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Abstract

Promptly decaying lightest charginos were searched for in the context of sce-
narios with gravitino LSP. It was assumed that the stau is the next to lightest
supersymmetric particle (NLSP). Data collected with the DELPHI detector at
a centre-of-mass energy near 183 GeV were analysed combining the methods
developed in previous searches. No evidence for the production of these parti-
cles was found. Hence, limits were derived at 95% con�dence level. The mass of

charginos was found to be greater than 85.5 GeV/c2 form~�+
1
�m~�1 � 0:3GeV=c2,

independently of the mass of the gravitino.
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1 Introduction

Supersymmetry (SUSY) may be broken at a scale below the grand-uni�cation scale
MGUT , with the ordinary gauge interaction acting as the messenger of supersymmetry
breaking [1,2]. In the corresponding models, the gravitino ~G turns out to be the lightest
supersymmetric particle (LSP) and is expected to be almost massless. The next-to-lightest

supersymmetric particle (NLSP) is therefore unstable and decays, under the assumption
of R-parity conservation, into an invisible gravitino and its ordinary matter partner.

The number of generations of supersymmetry breaking messengers in minimal models
and the value of tan �, usually determine which particle is the NLSP [3{6]. In this letter,
lightest chargino pair production is searched for under the assumption that the ~�1, the
lightest of the mass eigenstates produced by the mixing of ~�R and ~�L [7], is the NLSP.
If kinematically allowed, charginos could be produced at LEP through the exchange of a
photon or a Z in the s-channel, or through the exchange of an electron sneutrino in the
t-channel. Each chargino would then promptly decay into a ~�1 and a tau neutrino:

e+e� ! ~�+1 ~�
�

1 ! ~�+1 ~�
�

1 ���� (1)

Being the NLSP, ~�1 is expected to decay into � + ~G with, in the laboratory frame, a
mean decay length of:

L = 1:76� 10�3

vuut E2

m2
~�1

� 1

 
m~�1

100GeV=c2

!
�5  

m ~G

1 eV=c2

!2
cm; (2)

which depends strongly on m~� , m ~G and the energy of the ~�1, E.
It can be deduced from eq. (2) that for a given stau mass, di�erent ranges of gravitino

masses could determine three di�erent �nal state topologies. For m ~G . 10 eV=c2 the stau
decays at the interaction point. Thus, if chargino pairs were produced in this context,
the �nal state topology would correspond to two acoplanar taus and missing energy and
momentum. This signature has already been studied by the DELPHI Collaboration in the
so-called leptonic channel of the search for charginos within the Minimal Supersymmetric
Standard Model (MSSM) [8].

If the mass of the gravitino lay between 10 and 200 eV=c2, the staus would decay inside

the tracking devices of the detector. Thus, the signature of chargino pair production would
contain one or two tracks with either a kink or a decay vertex. In the case in which a stau
would decay before reaching the active tracking volume, at least one track with a large
impact parameter would be observed. This �nal state topology is almost identical to the
one which would be produced by a pair of staus for the same range of gravitino masses,
and has been studied by the in ref. [9].

Finally, if the mass of the gravitino is above 200 eV=c2, the staus would tend to decay
outside the tracking devices, and would appear to be stable particles. A pair of tracks
with anomalous ionization and Cerenkov radiation would then be observed. Also this

�nal signature has been already studied by the DELPHI Collaboration in the search for
stable heavy particles [10].

Thus, this letter is intended to make use without modi�cation of the analyses already
applied in the three searches described in refs. [8], [9] and [10]. Real data and simulated
SM samples at

p
s � 183 GeV have already been analysed in this context, and the

comparison between real and simulated data is included in refs. [8{10]. No excess over
the expected SM background was observed.
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The selections developed for these three searches were thus applied to simulated data
samples with di�erent gravitino masses, and the results were interpreted in terms of 95%

con�dence level (CL) excluded regions in the (m~�1;m~�+
1
) plane.

Section 2 describes the samples used for this work and presents the experimental results.
Section 3 describes the interpretation of the results within one model with a gravitino
LSP [4].

2 Event sample and results

The search is based on data collected by the DELPHI collaboration during 1997 at a
centre-of-mass energy around 183 GeV. The total integrated luminosity was 53.9 pb�1.

A detailed description of the detector can be found in [11] and its performance in [12].
The program SUSYGEN [13] was used to generate the chargino pair production and

decay. In order to compute detection e�ciencies, a total of 45 samples of 500 events each
were generated with gravitino masses of 1, 100 and 1000 eV=c2, m~�1 + 0:3 GeV=c2 �
m~�+

1
� ps=2 and m~�1 � 68 GeV=c2. Samples with smaller �m = m~�+

1
�m~�1 were not

generated because in that region each chargino decays into a W and a gravitino with an
appreciable branching ratio. In the aforementioned samples, charginos decay exclusively
into a stau and a tau neutrino. The di�erent background samples and event selections
are described in references [8{10].

The generated signal and background events were passed through the detailed simula-
tion [12] of the DELPHI detector and then processed with the same reconstruction and
analysis programs used for real data. Table 1 shows the range of e�ciencies, the main
components and the total amount of the expected background events, and the number of

observed data events for each sample 1. Figures 1 and 2 show the distributions of some of
the main variables used in the analyses described respectively in [8] and [9] for real data,
expected standard model background, and a simulated signal of m~�+

1
= 85 GeV=c2 and

m~�+
1
= 69 GeV=c2.

Sample E�ciencies (%) Main backgrounds Expected b.g. Observed events

m ~G = 1 eV=c2 24 - 35 WW ,  10.7�1:3 8

m ~G = 100 eV=c2 28 - 45  0.63�0:55 0

m ~G = 1000 eV=c2 25 - 63 ��() 0.7�0:3 0

Table 1: Range of e�ciencies, main sources of background, expected background and
observed data events for the di�erent analyses.

3 Interpretation

Since no evidence for a signal was found in the data, a limit on the production cross-
section for chargino pairs was derived for each (m ~G,m~�1,m~�+

1
) combination. Figure 3 shows

the 95% CL upper limit on the chargino pair production cross-section at
p
s = 183 GeV as

a function ofm~�+
1
and m~�1 for �m � 0:3 GeV=c2 and m ~G = 1, 100 and 1000 eV=c2. These

1In the case of m ~G = 1 eV=c2, the expected background and observed events correspond to the sum of the degenerate
and non-degenerate scenarios in the leptonic channels of [8], with errors added in quadrature.
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limits, which directly reect the e�ciencies of the applied selections, can be understood
as follows:

m ~G = 1 eV=c2: When m~�+
1
and m~�1 approach mW, the �nal state resembles that

of W pair production, and the e�ciency becomes smaller. On the
other hand, for small chargino masses the visible energy increases
and the e�ciency is a�ected by the requirement that some missing
energy must be observed. In both cases, the 95% CL limit on the
chargino production cross section is increased.

m ~G = 100 eV=c2: The map of e�ciencies is the result of the convolution of two fac-
tors. First, larger stau masses imply a smaller lifetime, and hence

a smaller e�ciency [9]. Secondly, a larger chargino mass leads to
smaller stau momenta, and to smaller decay lengths.

m ~G = 1000 eV=c2: In this case, the map of e�ciencies is mainly a�ected by the mo-
mentum of the stau, because the method used to identify heavy
stable particles relies on the lack of Cerenkov radiation in DEL-
PHI's RICH detectors. To remove SM backgrounds, low momen-
tum particles are removed, thus reducing the e�ciency for higher
chargino masses, especially in the region of small �m.

Limits were derived in the frame of the model described in reference [4]. This general
model assumes only radiatively broken electroweak symmetry and null trilinear couplings
at the scale of the messengers' masses. The corresponding parameter space was scanned
as follows: 1 � n � 4, 5 TeV � � � 900 TeV, 1:1 � M=� � 9000, 1:1 � tan � � 50,
and � > 0, where n is the number of messenger generations in the model, � is the ratio

between the vacuum expectation values of the auxiliary component super�eld and the
scalar component of the super�eld and M is the messenger mass scale, tan � and � are
de�ned as for the MSSM.

Figure 4 shows the regions excluded at 95% CL in the (m~�+
1
,m~�1) plane. The positive-

slope area is excluded for all gravitino masses. The negative-slope area is excluded for
m ~G � 100 eV=c2. The area below m ~G = 68:5 GeV=c2 is excluded by the direct search
for stau pair production [9]. The area of �m� 0:3 GeV=c2 is not excluded because in
this region the charginos do not decay mainly into ~�1 and �� but on W and ~G. Therefore
no events were generated in this region. Thus, if �m� 0:3 GeV=c2, limits at 85.5, 89.0
and 89:0 GeV=c2 can be set for m ~G = 1, 100 and 1000 eV=c2 respectively. The limit at
m ~G= 1 eV=c2 is also valid for smaller masses of the gravitino, because they lead to the
same �nal state topologies. The same argument is true for m ~G �1 keV=c2. The chargino
mass limit decreases with decreasing m~�1 because in scenarios with gravitino LSP, small

stau masses correspond to small sneutrino masses (both are proportional to �), and hence
to smaller production cross-sections due to the destructive interference between the s- and
t-channels.

4 Summary

Lightest chargino pair production was searched for in the context of light gravitino
scenarios. It was assumed that the ~�1 is the NLSP. Three di�erent searches were used in
order to explore the (m~�+

1
;m~�1) plane in di�erent domains of the gravitino mass.

The search in the context of very light gravitinos (the same as for MSSM chargino pair
production with leptonic �nal states) produced eight candidate events to be compared to
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10.7�1:3 events expected from the SM background. An upper limit on the corresponding
production cross-section between 0.36 and 0.48 pb was derived at 95% CL.

The search in the context of medium range gravitino mass (leading to stau production
with impact parameters or kinks), selected no events from the data, to be compared to
0.63�0:55 events expected from the SM background. The 95% CL upper limit on the
corresponding production cross-section varies between 0.13 and 0.23 pb.

The search in the context of heavier gravitinos (leading to the production of stable
staus) gave no candidate events, with 0.7�0:3 events expected from the SM background.
An upper limit on the corresponding production cross-section between 0.10 and 0.35 pb
was set at 95% CL in the kinematically allowed region.

When combined, these results imply a 95% CL lower limit on the mass of the lightest

chargino of 85.5 GeV=c2, valid for �m � 0:3 GeV=c2 and independently of the mass of
the gravitino.
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Figure 1: Coplanarity between the two lepton tracks (above) and percentage of ener-
gy deposited in a 30� forward cone (below), for real data (dots), expected Standard
Model background (blank histogram) and simulated signal for m~�+

1
= 85 GeV=c2 and

m~�+
1
= 69 GeV=c2 decaying with a mean distance of 50 cm (dark histogram). The seg-

mented lines indicate selection criteria imposed as explained in [8].
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Figure 2: Angle between the hadronic interaction (if any) and the reconstructed vertex

(above), angle between the electromagnetic shower and the direction de�ned by the d-
i�erence between the momenta of ~�1 and its associated � , de�ned at the crossing point
(middle), and angle between the tracks of the kink (below), for real data (dots), expected
Standard Model background (dark histogram) and simulated signal for m~�+

1
= 85 GeV=c2

and m~�+
1
= 69 GeV=c2 decaying with a mean distance of 50 cm (blank histogram). The

segmented lines indicate selection criteria imposed as explained in [9].
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Figure 3: Limits in picobarn on lightest chargino pair production cross-section at 95% CL.
Limits are shown as functions of m~�+

1
and m~�1 for (a) m ~G = 1 eV=c2, (b) m ~G = 100 eV=c2

and (c) m ~G = 1000 eV=c2.
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