amounts to calculating perturbative matrix elements of the oper-

ators Pi among the external partonic on-shell states, multiplying them by the appropriate

Wilson coefficients and performing the phase-space integrals. At NLO, one obtains [7, 8]:

dΓ(b→ Xsl
+l−)

dŝ
=

G2
F
m5
b,pole|V ∗tsVtb|2
48π3

(

αem
4π

)2

(1 − ŝ)2 ×

×
{

(1 + 2ŝ)
(

|C̃eff
9 (ŝ)|2 + |C̃eff

10 (ŝ)|2
)

+ 4
(

1 +
2

ŝ

)

(C̃eff
7 )2 + 12C̃eff

7 Re(C̃eff
9 (ŝ))

}

. (28)

The quantities C̃eff
k can be split into top- and light-quark contributions:

C̃eff
k = C̃t eff

k +
V ∗csVcb
V ∗tsVtb

C̃c eff
k +

V ∗usVub
V ∗tsVtb

(

C̃c eff
k + δk9∆C̃

eff
9

)

(29)

that are related to the evolved coefficients CQ
k (µb) as follows:

C̃Q eff
7 =

4π

αs(µb)
CQ

7 (µb) −
1

3
CQ

3 (µb) −
4

9
CQ

4 (µb) −
20

3
CQ

5 (µb) −
80

9
CQ

6 (µb), (30)

C̃Q eff
9 (ŝ) = 4CQ

9 (µb)

(

π

αs(µb)
+ ω(ŝ)

)

+
6
∑

i=1

CQ
i (µb)γ

Q(0)
i9 ln

mb

µb

+ h

(

m2
c

m2
b

, ŝ

)

[(

4

3
Cc

1(µb) + Cc
2(µb)

)

δQc + 6CQ
3 (µb) + 60CQ

5 (µb)
]

+ h(1, ŝ)
(

−7

2
CQ

3 (µb) −
2

3
CQ

4 (µb) − 38CQ
5 (µb) −

32

3
CQ

6 (µb)
)

+ h(0, ŝ)
(

−1

2
CQ

3 (µb) −
2

3
CQ

4 (µb) − 8CQ
5 (µb) −

32

3
CQ

6 (µb)
)

+
4

3
CQ

3 (µb) +
64

9
CQ

5 (µb) +
64

27
CQ

6 (µb), (31)

C̃Q eff
10 (ŝ) = 4CQ

10(µb)

(

π

αs(µb)
+ ω(ŝ)

)

, (32)

∆C̃eff
9 =

[

h(0, ŝ) − h

(

m2
c

m2
b

, ŝ

)]

(

4

3
Cc

1(µb) + Cc
2(µb)

)

, (33)
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where

h(z, ŝ) = −4

9
ln z +

8

27
+

4

9
x− 2

9
(2 + x)

√

|1 − x|
{

ln
∣

∣

∣

√
1−x+1√
1−x−1

∣

∣

∣− iπ, for x ≡ 4z/ŝ < 1,

2 arctan(1/
√
x− 1), for x ≡ 4z/ŝ > 1,

ω(ŝ) = −4

3
Li2(ŝ) − 2

3
ln(1 − ŝ) ln ŝ− 2

9
π2 − 5 + 4ŝ

3(1 + 2ŝ)
ln(1 − ŝ)

−2ŝ(1 + ŝ)(1 − 2ŝ)

3(1 − ŝ)2(1 + 2ŝ)
ln ŝ+

5 + 9ŝ− 6ŝ2

6(1 − ŝ)(1 + 2ŝ)
. (34)

Calculating the differential decay rate with the help of eq. (28), one must retain only terms

linear in ω(ŝ) and also set ω(ŝ) to zero in the interference term proportional to Re(Ceff
9 (ŝ)).

The coefficients multiplying CQ
1 ,..., CQ

6 in eqs. (30) and (31) are different from the corre-

sponding ones in refs. [7, 8], because we use a different operator basis here.

Substituting the evolved Wilson coefficients to eqs. (30)–(33), we obtain the following

expressions for the “effective coefficients”:

C̃c eff
7 = −

8
∑

i=1

ηai



hci +
αs(µ0)

4π





h′
c(−)
i

η
+ h′

c
i + h′

cL
i L







 , (35)

C̃t eff
7 = −1

2
η

16

23At0(x) +
4

3

(

η
16

23 − η
14

23

)

F t
0(x) +

αs(µ0)

4π

[

Et
0(x)

8
∑

i=1

e′
t
iη
ai

−1

2
η

16

23At1(x) +
4

3

(

η
16

23 − η
14

23

)

F t
1(x) +

18604

4761

(

η−
7

23 − η
16

23

)

At0(x)

+
(

3582208

357075
η−

9

23 − 148832

14283
η−

7

23 − 128434

14283
η

14

23 +
3349442

357075
η

16

23

)

F t
0(x)

]

, (36)

C̃c eff
9 (ŝ) = −

(

π

αs(µ0)
+
ω(ŝ)

η

)

9
∑

i=3

p
c(+)
i ηai+1 − 1

4s2
w

−
9
∑

i=3

ηai

[

rci + r
c(+)
i η + r

cL(+)
i ηL+ sci ln

mb

µb
+ tci h

(

m2
c

m2
b

, ŝ

)

+ ucih(1, ŝ) + wcih(0, ŝ)

]

−αs(µ0)

4π







U
c(2)
92 (µb, µ0) +

η + ω(ŝ)

ηs2
w

+
9
∑

i=3

ηai



r′
cT (+)
i ηT (x) +

r′
c(−)
i

η
+ r′

c
i + r′

c(+)
i η

+
(

r′
cL
i + r′

cL(+)
i η

)

L+ r′
cL2(+)
i ηL2 + r′

cπ2(+)
i ηπ2 +





r′
cω(−)
i

η
+ r

c(+)
i + r

cL(+)
i L



 4ω(ŝ)

+





s′
c(−)
i

η
+ s′

c
i + s′

cL
i L



 ln
mb

µb
+





t′
c(−)
i

η
+ t′

c
i + t′

cL
i L



 h

(

m2
c

m2
b

, ŝ

)

+





u′
c(−)
i

η
+ u′

c
i + u′

cL
i L



h(1, ŝ) +





w′
c(−)
i

η
+ w′

c
i + w′

cL
i L



h(0, ŝ)











, (37)
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C̃t eff
9 (ŝ) =

[

1 − 4s2
w

s2
w

Ct
0(x) − 1

s2
w

Bt
0(x) −Dt

0(x)

](

1 +
αs(µ0)

π

ω(ŝ)

η

)

+

[

Et
0(x) +

αs(µ0)

4π

(

Et
1(x) +

4ω(ŝ)

η
Et

0(x)

)]

9
∑

i=5

q
t(+)
i ηai+1

+
αs(µ0)

4π

{

1 − 4s2
w

s2
w

Ct
1(x) − 1

s2
w

Bt
1(x,−1

2
) −Dt

1(x) +Gt
1(x)

9
∑

i=5

y′
t(+)
i ηai+1

+Et
0(x)

9
∑

i=5

ηai

[

r′
t
i + r′

t(+)
i η + s′

t
i ln

mb

µb
+ t′

t
i h

(

m2
c

m2
b

, ŝ

)

+ u′
t
ih(1, ŝ) + w′

t
ih(0, ŝ)

]}

, (38)

C̃c eff
10 (ŝ) =

1

4s2
w

[

1 +
αs(µ0)

π

(

1 +
ω(ŝ)

η

)]

, (39)

C̃t eff
10 (ŝ) =

1

s2
w

{

Bt
0(x) − Ct

0(x) +
αs(µ0)

4π

[

Bt
1(x) − Ct

1(x) +
4ω(ŝ)

η

(

Bt
0(x) − Ct

0(x)
)

]}

, (40)

∆C̃eff
9 =

[

h(0, ŝ) − h

(

m2
c

m2
b

, ŝ

)]{

−2η
6

23 + η−
12

23 +
αs(µ0)

4π

[

−15745

1587
η−

17

23

− 151

1587
η−

35

23 − 6473

1587
η

6

23 − 9371

1587
η−

12

23 − 4L
(

η
6

23 + η−
12

23

)

]}

, (41)

where η = αs(µ0)/αs(µb) and ai = (14
23
, 16

23
, 6

23
,−12

23
, 0.4086,−0.4230,−0.8994, 0.1456,−1)i.

The “magic numbers” entering the above expressions are collected in tables 1, 2 and 3.

It is straightforward to verify that our results for the O(1/αs) and O(1) parts of C̃eff
9

and C̃eff
10 are identical to the ones found in refs. [7, 8]. Only the O(αs) parts are new here.

As far as C̃eff
7 is concerned, we just reproduce the result of ref. [14], where the O(αs) part

was already present.

In order to obtain the complete NLO prediction for theB → Xsl
+l− decay rate, one should

i 1 2 3 4 5 6 7 8

hci
42678
30253

− 86697
103460

−3
7

− 1
14

−0.6494 −0.0380 −0.0186 −0.0057

h′
c(−)
i −4246707584

400095925
89606166
13682585

45043984
9898119

34505657
45891279

2.0040 0.7476 −0.5385 0.0914

h′ci
3344583818789933
360615755431797

−90790555261878016
13088650734603675

−6473
7406

9371
22218

−2.7231 0.4083 0.1465 0.0205

h′cLi
199164
30253

−115596
25865

−6
7

2
7

−2.0343 0.1232 0.1279 −0.0064

e′ti
4298158
816831

−8516
2217

0 0 −1.9043 −0.1008 0.1216 0.0183

Table 1. “Magic numbers” entering the expressions for C̃c eff
7 and C̃t eff

7 . Three-loop

anomalous dimensions from ref. [14] have been used in their evaluation.

10



i 3 4 5 6 7 8 9

p
c(+)
i − 80

203
8
33

0.0433 0.1384 0.1648 −0.0073 − 4704688
25088393

rci
3085
3703

− 129
1058

−0.1642 0.0793 −0.0451 −0.1638 0

r
c(+)
i − 64730

322161
−18742

52371
0.0454 −0.3719 −0.3254 0.0066 1775737

809303

r
cL(+)
i − 40

203
− 8

33
0.0339 −0.1122 −0.2841 −0.0020 27051956

75265179

r′
cT (+)
i

20
609

4
99

−0.0021 0.0289 0.0174 0.0010 − 8908520
75265179

r′
c(−)
i −316900

299943
51388
128547

1.9957 −0.8153 0.1488 −0.2353 0

r′ci
183859
42849

130739
128547

−0.0939 −0.9763 0.0393 −2.2799 0

r′
c(+)
i −8129495

5798898
−4447705

942678
0.6261 −3.6869 0.2246 0.0121 4896690443

677386611

r′cLi
6170
3703

258
529

−0.5145 −0.2571 0.3111 −0.1829 0

r′
cL(+)
i −97850

33327
−398258

157113
0.6618 −2.2108 −1.6839 0.0472 4704688

2595351

r′
cL2(+)
i −20

21
−4

9
0.1833 −0.2481 −0.1096 −0.0090 0

r′
cπ2(+)
i −20

63
− 4

27
0.0611 −0.0827 −0.0365 −0.0030 0

r′
cω(−)
i

87527
99981

− 6217
85698

−0.1685 0.0323 −0.0475 −0.2018 0

sci −40
21

4
9

0.2340 0.3061 0.0636 −0.0322 0

s′
c(−)
i −1373012

128547
−735748

385641
2.1605 0.3356 0.8434 −0.2456 0

s′ci −129460
33327

−37484
14283

0.9813 −3.2900 −0.5020 0.1151 0

s′cLi −80
21

−16
9

0.7330 −0.9925 −0.4383 −0.0359 0

tci
12
7

−2
3

0.1658 −0.2407 −0.0717 0.0990 0

t′
c(−)
i

33606
3703

−6046
4761

−0.1681 1.2986 −0.3397 0.4766 0

t′ci
12946
3703

18742
4761

0.6951 2.5871 0.5664 −0.3540 0

t′cLi
24
7

8
3

0.5193 0.7805 0.4945 0.1106 0

uci
2
7

0 −0.2559 0.0083 0.0180 −0.0562 0

u′
c(−)
i

168155
99981

166
81

−1.0892 −1.1627 −0.2197 −0.2193 0

u′ci
6473
11109

0 −1.0733 −0.0897 −0.1424 0.2008 0

u′cLi
4
7

0 −0.8018 −0.0271 −0.1243 −0.0627 0

wci
1
7

1
6

−0.1731 −0.1120 −0.0178 −0.0067 0

w′
c(−)
i

251737
199962

117137
85698

−1.1732 −0.5134 −0.3895 0.0190 0

w′ci
6473
22218

−9371
9522

−0.7257 1.2038 0.1408 0.0238 0

w′cLi
2
7

−2
3

−0.5421 0.3632 0.1229 −0.0074 0

Table 2. “Magic numbers” entering the expression for C̃c eff
9 .
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i 5 6 7 8 9

q
t(+)
i 0.0318 0.0918 −0.2700 0.0059 33160

235941

r′ti −0.4817 0.2104 0.2956 0.5246 0

r′
t(+)
i 0.2164 −0.4330 −0.9126 0.0660 6672596

12976755

s′ti 0.6862 0.8125 −0.4165 0.1031 0

t′ti 0.4861 −0.6389 0.4699 −0.3171 0

u′ti −0.7505 0.0221 −0.1182 0.1799 0

w′ti −0.5075 −0.2973 0.1168 0.0213 0

y′
t(+)
i −0.1242 −0.0956 −0.1628 −0.0176 157366

393235

Table 3. “Magic numbers” entering the expression for C̃t eff
9 .

use eqs. (28)–(33) and neglect the O(αs) contributions to the effective coefficients C̃Q eff
k (ŝ)

(i.e. include only the O(1/αs) and O(1) parts of them). On the other hand, in the complete

NNLO calculation, it is not sufficient to take into account the O(αs) parts of the effective

coefficients. One should also modify eq. (28) by including effects originating e.g. from two-

loop matrix elements of the four-quark operators and the corresponding Bremsstrahlung

corrections.

In the present paper, we are able to include the NNLO effects only partly. We shall simply

use eq. (28), but at the same time we will include the O(αs) contributions to the effective

coefficients. In this way, we will include all the mt-dependent NNLO contributions to the

branching ratio,4 as well as the terms enhanced by 1/s2
w ∼ 4.3. It is important to calculate

the mt-dependent terms at the NNLO level, because both Ct
9(µ0) and Ct

10(µ0) grow with mt

in the formal limit mt → ∞. Therefore, m2
t/M

2
W ∼ 4.8 plays the role of an enhancement

factor, too.

Above, we have presented explicitly all the O(αs) parts of the effective coefficients. How-

ever, the unknown quantity U
c(2)
92 (µb, µ0) occurred in C̃c eff

9 (ŝ). In our numerical calculations

described in the next section, it will be assumed that U
c(2)
92 (µb, µ0) vanishes. We shall relax

this assumption below eq. (49), and check that the expected numerical effect of U
c(2)
92 (µb, µ0)

on the decay rate is very small.

4 The only exceptions are the mt-dependent contributions from the one-loop matrix elements of P7 and
P8. However, they are proportional to the relatively small Wilson coefficients C7(µb) and C8(µb) that do not
grow with mt in the formal limit mt → ∞.
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4 Phenomenological implications

In the present section, we shall study the numerical importance of the calculated NNLO

effects as well as the uncertainties due to the yet unknown contributions.

As a first step, let us calculate the effective coefficients for several different values of

µ0 and µb. We will vary µb by a factor of 2 around mb ∼ 5 GeV, i.e. we will take

µb = 2.5, 5 and 10 GeV. In the expressions for C̃c eff
k and ∆C̃eff

9 , we will vary µ0 by a

factor of 2 around MW ∼ 80 GeV, i.e. we will take µ0 = 40, 80 and 160 GeV. In the expres-

sions for C̃t eff
k , we will vary µ0 by a factor of 2 around

√
MWmt ∼ 120 GeV, i.e. we will

take µ0 = 60, 120 and 240 GeV.

The remaining input parameters will be equal to [15]

αs(MZ) = 0.119, mpole
t = 173.8 GeV, MW = 80.41 GeV, s2

w = 0.23124.

Since we shall keep ŝ arbitrary, our expressions for C̃Q eff
9 , C̃Q eff

10 and ∆C̃eff
9 will read

C̃Q eff
9 = AQ9 +RQ

9 ω(ŝ) + TQ9 h

(

m2
c

m2
b

, ŝ

)

+ UQ
9 h(1, ŝ) +WQ

9 h(0, ŝ), (42)

C̃Q eff
10 = AQ10 +RQ

10 ω(ŝ), (43)

∆C̃eff
9 = Z9

[

h(0, ŝ) − h

(

m2
c

m2
b

, ŝ

)]

. (44)

The coefficients AQk , ..., WQ
k are independent of mc, and they only weakly depend on mb via

the logarithm ln(mb/µb). In this logarithm, we shall use mb = 4.8 GeV.

In tables 4 and 5, our results for C̃Q eff
7 , AQk , ..., WQ

k and Z9 are given, both with and

without the O(αs) contributions. They allow the following observations:

• The dominant contributions to the “effective coefficients” and to the decay rate origi-

nate from Ac9 and At10. However, the coefficients C̃Q eff
7 are not much less important,

because of the factor “12” in the last term of eq. (28).

• The inclusion of the O(αs) contributions significantly reduces the µ0-dependence. It is

especially important in the case of At10, which had varied by more than ±10% before

including the O(αs) correction. The dependence on µ0 remains significant only in the

relatively small quantities such as Rt
10. (Rt

10 is multiplied by ω(ŝ) ∈ [−1.32,−1.24] for

ŝ ∈ [0.05, 0.25]).
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µ0 [GeV] 40 80 160 80 80
µb [GeV] 5 5 5 2.5 10

αs(µ0) 0.136 0.121 0.110 0.121 0.121
αs(µb) 0.215 0.215 0.215 0.267 0.180
η 0.633 0.565 0.510 0.454 0.674

C̃c eff
7 with O(αs) 0.567 0.567 0.566 0.554 0.579

C̃c eff
7 without O(αs) 0.631 0.631 0.632 0.634 0.631

Ac9 with O(αs) −4.685 −4.683 −4.689 −4.612 −4.828
Ac9 without O(αs) −4.620 −4.635 −4.681 −4.750 −4.635
Ac9 only O(1/αs) −1.569 −1.964 −2.315 −2.181 −1.612
Rc

9 with O(αs) −0.315 −0.316 −0.320 −0.415 −0.242
Rc

9 without O(αs) −0.107 −0.134 −0.158 −0.186 −0.092
T c9 with O(αs) −0.641 −0.625 −0.603 −0.393 −0.807
T c9 without O(αs) −0.505 −0.374 −0.255 −0.115 −0.576
U c

9 with O(αs) −0.048 −0.050 −0.052 −0.070 −0.035
U c

9 without O(αs) −0.026 −0.032 −0.038 −0.045 −0.022
W c

9 with O(αs) −0.045 −0.046 −0.047 −0.062 −0.033
W c

9 without O(αs) −0.026 −0.032 −0.038 −0.044 −0.022
Ac10 with O(αs) 1.128 1.123 1.119 1.123 1.123
Ac10 without O(αs) 1.081 1.081 1.081 1.081 1.081
Rc

10 with O(αs) 0.074 0.074 0.074 0.092 0.062
Rc

10 without O(αs) 0 0 0 0 0
Z9 with O(αs) −0.648 −0.634 −0.613 −0.410 −0.811
Z9 without O(αs) −0.506 −0.376 −0.257 −0.118 −0.577

Table 4. C̃c eff
7 , Ack, ..., W c

k and Z9 for various values of µ0 and µb.

• The dependence on µb remains rather strong in most of the listed quantities. It follows

mainly from the fact that two-loop matrix elements of the four-quark operators have

not been included. It is relevant especially to the cases of Ct eff
7 , T c9 and Rc

9, which will

cause considerable µb-dependence of the final prediction for the decay rate.

• The coefficients W c
9 turn out to be very small, while ∆C̃eff

9 in eq. (29) is multiplied by

|(V ∗usVub)/(V ∗tsVtb)| ≃ 0.08. In consequence, the terms containing h(0, ŝ) contribute by

less than 3% to the differential decay rate for ŝ > 0.05, because |h(0, ŝ)| = | 8
27
− 4

9
(ln ŝ−

iπ)| is smaller than 2.2 in this region. This is fortunate, because h(0, ŝ) is expected

to receive huge non-perturbative contributions from intermediate light hadron states.5

The smallness of W c
9 and Vub allows us to use only the perturbative expression for

h(0, ŝ) below. We could equivalently just neglect it.

5 These contributions are expected to be of the same size as h(0, ŝ) itself, after taking an average over a
sufficiently wide region of ŝ.
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µ0 [GeV] 60 120 240 120 120
µb [GeV] 5 5 5 2.5 10

mMS
t (µ0) [GeV] 180 170 162 170 170

αs(µ0) 0.127 0.114 0.104 0.114 0.114
αs(µb) 0.215 0.215 0.215 0.267 0.180
η 0.591 0.531 0.483 0.427 0.635

C̃t eff
7 with O(αs) 0.261 0.265 0.266 0.225 0.300

C̃t eff
7 without O(αs) 0.325 0.310 0.297 0.274 0.344

At9 with O(αs) −0.547 −0.541 −0.544 −0.541 −0.542
At9 without O(αs) −0.425 −0.506 −0.579 −0.509 −0.504
Rt

9 with O(αs) −0.029 −0.035 −0.040 −0.043 −0.029
Rt

9 without O(αs) 0 0 0 0 0
T t9 with O(αs) 0.0002 0.0003 0.0004 0.0005 0.0001
T t9 without O(αs) 0 0 0 0 0
U t

9 with O(αs) −0.002 −0.002 −0.002 −0.002 −0.002
U t

9 without O(αs) 0 0 0 0 0
W t

9 with O(αs) −0.002 −0.002 −0.002 −0.002 −0.002
W t

9 without O(αs) 0 0 0 0 0
At10 with O(αs) −3.051 −3.115 −3.107 −3.115 −3.115
At10 without O(αs) −3.688 −3.292 −2.964 −3.292 −3.292
Rt

10 with O(αs) −0.252 −0.225 −0.203 −0.280 −0.189
Rt

10 without O(αs) 0 0 0 0 0

Table 5. C̃t eff
7 and Atk, ..., W t

k for various values of µ0 and µb.

Huge non-perturbative contributions occur in h(m2
c/m

2
b , ŝ) as well, for ŝ > (2mc/mb)

2.

It is illustrated in fig. 1. Dashed lines show the real and imaginary parts of h(z, ŝ) from

eq. (34), with z = (1.4/4.8)2 and with h(z, 0) subtracted. Solid lines present non-perturbative

estimates of the same quantities obtained using the formulae and parameters from ref. [16]

where the factorization approximation and dispersion relations were used.6

While the solid lines in fig. 1 should not be regarded as the true non-perturbative results

(because of the factorization approximation), they give us qualitative information on the

size of expected non-perturbative effects. In particular, we can observe that replacing the

solid lines by the dashed ones in the region ŝ ∈ [0.05, 0.25] should have quite a small effect

on the predicted differential decay rate, owing to the relatively small size of TQ9 in tables 4

and 5. Actually, the µb-dependence of T c9 is numerically more important. Our aim below

will be predicting the decay rate integrated over ŝ from 0.05 to 0.25. We shall use the purely

perturbative expression for h(z, ŝ), keeping in mind that the µb-dependence of our prediction
6 However 4m2

D is replaced by 4m2
π in eq. (3.4) of ref. [16]. We thank F. Krüger for confirming that this

was a misprint.
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Figure 1: Perturbative and non-perturbative versions of Re[h(m2
c/m

2
b , ŝ)−h(m2

c/m
2
b , 0)] and

Im[h(m2
c/m

2
b , ŝ) − h(m2

c/m
2
b , 0)] as functions of ŝ (see the text).

is expected to be larger than the uncertainty stemming from neglected non-perturbative

effects.7

As far as h(1, ŝ) is concerned, the argument for using the purely perturbative expression

can be the same as for h(0, ŝ) (small coefficients) or the same as for h(m2
c/m

2
b , ŝ) (convergence

of the perturbative and non-perturbative results for small ŝ).

The decay rate given in eq. (28) suffers from large uncertainties due to m5
b,pole and the

CKM angles. One can get rid of them by normalizing to the semileptonic decay rate of the

b-quark

Γ[b→ Xceν̄e] =
G2
Fm

5
b,pole

192π3
|Vcb|2g

(

m2
c,pole

m2
b,pole

)

κ

(

m2
c

m2
b

)

, (45)

where

g(z) = 1 − 8z + 8z3 − z4 − 12z2 ln z (46)

is the phase-space factor, and

κ(z) = 1 − 2αs(mb)

3π

h(z)

g(z)
(47)

is a sizeable next-to-leading order QCD correction to the semileptonic decay [17]. The

function h(z) has been given analytically in ref. [18]:

h(z) = −(1 − z2)
(

25

4
− 239

3
z +

25

4
z2
)

+ z ln z
(

20 + 90z − 4

3
z2 +

17

3
z3
)

+ z2 ln2 z (36 + z2)

+(1 − z2)
(

17

3
− 64

3
z +

17

3
z2
)

ln(1 − z) − 4(1 + 30z2 + z4) ln z ln(1 − z)

7 The non-perturbative effects estimated in fig. 1 are not included in the HQET correction we shall take
into account later.
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−(1 + 16z2 + z4)[6Li2(z) − π2] − 32z3/2(1 + z)

[

π2 − 4Li2(
√
z) + 4Li2(−

√
z) − 2 ln z ln

(

1 −√
z

1 +
√
z

)]

.

Thus, the final perturbative quantity we consider is the ratio

Rl+l−

quark(ŝ) =
1

Γ[b → Xceν̄e]

d

dŝ
Γ(b→ Xsl

+l−). (48)

Rl+l−

quark(ŝ) [10−4] Rl+l−

quark(ŝ) [10−4]

0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

0.2

0.4

0.6

0.8

1

1.2

1.4

0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

0.2

0.4

0.6

0.8

1

1.2

1.4

ŝ ŝ

Figure 2: Reduction of µ0-dependence of Rl+l−

quark(ŝ).

Rl+l−

quark(ŝ) [10−4]

0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

0.2

0.4

0.6

0.8

1

1.2

1.4

ŝ

Figure 3: Remaining µb-dependence of Rl+l−

quark(ŝ).

Our results for Rl+l−

quark(ŝ) in the domain ŝ ∈ [0.05, 0.25] are presented in figs. 2 and 3. In

their evaluation, we have used αem = αem(mb

√
0.15) = 1

133
and |V ∗tsVtb/Vcb| = 0.976. The

quantity ∆C̃eff
9 that is multiplied by Vub has been neglected. The dashed lines represent the

pure NLO results, i.e. the ones with neglected O(αs) parts of the effective coefficients. The

solid lines are obtained after including the O(αs) terms. Some of them overlap, and look

like thick lines.

In both plots of fig. 2, µb = 5 GeV, and three different values of µ0 are chosen. The left

plot corresponds to varying µ0 by a factor of 2 around
√
MWmt in C̃t eff

k (as in the first

three columns of table 5) and keeping it fixed to MW in C̃c eff
k . The right plot corresponds
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to varying µ0 by a factor of 2 around MW in C̃c eff
k (as in the first three columns of table 4)

and keeping it fixed to
√
MWmt in C̃t eff

k .

The importance of including the two-loop matching conditions is clearly seen: the de-

pendence on µ0 decreases from ±16% to around ±2.5% at the representative point ŝ = 0.2.

Most of the effect is due to the strong mt-dependence of At10 and to the µ0-dependence of

mMS
t (µ0).

In fig. 3, the scale µ0 is fixed to 120 GeV in C̃t eff
k and to 80 GeV in C̃c eff

k , while the

scale µb takes the values of 2.5, 5 and 10 GeV. One can see that the µb-dependence increases

after taking into account the O(αs) contributions to the effective coefficients. When the

O(αs) terms are not included, an accidental cancellation of the µb-dependence occurs among

the four contributions to the differential decay rate in eq. (28). This cancellation becomes

exact at ŝ ≃ 0.06. The O(αs) term that plays the major role in changing the µb-dependence

of Ac9 (see table 4) and in removing this cancellation is proportional to the product of

C
c(1)
1 (µ0) = −15 − 6L from the matching conditions and lnmb/µb from the one-loop

matrix element of P c
1 . A future calculation of the two-loop b→ sl+l− matrix elements of the

four-quark operators is desirable, because it should significantly reduce the µb-dependence

of the prediction for Rl+l−

quark(ŝ).

When the results described by the solid lines in fig. 3 are integrated over ŝ, we obtain

∫ 0.25

0.05
dŝ Rl+l−

quark(ŝ) = (1.36 ± 0.18) × 10−5, (49)

where only the error from µb-dependence is taken into account. Varying U
c(2)
92 from −10 to

10 (as promised at the end of the previous section) would increase the uncertainty by only

0.03. Thus, calculating the three-loop anomalous dimensions in the future is not expected

to have an important impact on the numerical prediction.

In the end, we relate the integrand of Rl+l−

quark(ŝ) to the physically measurable quantity

BR[B → Xsl
+l−]ŝ∈[0.05,0.25] = BR[B → Xceν̄]

∫ 0.25

0.05
dŝ
[

Rl+l−

quark(ŝ) + δ1/m2
c
R(ŝ) + δ1/m2

b
R(ŝ)

]

= 0.104[(1.36 ± 0.18) − 0.02 + 0.06] × 10−5 = (1.46 ± 0.19) × 10−6, (50)

where, again, only the error from the µb-dependence of Rl+l−

quark(ŝ) is included. The non-

perturbative HQET corrections δ1/m2
c
R(ŝ) and δ1/m2

b
R(ŝ) have been found with the help of

eq. (32) in ref. [5] and eq. (18) in ref. [6], respectively. The O(1/m3
b) effects are completely
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negligible for ŝ < 0.25 [19]. The experimental value of 0.104 for the semileptonic branching

ratio is taken from ref. [15].

It is worth indicating that additional non-perturbative corrections due to the motion of

the b-quark inside the B-meson would occur if we wanted to impose additional cuts on the

emitted lepton energies [20]. Such corrections are absent only when the kinematical cut is

imposed on nothing but the invariant mass of the lepton pair.

Of course, translating the restriction ŝ ∈ [0.05, 0.25] to bounds in GeV on the lepton

invariant mass introduces an additional uncertainty due to the numerical value of mb,pole.

Since the ŝ-spectrum is almost flat in the considered domain, this additional uncertainty (in

per cent) will be close to 5
4
σmb,pole

/mb,pole, i.e. rather small.

Finally let us note that restricting the studied domain of ŝ to [0.05, 0.25] makes the

integrated B → Xsl
+l− branching ratio smaller, but at the same time more sensitive to the

sign of C̃eff
7 (µb), when compared to the so-called “non-resonant BR” considered for instance

in ref. [21]. If we changed the sign of C̃eff
7 (µb), the last result in eq. (50) would change

to 2.92 × 10−6. Thus, extensions of the SM that predict opposite sign of C̃eff
7 (µb) (like

the MSSM in certain dark-matter-favoured regions of its parameter space) might be tested

with the help of the integrated BR itself, without considering forward–backward or energy

asymmetries.

At this point, we finish our phenomenological discussion, and proceed to describing tech-

nical details of the two-loop matching computation in the next section.

5 Two-loop matching for photonic ∆B = −∆S = 1

penguins in the Standard Model

5.1. Preliminaries

For processes taking place at energy scales much lower than MW , the Standard Model

can be replaced by an effective theory built out of only light SM fields, i.e. the ones that

are much lighter that the W-boson. Our goal here is to find two-loop QCD contributions

to the Wilson coefficients of certain operators in the effective theory. The operators we are

interested in are the ones giving leading electroweak contributions to the ∆B = −∆S = 1

transitions accompanied by either a real photon or a lepton pair emission. In the latter case,

19



we restrict ourselves to processes mediated by a virtual photon, i.e. we do not consider in

this section the SM diagrams where the W or Z boson couple directly to the lepton line.

The simplest way to find the Wilson coefficients is to require equality of the off-shell 1PI

amputated Green functions calculated in the full SM and in the effective theory. Up to one

loop, we need to consider the b → sγ, b → s gluon and b → scc̄ functions. At two loops,

only the b → sγ function is necessary. In the cases of b → sγ and b → s gluon, we work

at the leading order in αem and up to O[(external momenta)2/M2
W ]. In the b → scc̄ case,

external momenta can be neglected.

We set all the light particle masses to zero in the whole calculation. An exception is the

b-quark mass, which is being included up to linear order. This means that we maintain mb

only in Yukawa couplings and in the b-quark propagator numerators. The terms of order m2
b

are neglected. One can justify this procedure by formally treating the b-quark mass term as

an interaction with an external scalar field.

In addition, all the Feynman integrands are expanded in external momenta before per-

forming loop integration. Such an expansion, as well as setting all the light masses to zero,

creates spurious infrared divergences that we regularize dimensionally. As we shall see, all

these divergences cancel out in the matching conditions relating the full and the effective

theory Green functions.

The Feynman integrands for the one- and two-loop Feynman diagrams are generated

with the help of the program FeynArts [22]. After Taylor expansion in external momenta

and factorizing them out, the integrals remain dependent only on loop momenta and two

heavy masses: MW and mt. Subsequent application of the partial fraction decomposition

1

(q2 −m2
1)(q

2 −m2
2)

=
1

m2
1 −m2

2

[

1

q2 −m2
1

− 1

q2 −m2
2

]

(51)

allows a reduction of all the integrals to those in which a single mass parameter occurs in the

propagator denominators together with a given loop momentum. Finally, after reduction of

tensor integrals to scalar ones, the non-vanishing integrals obtained at one and two loops are

respectively as follows:

C(1)
n =

(m2)n−2+ǫ

π2−ǫ Γ(1 + ǫ)

∫ d4−2ǫ q

(q2 −m2)n
, (52)

C(2)
n1n2n3

=
(m2

1)
n1+n2+n3−4+2ǫ

π4−2ǫ Γ(1 + ǫ)2

∫ d4−2ǫq1 d
4−2ǫq2

(q2
1 −m2

1)
n1(q2

2 −m2
2)n2[(q1 − q2)2]n3

, (53)

20



with arbitrary integer powers n, n1, n2 and n3, and with m, m1 6= 0. The chosen normal-

ization makes the results free of trivial common factors.

In eq. (53) we have already made use of the fact that our two-loop scalar integrals always

have at least one massless term in their denominators. This turns out to be true in all the

Feynman diagrams we have to consider, provided all the light particle masses are set to zero.

Therefore, all our two-loop integrals are relatively simple.

The result for the one-loop scalar integral is

C(1)
n = i

(−1)n

(n− 1)!
(1 + ǫ)n−3, (54)

which vanishes for n ≤ 0. Here, (a)k denotes the Pochhammer symbol equal to

(a)k =
Γ(a+ k)

Γ(a)
=











a(a+ 1)(a+ 2)...(a+ k − 1), k ≥ 1,
1, k = 0,

1/[(a− 1)(a− 2)...(a− |k|)], k ≤ −1,
(55)

for integer k and complex a.

The two-loop integrals can easily be found with the help of Feynman parametrization in

the cases when m1 = m2 or m2 = 0

C(2)
n1n2n3

====
m1=m2

(−1)n1+n2+n3+1 (2 − ǫ)−n3
(1 + ǫ)n1+n3−3(1 + ǫ)n2+n3−3

(n1 − 1)!(n2 − 1)!(n1 + n2 + n3 − 4 + 2ǫ)n3

, (56)

C(2)
n1n2n3

====
m2=0

(−1)n1+n2+n3+1 (1 + 2ǫ)n1+n2+n3−5(1 + ǫ)n2+n3−3(1 − ǫ)1−n2
(1 − ǫ)1−n3

(n1 − 1)!(n2 − 1)!(n3 − 1)!(1 − ǫ)(1 − 1
3
π2ǫ2 + O(ǫ3))

. (57)

It remains to discuss the case when m1 6= m2 and none of the two masses vanishes. The

starting point is the integral C
(2)
111, which equals:

C
(2)
111 =

1

2(1 − ǫ)(1 − 2ǫ)

[

−1 + x

ǫ2
+

2

ǫ
x ln x + (1 − 2x) ln2 x + 2(1 − x)Li2

(

1 − 1

x

)

+ O(ǫ)
]

,

(58)

where x = m2
2/m

2
1 [23]. All the integrals with three positive indices can be derived from the

above result with the help of the following recurrence relations [23]:

C
(2)
(n1+1)n2n3

= 1
n1(1−x)

{

[4 − 2ǫ− n1 − n2 − n3 + x(n1 − n3)]C
(2)
n1n2n3

+ xn2

[

C
(2)
(n1−1)(n2+1)n3

− C
(2)
n1(n2+1)(n3−1)

]}

,

C
(2)
n1(n2+1)n3

= − 1
n2x(1−x)

{

[x(4 − 2ǫ− n1 − n2 − n3) + n2 − n3]C
(2)
n1n2n3

+ n1

[

C
(2)
(n1+1)(n2−1)n3

− C
(2)
(n1+1)n2(n3−1)

]}

,

C
(2)
n1n2(n3+1) = 1

n3(1−x)2
{

[(1 + x)(−4 + 2ǫ) + 2n2 + (1 + 3x)n3]C(2)
n1n2n3

+ 2xn2

[

C
(2)
n1(n2+1)(n3−1) − C

(2)
(n1−1)(n2+1)n3

]

+ (1 − x)n3

[

C
(2)
n1(n2−1)(n3+1) − C

(2)
(n1−1)n2(n3+1)

]}

.

(59)
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All the two-loop integrals defined in eq. (53) vanish when either n1 or n2 is non-positive.

When these two indices are positive but n3 is non-positive, they reduce to products of one-

loop tensor integrals. It is sensible to make this reduction only in the case when the two

masses are different and non-vanishing. Then we obtain

C(2)
n1n2n3

====
n3≤0

[−n3
2

]
∑

k=0

−n3−2k
∑

j=0

(

−n3

2k

)(

−n3−2k

j

)

x2−n2+k+j−ǫ(−1)n1+n2+n3+1(2k)!

(n1 − 1)!(n2 − 1)!k!(2 − ǫ)k
×

×(2 − ǫ)j+k(2 − ǫ)−n3−k−j(1 + ǫ)n2−k−j−3(1 + ǫ)n1+n3+k+j−3. (60)

Otherwise, one can use eqs. (56) and (57), which apply for non-positive n3, too. Equation

(57) gives zero in such a case, but eq. (56) does not.

5.2. The Standard Model side

Let us start with calculating the b → sγ function up to two loops. There is no tree-level

contribution to this function in the Standard Model. The four 1PI diagrams arising at one

loop are presented in fig. 4.

γ γ γ γ

u, c, t u, c, t W± W± u, c, t u, c, t π± π±

b W± s b u, c, t s b π± s b u, c, t s

Figure 4: One-loop 1PI diagrams for b → sγ in the SM. The charged would-be Goldstone
boson is denoted by π±. There is no W±π∓γ coupling in the background-field gauge.

We calculate the corresponding unrenormalized amputated Green function off shell, in

the background-field version of the ’t Hooft-Feynman gauge. The Feynman integrands are

expanded up to the second order in external momenta and mb (neglecting m2
b though). As

in section 2, we refrain from using unitarity of the CKM matrix here. The result can be

written in the following form:

i
4GF√

2

ePR
(4π)2

N (1)
ǫ







(V ∗usVub + V ∗csVcb)
13
∑

j=1

h
(1)
j Sj + V ∗tsVtb

13
∑

j=1

f
(1)
j (x)Sj







+ O(ǫ2), (61)

where PR = 1
2
(1 + γ5), N (1)

ǫ = 1 − ǫκ+ ǫ2( 1
12
π2 + 1

2
κ2), κ = γE − ln(4π) + ln(M2

W/µ
2
0) and

Sk stand for Dirac structures that depend on the incoming b-quark momentum p and on the
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outgoing photon momentum k

Sj =
(

γµp/k/, γµ (p · k), γµp
2, γµk

2, p/kµ, p/pµ, k/pµ, k/kµ,

mbk/γµ, mbγµk/, mbp/γµ, mbγµp/, M
2
Wγµ

)

j
. (62)

As we shall see later, explicit results are needed only for the coefficients at the structures S2,

S8 and S10. We find

h
(1)
2 = 23

9
+ 145

54
ǫ, h

(1)
8 = − 4

9ǫ
+ 7

54
+ 59

324
ǫ, h

(1)
10 = 0,

f
(1)
2 (x) = 15x3−16x2+4x

3(x−1)4
lnx + −8x3−105x2+141x−46

18(x−1)3

+ǫ
{

−15x3+16x2−4x
6(x−1)4

ln2 x+ 8x4+115x3−150x2+48x
18(x−1)4

ln x+ −76x3−645x2+885x−290
108(x−1)3

}

,

f
(1)
8 (x) = −3x4−15x3−6x2+20x−8

18(x−1)4
ln x + 71x3+78x2−111x+34

108(x−1)3
+ ǫ

{

3x4+15x3+6x2−20x+8
36(x−1)4

ln2 x

+−71x4−79x3+162x2−144x+48
108(x−1)4

ln x + 529x3−102x2+195x−118
648(x−1)3

}

,

f
(1)
10 (x) = −3x2+2x

6(x−1)3
ln x + 5x2−3x

12(1−x)2 + ǫ
{

3x2−2x
12(x−1)3

ln2 x+ −5x3+2x2

12(x−1)3
ln x+ 11x2−5x

24(x−1)2

}

,

(63)

where x = m2
t/M

2
W .

Let us now proceed to an evaluation of the first QCD correction to the considered Green

function. The corresponding two-loop diagrams are shown in fig. 5.

1

2 3 4

1

2 3 4

1

2 3 4

1

2 3 4

Figure 5: Two-loop 1PI diagrams for b → sγ in the SM. The wavy lines denote either the
W -boson or the charged would-be Goldstone boson. The external photon can couple at any
of the places marked by small circles.

In analogy to eq. (61), we write the unrenormalized two-loop result as

i
4GF√

2

eg2PR
(4π)4

N (2)
ǫ







(V ∗usVub + V ∗csVcb)
13
∑

j=1

h
(2)
j Sj + V ∗tsVtb

13
∑

j=1

f
(2)
j (x)Sj







+ O(ǫ), (64)
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where g is the QCD gauge coupling and N (2)
ǫ = 1 − 2ǫκ + ǫ2(1

6
π2 + 2κ2). The two-loop

analogues of the coefficients given in eq. (63) are found to have the following form:

h
(2)
2 = −272

81ǫ
− 3740

243
, h

(2)
8 = − 128

81ǫ2
− 1088

243ǫ
− 314

729
− 128π2

243
, h

(2)
10 = 20

9ǫ
+ 92

27
,

f
(2)
2 (x) = 1

ǫ

{

8x(−45x3−34x2+53x−10)
9(x−1)5

ln x + 4(x4+641x3−501x2+83x−8)
27(x−1)4

}

+8x(7x3−69x2+61x−14)
9(x−1)4

Li2
(

1 − 1
x

)

+ 4x(45x3+34x2−53x+10)
3(x−1)5

ln2 x

+4(−6x5−4497x4+2622x3+811x2−638x+88)
81(x−1)5

ln x + 2(−719x4+35822x3−35073x2+11492x−1802)
243(x−1)4

,

f
(2)
8 (x) = 1

ǫ

{

4(243x4+486x3−419x2+130x−8)
81(x−1)5

ln x + 2(−185x4−3313x3+369x2+905x−368)
243(x−1)4

}

+4(32x4+283x3−135x2−70x+64)
81(x−1)4

Li2
(

1 − 1
x

)

+ 2(−243x4−486x3+419x2−130x+8)
27(x−1)5

ln2 x

+2(370x5+7933x4−1370x3−683x2+238x−8)
243(x−1)5

lnx + 2(−3301x4−20714x3+4182x2+202x+191)
729(x−1)4

,

f
(2)
10 (x) = 1

ǫ

{

2x(36x2+x−10)
9(x−1)4

ln x+ 11x3−169x2+132x−28
9(x−1)3

}

+ 2x(−15x3+8x2−21x+10)
9(x−1)4

Li2
(

1 − 1
x

)

+x(−36x2−x+10)
3(x−1)4

ln2 x+ −22x4+396x3−377x2+142x−16
9(x−1)4

ln x + 31x3−1071x2+630x−112
54(x−1)3

.

(65)

The last two elements we need to know on the SM side are the b→ s gluon and b → scc̄

functions up to one loop. They are used to recover one-loop contributions to certain Wilson

coefficients which take part in the two-loop b → sγ matching condition.

u, c, t u, c, t u, c, t u, c, t

b W± s b π± s

Figure 6: One-loop 1PI diagrams for b → s gluon in the SM.

Similarly to the b → sγ case, there is no tree-level contribution to the b→ s gluon Green

function in the SM. The one-loop contribution is given by the two diagrams presented in

fig. 6. In analogy to eq. (61), the result can be written as

i
4GF√

2

gPRT
a

(4π)2
N (1)
ǫ







(V ∗usVub + V ∗csVcb)
13
∑

j=1

u
(1)
j Sj + V ∗tsVtb

13
∑

j=1

v
(1)
j (x)Sj







+ O(ǫ2), (66)

where T a denotes the SU(3) generator corresponding to the outgoing gluon. The coefficients

at the structures S2, S8 and S10 read

u
(1)
2 = 4

3
+ 22

9
ǫ, u

(1)
8 = − 2

3ǫ
+ 1

9
+ 11

54
ǫ, u

(1)
10 = 0, (67)
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v
(1)
2 (x) = −5x2+2x

(x−1)4
lnx + −x3+15x2+12x−8

6(x−1)3

+ǫ
{

5x2−2x
2(x−1)4

ln2 x + x4−16x3−30x2+24x
6(x−1)4

ln x + −5x3+159x2+60x−88
36(x−1)3

}

,

v
(1)
8 (x) = 3x2+5x−2

3(x−1)4
ln x+ 5x3−12x2−39x+10

18(x−1)3

+ǫ
{

−3x2−5x+2
6(x−1)4

ln2 x + −5x4+17x3+54x2−36x+12
18(x−1)4

ln x+ 19x3−192x2−57x−22
108(x−1)3

}

,

v
(1)
10 (x) = x

2(x−1)3
ln x+ x2−3x

4(x−1)2
+ ǫ

{

−x
4(x−1)3

ln2 x+ −x3+4x2

4(x−1)3
ln x + x2−7x

8(x−1)2

}

.

(68)

W

s c

b c

Figure 7: Tree-level b→ scc̄ diagram on the SM side.

Contrary to the functions considered so far, the b→ scc̄ function does acquire a tree-level

contribution in the SM. It is given by the diagram shown in fig. 7. For vanishing external

momenta, it gives8

− i
4GF√

2
V ∗csVcb(γµPL) ⊗ (γµPL). (69)

Figure 8: One-loop b → scc̄ diagrams on the SM side, which do not vanish in dimensional
regularization when all the light particle masses are set to zero.

The non-vanishing one-loop diagrams for the b→ scc̄ functions are shown in fig. 8. When

the external momenta are set to zero, we find the following result for the corresponding

amputated Green function:

i
4GF√

2

g2

(4π)2
V ∗csVcbN

(1)
ǫ

{(

−6

ǫ
− 15 − 39

2
ǫ
)

(γµPLT
a) ⊗ (γµPLT

a) +
(

−1

ǫ
− 3

2
+ O(ǫ)

)

×

8 The tensor product symbol Γ ⊗ Γ′ is used here to denote the tree-level (s̄Γc)(c̄Γ′b) amputated Green
function.
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× [(γµγνγρPLT
a) ⊗ (γµγνγρPLT

a) − 16(γµPLT
a) ⊗ (γµPLT

a)]} + O(ǫ2). (70)

The Dirac structure in the last line of the above equation vanishes in four dimensions.

However, there is no way to express it as ǫ×(simpler structure). The coefficient at this

structure will give us the Wilson coefficient of an evanescent operator in the effective theory

[24]. The necessity of recovering this coefficient (as well as keeping O(ǫ) parts of other one-

loop coefficients) is a price we have to pay for regularizing infrared divergences dimensionally.

The above result is the last one we need to know on the SM side. In the next subsection,

we shall study the same Green functions in the effective theory framework.

5.3. The effective theory side

The lagrangian of the effective theory has been given in eq. (1). At present, we need to

include in addition several non-physical operators. We write

Leff = LQCD×QED(u, d, s, c, b, e, µ, τ) +
4GF√

2







∑

Q=u,c

V ∗QsVQb(C
c
1P

Q
1 + Cc

2P
Q
2 + Cc

11P
Q
11)

+
∑

i

[(V ∗usVub + V ∗csVcb)C
c
i + V ∗tsVtbC

t
i ]Pi

}

. (71)

The operators PQ
i and Pi entering the effective lagrangian can be divided into three

classes: physical, evanescent (i.e. algebraically vanishing in four dimensions) and EOM-

vanishing (i.e. vanishing by the QCD×QED equations of motion, up to a total derivative).

The physical operators have already been given in eq. (2). However, for the purpose of

the present section, it is convenient to redefine P9 so that it contains a sum over all the light

charged fermions f weighted by their electric charges Qf

P9 = −e
2

g2
(s̄LγµbL)

∑

f

Qf (f̄γµf). (72)

Such a redefinition of P9 does not alter its Wilson coefficient at leading order in electroweak

interactions.

As far as the evanescent operators are concerned, only PQ
11 from the appendix will be

needed in the present section.

The gauge-invariant EOM-vanishing operators can be chosen as

P31 =
1

g
(s̄Lγ

µT abL)DνGa
µν + P4,
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P32 =
1

g2
mbs̄LD/D/ bR,

P33 =
i

g2
s̄LD/D/D/ bL,

P34 =
i

g

[

s̄L
←
D/ σµνT abLG

a
µν −Ga

µν s̄LT
aσµνD/ bL

]

+ P8,

P35 =
ie

g2

[

s̄L
←
D/ σµνbLFµν − Fµν s̄Lσ

µνD/ bL

]

+ P7,

P36 =
e

g2
(s̄Lγ

µbL)∂νFµν − P9. (73)

Our sign convention in the covariant derivative acting on a quark field ψ is

Dµψ =
(

∂µ + igGa
µT

a + ieQψAµ
)

ψ. (74)

The EOM-vanishing operators in eq. (73) can be assumed to contain the background

gluon field only, because nothing but their tree-level matrix elements will be needed for the

off-shell matching in the next subsection. However, a systematic off-shell renormalization of

the effective theory requires introducing EOM-vanishing operators that contain the quantum

gluon field as well. The explicit form of such operators is irrelevant here. Nevertheless, one

should not forget that all of them enter into the sums over operators, such as the one in the

last term of eq. (71).

It is not completely trivial to convince oneself that eq. (73) indeed contains all the gauge-

invariant EOM-vanishing operators that we may encounter. One way to do this is to first

write all the ∆B = −∆S = 1 operators of dimension 5 and 6 containing the left-handed

s-quark field only.9 The derivatives acting on the s-quark field can be removed by parts.

One can start from writing down the 6 possible operators that contain the chromomagnetic

and electromagnetic field strength tensors or their duals

(s̄LT
aσµνbR)Ga

µν , (s̄LT
aγµbL)DνGa

µν , (s̄LT
aγµDνbL)G̃a

µν ,

(s̄L σµνbR) Fµν , (s̄L γµbL) ∂ν Fµν , (s̄L γµDνbL) F̃µν .
(75)

Nothing new is obtained from the first two pairs of operators above, when the field strength

tensors are replaced by their duals, because of the Bianchi identity and σαβγ5 ∼ εαβγδσ
γδ.

On the other hand, replacing the dual tensors by ordinary ones in the last pair of operators

would break CP combined with b ↔ s interchange even for mb = 0 and real CKM angles.

9 Here, the dimension of an operator is understood as the sum of dimensions of the fields and derivatives
it contains. Explicit mass factors in the normalization are not counted.
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The remaining operators (apart from the four-fermion ones) must contain covariant

derivatives. Since commutators of the covariant derivatives give field strength tensors, only

one additional operator with three covariant derivatives (e.g. s̄LD/D
2bL) and one operator

with two covariant derivatives (e.g. s̄LD
2bL) remains. At this point, one has at hand a com-

plete set of 8 gauge-invariant operators (apart from the four-fermion ones). The “magnetic

moment” operators P7, P8 and the EOM-vanishing operators P31, ..., P36 are just certain

linear combinations of them, P4 and P9 (up to total derivatives).

Since both the u- and c-quarks are treated as massless in the present calculation, the

lagrangian is symmetric under u ↔ c exchange. This symmetry has already been taken

into account in eq. (71): the same Wilson coefficients Cc
i occur both in the u-quark and the

c-quark sectors.

The lagrangian (71) is written in terms of bare fields and parameters. In order to express

it in terms of the QCD-renormalized quantities, we replace

g → Zgg, mb → Zmmb, ψ → Z
1/2
ψ ψ, CQ

i →
∑

j

CQ
j Zji, (76)

for the QCD gauge coupling, b-quark mass, quark fields and the Wilson coefficients, respec-

tively. As far as the background gluon field G(b)
µ is concerned, we only need to remember

that gG(b)
µ does not get renormalized.

After QCD renormalization, the structure of the effective lagrangian is the same as in

eq. (71), but the Wilson coefficients CQ
i are replaced by some other constants that we denote

here by AQi . Below, we shall need

AQj = Z2
ψ

∑

i

CQ
i Zij for j = 1, 2, 4, 11,

AQ7 = ZψZ
−2
g

[

Zm
∑

i

CQ
i Zi7 + (Zm − 1)

∑

i

CQ
i Zi(35)

]

,

AQ8 = ZψZ
−2
g

[

Zm
∑

i

CQ
i Zi8 + (Zm − 1)

∑

i

CQ
i Zi(34)

]

,

AQ9 = ZψZ
−2
g

∑

i

CQ
i Zi9. (77)

For simplicity, we shall use the MS scheme in the present section. The MS results for the

Wilson coefficients will be obtained later from the MS ones by simply setting γE − ln(4π)

to zero, i.e. replacing κ by ln(M2
W/µ

2
0).
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In the MS scheme, the renormalization constants read

Zg = 1 +
g2

(4π)2ǫ

(

−1

2
β0

)

+ O(g4) with β0 =
23

3
for 5 active flavours,

Zm = 1 +
g2

(4π)2ǫ

(

−1

2
γ(0)
m

)

+ O(g4) with γ(0)
m = 8,

Zψ = 1 +
g2

(4π)2ǫ

(

−γ(0)
ψ

)

+ O(g4) with γ
(0)
ψ =

4

3
,

Zij = δij +
g2

(4π)2

[

a01
ij +

1

ǫ
a11
ij

]

+
g4

(4π)4

[

a02
ij +

1

ǫ
a12
ij +

1

ǫ2
a22
ij

]

+ O(g6). (78)

The finite terms a0k
ij can be different from zero if and only if Pi is an evanescent operator

and Pj is not. Values of a0k
ij are fixed by requiring that renormalized matrix elements of

evanescent operators vanish in 4 dimensions [24]. This requirement is just an extension of

the MS-scheme definition to situations where evanescent operators are present.

Our off-shell operator basis is chosen in such a manner that as many operators as possible

are EOM-vanishing. This means that no linear combination of the remaining operators is

EOM-vanishing. In such a case, the EOM-vanishing operators do not mix into the remaining

ones, i.e. Zij = 0 when Pi is EOM-vanishing and Pj is not. In consequence, we shall need

to know explicitly only the mixing among the physical and evanescent operators.10

The powers of coupling constants in front of our operators have been chosen in such a

way that terms of order g2n in the renormalization constants originate from n-loop diagrams

in the effective theory. As one can see, the sum of powers of gauge coupling constants in

front of a given operator is always equal to “(number of fields in this operator)–4”. In the

original QCD and QED lagrangians, the powers of coupling constants are equal to “(number

of fields)–2”. Here, two powers are traded for GF that normalizes the effective lagrangian.

The renormalization constants are found by calculating ultraviolet divergent parts of

Feynman diagrams in the effective theory. When doing this, it is essential to clearly separate

ultraviolet and infrared divergences. In order to do so, one can introduce an auxiliary mass

parameter into all the propagator denominators (including the gluon ones), as explained in

ref. [25]. All the renormalization constants in the effective theory up to two loops are known

from the former anomalous dimension computations [7, 8, 9, 14] (although some of them

need to be transformed to the “new” operator basis (2)). Here, we shall need the one-loop

10 Getting rid of Zi(34) and Zi(35), which enter eq. (77), is somewhat tricky – see subsection 5.4.
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renormalization constant matrix â11 for {P1, P2, P4, P7, P8, P9, P11} only. It reads

â11 =





































∗ ∗ ∗ 0 0 −16
27

∗
6 0 2

3
0 0 −4

9
1

0 0 ∗ 0 0 16
27

0

0 0 0 16
3
− β0 0 0 0

0 0 0 −16
9

∗ 0 0

0 0 0 0 0 −β0 0

0 0 0 0 0 0 ∗





































, (79)

where stars denote non-vanishing entries that are irrelevant for us.

In addition, for the two-loop matching of photonic penguins in the charm sector, we shall

need
a12

27 = 116
81
, a22

27 = 0, a01
(11)7 = 0,

a12
29 = 776

243
, a22

29 = 148
81
, a01

(11)9 = 64
27
.

(80)

At this point, we are ready to calculate all the necessary 1PI Green functions on the

effective theory side. This turns out to be very simple, because all the particles in the ef-

fective theory are massless in our approach.11 Consequently, all the loop diagrams vanish

in dimensional regularization, because of the cancellation between ultraviolet and infrared

divergences. In effect, we need to know only the tree-level matrix element of the effective

lagrangian. The ultraviolet counterterms present in this matrix element reproduce precisely

the infrared divergences in the effective theory, which have to be equal to the infrared diver-

gences on the SM side. As we shall see, all the 1/ǫn poles will indeed cancel in the matching

condition.

External gluons in the Green functions considered on the Standard Model side have been

the background ones. Therefore, we can maintain only the background gluon field in Leff ,
since only tree-level diagrams are non-vanishing on the effective theory side. This is why we

could omit EOM-vanishing operators proportional to quantum gluons in our operator basis,

even though the calculation is performed off-shell.

We now write down the effective theory counterparts of the Green functions considered

in subsection 5.2. Their structure follows directly from tree-level Feynman rules for the

operators given in eqs. (2) and (73).

11 Remember that the b-quark mass is formally treated here as a perturbative interaction with an external
scalar field, and we include only terms that are linear in this interaction.
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The b→ sγ function reads (cf. eq. (61))

i
4GF√

2

ePR
g2







(V ∗usVub + V ∗csVcb)
12
∑

j=1

h̃jSj + V ∗tsVtb
12
∑

j=1

f̃jSj







(81)

with the coefficients at the structures S2, S8 and S10 given by

h̃2 = −4Ac35, h̃8 = 2Ac35 − Ac36, h̃10 = Ac7 + Ac35,

f̃2 = −4At35, f̃8 = 2At35 − At36, f̃10 = At7 + At35.
(82)

to all orders in QCD. Similarly, for b→ s gluon we get

i
4GF√

2

PRT
a

g







(V ∗usVub + V ∗csVcb)
12
∑

j=1

ũjSj + V ∗tsVtb
12
∑

j=1

ṽjSj







(83)

with

ũ2 = −4Ac34, ũ8 = 2Ac34 −Ac31, ũ10 = Ac8 + Ac34,

ṽ2 = −4At34, ṽ8 = 2At34 −At31, ṽ10 = At8 + At34.
(84)

In both the b→ sγ and b → s gluon cases, the coefficients at other structures depend on

AQ32 and AQ33, too. In each of these two cases, coefficients at 12 independent Dirac structures

Sj are given by linear combinations of only 6 independent quantities. It is just a consequence

of QCD×QED gauge invariance of our effective lagrangian. Therefore, the coefficients at the

structures Sk must satisfy 12 − 6 = 6 linear constraints. This must be the case also for the

SM Green functions, because they must match the effective theory ones. Checking these

constraints on the SM side has been an important cross-check in our calculation.

The last function we have to consider on the effective theory side is the b → scc̄ one. It

takes the form

i
4GF√

2
V ∗csVcb {Ac1(γµPLT

a) ⊗ (γµPLT
a) + Ac2(γµPL) ⊗ (γµPL)

+ Ac11 [(γµγνγρPLT
a) ⊗ (γµγνγρPLT

a) − 16(γµPLT
a) ⊗ (γµPLT

a)]}

+ [terms proportional to (AQ31 + AQ4 )]. (85)

5.4. The matching

The Wilson coefficients can be perturbatively expanded as in eq. (3). We shall first recover

the Wilson coefficients at all the EOM-non-vanishing operators up to one loop. Then, two-

loop contributions to the coefficients at P7 and P9 will be found.
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A careful reader might be surprised that we start the matching without having considered

diagrams with UV counterterms on the SM side. Apart from the electroweak counterterm

proportional to s̄D/ b, we should include QCD renormalization of the quark wave functions

and masses.

The electroweak counterterm proportional to s̄D/ b is taken in the MOM scheme, at q2 =

0 for the s̄∂/b term, and at vanishing external momenta for the terms containing gauge

bosons. It is achieved by an appropriate flavour-off-diagonal renormalization of the quark

wave functions. The only effect of such a renormalization in the present case is that the

coefficients at the structure S13 in eqs. (61), (64) and (66) are completely renormalized away.

This is welcome, because the structure S13 was absent from the effective theory counterparts

of these equations (eqs. (81) and (83)).

As far as the QCD renormalization of the quark wave functions in internal lines and in

vertices is concerned, it combines to an overall factor, which could be obtained by renor-

malizing only those terms in the vertices that correspond to external fields in a given Green

function. However, one-loop external quark field renormalization is the same on the full and

effective theory sides. Consequently, we can omit counterterms with Zψ on the SM side and

simultaneously set Zψ to unity on the effective theory side.

The same refers to the renormalization of the b-quark mass, since mb is actually treated

as an external scalar field. We omit the corresponding counterterms on the full theory side

and simultaneously set Zm to unity on the effective theory side. This is how we get rid of

terms proportional to (Zm − 1) in eq. (77).

As far as the renormalization of the QCD gauge coupling is concerned, no such counter-

terms occur on the full theory side in our particular calculation. On the effective theory side,

we maintain all the necessary factors of Zg.

The last relevant quantity that acquires QCD renormalization on the full theory side is

the top quark mass. However, contributions from the corresponding counterterm diagrams

can be obtained by differentiating lower order results with respect to mt (see below).

Let us first match the b → scc̄ Green function up to one loop. The first thing to notice

is that terms proportional to AQ31 + AQ4 in the last line of eq. (85) are not important at the

considered order, because

AQ4 = −AQ31 + O(g4). (86)
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The reason for this relation is that the b → sdd̄ 1PI Green function acquires its leading

contribution only at two loops in the SM. Lower-order tree-level contributions to this function

must vanish in the effective theory, which implies the above relation.

Similarly, from the fact that the b→ se+e− 1PI function vanishes at one loop, we find

AQ9 = +AQ36 + O(g4), (87)

so long as the W -boson boxes and Z-boson penguins are not taken into account on the SM

side (as we have assumed at the very beginning of this section).

Returning to the b→ scc̄ function, we compare eqs. (69), (70) and (85), and immediately

find

Ac1 =
g2

(4π)2
N (1)
ǫ

(

−6

ǫ
− 15 − 39

2
ǫ
)

+ O(g4, ǫ2),

Ac2 = −1 + O(g4),

Ac11 =
g2

(4π)2
(1 − ǫκ)

(

−1

ǫ
− 3

2

)

+ O(g4, ǫ), (88)

which implies that (cf. eqs. (77)–(79) with Zψ set to unity)

C
c(0)
1 = 0, C

c(0)
2 = −1, C

c(0)
11 = 0, (89)

and

C
c(1)
1 = N (1)

ǫ

(

−6

ǫ
− 15 − 39

2
ǫ
)

− 1

ǫ
C
c(0)
2 a11

21 + O(ǫ2)

= −15 + 6κ + ǫ
(

−39

2
+ 15κ− 3κ2 − 1

2
π2
)

+ O(ǫ2), (90)

C
c(1)
2 = 0, (91)

C
c(1)
11 = (1 − ǫκ)

(

−1

ǫ
− 3

2

)

− 1

ǫ
C
c(0)
2 a11

2(11) + O(ǫ)

= −3

2
+ κ + O(ǫ). (92)

Indeed, all the 1/ǫ poles have cancelled in the final results for the one-loop Wilson coefficients.

The coefficient Cc
2 is the only one that acquires a tree-level contribution in our calculation.

For all the other coefficients considered below, we have C
Q(0)
i = 0.

Let us now turn to the b → s gluon matching. Comparing eqs. (66)12 and (83), and

12 Without S13, since it has been renormalized away by the electroweak counterterm mentioned in the
beginning of this subsection.
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solving the trivial set of linear equations {(84),(86)}, one finds

Ac4 =
g2

(4π)2
N (1)
ǫ

(

1

2
u

(1)
2 + u

(1)
8

)

+ O(g4, ǫ2),

Ac8 =
g2

(4π)2
(1 − ǫκ)

(

1

4
u

(1)
2 + u

(1)
10

)

+ O(g4, ǫ2), (93)

which implies that (cf. eqs. (77)–(79))

C
c(1)
4 = N (1)

ǫ

(

1

2
u

(1)
2 + u

(1)
8

)

− 1

ǫ
a11

24C
c(0)
2 + O(ǫ2)

=
7

9
+

2

3
κ+ ǫ

(

77

54
− 7

9
κ− 1

3
κ2 − 1

18
π2
)

+ O(ǫ2),

C
c(1)
8 = (1 − ǫκ)

(

1

4
u

(1)
2 + u

(1)
10

)

+ O(ǫ2)

=
1

3
+ ǫ

(

11

18
− 1

3
κ
)

+ O(ǫ2). (94)

Similarly,

C
t(1)
4 = (1 − ǫκ)

(

1

2
v

(1)
2 (x) + v

(1)
8 (x)

)

+ O(ǫ2),

C
t(1)
8 = (1 − ǫκ)

(

1

4
v

(1)
2 (x) + v

(1)
10 (x)

)

+ O(ǫ2). (95)

Finally, we perform the b→ sγ matching. Comparing eqs. (61), (64) and (81), and solving

the trivial set of linear equations {(82),(87)}, one finds

Ac7 =
g2

(4π)2

[

(1 − ǫκ)
(

1

4
h

(1)
2 + h

(1)
10

)

+ O(ǫ2)
]

+
g4

(4π)4

[

(1 − 2ǫκ)
(

1

4
h

(2)
2 + h

(2)
10

)

+ O(ǫ)
]

+ O(g6),

Ac9 =
g2

(4π)2

[

N (1)
ǫ

(

−1

2
h

(1)
2 − h

(1)
8

)

+ O(ǫ2)
]

+
g4

(4π)4

[

N (2)
ǫ

(

−1

2
h

(2)
2 − h

(2)
8

)

+ O(ǫ)
]

+ O(g6), (96)

which implies that (cf. eqs. (77)–(80) with Zψ and Zm set to unity)

C
c(1)
7 = (1 − ǫκ)

(

1

4
h

(1)
2 + h

(1)
10

)

+ O(ǫ2)

=
23

36
+ ǫ

(

145

216
− 23

36
κ
)

+ O(ǫ2),

C
c(1)
9 = N (1)

ǫ

(

−1

2
h

(1)
2 − h

(1)
8

)

− 1

ǫ
a11

29C
c(0)
2 + O(ǫ2)

= −38

27
− 4

9
κ+ ǫ

(

−247

162
+

38

27
κ+

2

9
κ2 +

1

27
π2
)

+ O(ǫ2), (97)
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and

C
c(2)
7 = (1 − 2ǫκ)

(

1

4
h

(2)
2 + h

(2)
10

)

− 1

ǫ

[

a12
27C

c(0)
2 + (a11

77 + β0)C
c(1)
7 + a11

87C
c(1)
8

]

+ O(ǫ)

= (1 − 2ǫκ)
(

112

81ǫ
− 107

243

)

− 116

81ǫ
(−1)

−16

3ǫ

(

23

36
+

145ǫ

216
− 23ǫ

36
κ
)

+
16

9ǫ

(

1

3
+

11ǫ

18
− ǫ

3
κ
)

+ O(ǫ)

= −713

243
+

4

81
κ+ O(ǫ), (98)

C
c(2)
9 = N (2)

ǫ

(

−1

2
h

(2)
2 − h

(2)
8

)

− 1

ǫ2

(

a22
29 + β0a

11
29

)

C
c(0)
2

−1

ǫ

[

a12
29C

c(0)
2 + a11

19C
c(1)
1 + a11

49C
c(1)
4

]

− a01
(11)9C

c(1)
11 + O(ǫ)

=

[

1 − 2ǫκ + ǫ2
(

π2

6
+ 2κ2

)]

(

128

81ǫ2
+

1496

243ǫ
+

5924

729
+

128

243
π2
)

+
128

81ǫ2
(−1) − 776

243ǫ
(−1) +

16

27ǫ

[

−15 + 6κ+ ǫ
(

−39

2
+ 15κ− 3κ2 − 1

2
π2
)]

− 16

27ǫ

[

7

9
+

2

3
κ+ ǫ

(

77

54
− 7

9
κ− 1

3
κ2 − 1

18
π2
)]

− 64

27

(

−3

2
+ κ

)

+ O(ǫ)

= −524

729
− 16

3
κ +

128

81
κ2 +

128

243
π2 + O(ǫ). (99)

Again, all the 1/ǫn poles have cancelled in the final results.

Similarly, in the top sector we find

C
t(1)
7 = (1 − ǫκ)

[

1

4
f

(1)
2 (x) + f

(1)
10 (x)

]

+ O(ǫ2),

C
t(1)
9 = (1 − ǫκ)

[

−1

2
f

(1)
2 (x) − f

(1)
8 (x)

]

+ O(ǫ2),

C
t(2)
7 = (1 − 2ǫκ)

[

1

4
f

(2)
2 (x) + f

(2)
10 (x)

]

− 1

ǫ
γ(0)
m x

∂

∂x
C
t(1)
7 − 1

ǫ

[

(a11
77 + β0)C

t(1)
7 + a11

87C
t(1)
8

]

+ O(ǫ),

C
t(2)
9 = (1 − 2ǫκ)

[

−1

2
f

(2)
2 (x) − f

(2)
8 (x)

]

− 1

ǫ
γ(0)
m x

∂

∂x
C
t(1)
9 − 1

ǫ
a11

49C
t(1)
4 + O(ǫ). (100)

Here, the x-derivative terms stand for contributions from the top-quark mass renormaliza-

tion on the full theory side. Instead of including these terms, we could just calculate the

corresponding one-loop SM diagrams with counterterm insertions. However, derivatives give

us the same results much faster.

It is easy to verify that all the 1/ǫ poles indeed cancel in C
t(2)
7 and C

t(2)
9 . As usual,

the O(ǫ) parts of the one-loop Wilson coefficients have affected the results of the two-loop
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matching.

The results for C
c(0)
2 , C

c(1)
1 , C

c(1)
2 , C

Q(1)
4 , C

Q(1)
7 , C

Q(1)
9 , C

Q(2)
7 and C

Q(2)
9 obtained in the

present section have already been summarized in section 2, after passing to the MS scheme,

i.e. replacing κ by ln(M2
W/µ

2
0). All the other matching conditions summarized there have

been found in an analogous manner. In the two-loop Z-penguin contributions to CQ
9 and

CQ
10, the effect of renormalizing the s̄D/ b term on the SM side was less trivial than in this

section. In the two-loop matching for P c
1 and P c

2 , some care was required at renormalizing

the top-quark loop contributions in the MOM scheme. In addition, scalar integrals with

three non-vanishing masses were necessary [23]. Nevertheless, the basic algorithm remained

the same as in the P7 and P9 cases, which we have described in detail here.

Summary

We have evaluated two-loop matching conditions for all the operators relevant to

B → Xsl
+l− in the SM. Details of this calculation have been presented only for the operator

P7 and for the photonic penguin contribution to the operator P9. As far as the remaining

matching conditions are concerned, only the final results have been given. However, the

method of the calculation was very similar in all the considered cases.

Our results allowed to remove an important (∼ ±16%) uncertainty due to the matching

scale µ0 from the prediction for BR[B → Xsl
+l−] for low invariant mass of the emitted

lepton pair (ŝ ∈ [0.05, 0.25]). The obtained Standard Model prediction for the branching

ratio integrated over this domain is 1.46×10−6. This result would change to 2.92×10−6 if the

Wilson coefficient C̃eff
7 (µb) had an opposite sign, as it might happen in certain extensions

of the SM.

There remains a sizeable (∼ ±13%) perturbative uncertainty in the above SM result,

which is due to the unknown two-loop matrix elements of the four-quark operators. Calcu-

lable non-perturbative effects which have been included in our result are smaller than this

uncertainty. Estimates of other non-perturbative effects suggest that they are not larger.

Therefore, the next step in improving the accuracy of the theoretical prediction should be

a calculation of the two-loop matrix elements of the four-fermion operators and one-loop

matrix elements of the “magnetic moment” ones.
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Appendix

Here, we give the eight evanescent operators that were used in evaluating the anomalous

dimension matrices given in section 3. Their explicit form defines what the MS scheme

means in the effective theory. As before, the symbol Q stands either for u or for c.

PQ
11 = (s̄Lγµ1

γµ2
γµ3

T aQL)(Q̄Lγ
µ1γµ2γµ3T abL) − 16PQ

1 ,

PQ
12 = (s̄Lγµ1

γµ2
γµ3

QL)(Q̄Lγ
µ1γµ2γµ3bL) − 16PQ

2 ,

P15 = (s̄Lγµ1
γµ2

γµ3
γµ4

γµ5
bL)

∑

q

(q̄γµ1γµ2γµ3γµ4γµ5q) − 20P5 + 64P3,

P16 = (s̄Lγµ1
γµ2

γµ3
γµ4

γµ5
T abL)

∑

q

(q̄γµ1γµ2γµ3γµ4γµ5T aq) − 20P6 + 64P4,

PQ
21 = (s̄Lγµ1

γµ2
γµ3

γµ4
γµ5

T aQL)(Q̄Lγ
µ1γµ2γµ3γµ4γµ5T abL) − 20PQ

11 − 256PQ
1 , (101)

PQ
22 = (s̄Lγµ1

γµ2
γµ3

γµ4
γµ5

TQL)(Q̄Lγ
µ1γµ2γµ3γµ4γµ5bL) − 20PQ

12 − 256PQ
2 ,

P25 = (s̄Lγµ1
γµ2

γµ3
γµ4

γµ5
γµ6

γµ7
bL)

∑

q

(q̄γµ1γµ2γµ3γµ4γµ5γµ6γµ7q) − 336P5 + 1280P3,

P26 = (s̄Lγµ1
γµ2

γµ3
γµ4

γµ5
γµ6

γµ7
T abL)

∑

q

(q̄γµ1γµ2γµ3γµ4γµ5γµ6γµ7T aq) − 336P6 + 1280P4.
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