The F-package for Input/Output

Volker Blobel
II. Institut fir Experimentalphysik der Universitat Hamburg

The F-package is a general stand-alone package for machine-independent input-
output of data blocks. It is used for almost all data of the H1 collaboration’s
experiment at the ep collider HERA. Automatic conversion between the different
word formats of various computers is performed during the exchange of records
via networks or tapes. The record key of F-package records allows by means of
a machine-independent interpreter language the fast access to a subset of records
and to a subset of data blocks within records. The record key may include assign-
ments to physics classes. Special database-like applications (for example handling
of calibration constants) are supported by keyed-access and ordered-access.

Principles

Efficient input/output of data and transfer between different computers is an essential
requirement of today’s large High-Energy-Physics experiments, where distributed com-
puting plays a large role. Based on the long experience with the BOS dynamic memory
management system [1] a new Input/Output package 2] had been proposed and realized
within the H1 collaboration for the experiment at the ep collider HERA. The F-package
itself is a general ezperiment-independent stand-alone package, which is easily interfaced
to program systems. It has been interfaced to BOS and to LOOK [4], a system used
for the event display and general data analysis (histograms etc.) within H1.

SXUIEEHIBM VAXDEC| ALLIANT IBM RS 6000 MIPS

IEEEH - X b ¢ X HP-APOLLO IBM-MVS SGI
IBM| x - X X DEC station IBM-VM SUN
VAX| X X - X HP RISC MaclIntosh VAX

DEC| x | x x -

Figure 1: The matrix of possible word-format conversions (indicated by x), available on
each computer. A table of the different machine versions is shown on the right.

One principle, followed in the design of the F-package, is the automatic conversion of
the recorded data to the different word formats of different computers. In contrast to
other systems, which know local and ezchange files, no such distinction is made in the
F-package. Instead, there is the whole matrix of conversion options on all computers,
as shown in fig. 1, allowing for example to read a VAX file and to write an IEEE file on
an IBM-MVS system. Each physical record contains the full format information needed
to convert the record in-place by a call to a subroutine; thus the conversion can be done
by any component of a distributed system, for example by a general server.

755

Another principle is the efficient use of disk space and the minimization of the load on
networks. The optimal value of the length of physical records can be selected for a given
application (whereas there is no limitation on the size of logical records). In general
the data analysis in high energy physics requires the frequent access to subsets of data,
for example to events of certain physics classes or to certain runs. A solution to the
data-selection problem had been realized already several years ago in the framework of
the IO-part of BOS, and is successfully used [3]. In addition to the (usually big) data
file a short so-called index file (also called event-directory) is introduced, which carries
only certain identifiers of the logical record (run and event#, physics classes) and the
(physical) record number(s) on the data file. Requested (logical) records are selected
from the information on the index file; the record number, available from the index file,
is then used to access the (physical) record(s) on the data file. In the case of disk files (or
staged files) the Fortran direct-access is used, in the cases of tape files fast skipping to
the requested records is done. Disk files with fixed-length records written in sequential
mode can be read with direct mode. Experience 3] has shown that reading a subset of
records from a large file via index file means almost no overhead w.r.t. CPU time and
load on the network compared to reading a file which contains only the selected records.
In the F-package the methods applied already in the IO-part of BOS are generalized. A
support of database-like applications (search, replace, delete records) has been included.

Another principle followed in the design is user-friendliness. Portability of application
code is an important aspect. Since (1) there are several small differences in the 10 part
of different Fortran77 dialects, and (2) there are very many options within the package,
an interpreter language for the basic IO functions like OPEN, and for the steering of all
options has been included in the package, to allow an identical user-interface on different
platforms.

The record and file structure

Logical F-package records carry a header and one or more data blocks, each described
by a format similar to the Fortran format statement. The record header contains a
record key as shown in fig. 2. The elements of the record key, the record name (eight
characters) and two record numbers, and the record classification are used in the various
selection options. The data part of a logical record consists of a number of data blocks,
each identified by a name (eight characters) and a number, and described by a format;
the data part of each block may have any length. In a given application the parts of
the logical record (record header, block header, data) are transmitted to the system by
a set of calls and mapped to the physical records.

Database-like applications. Certain additional operations are provided for database-
like applications with F-package files, for example for the handling of calibration data,
with the so-called keyed and ordered access. Reading of records is in the order of the
kcys, either forward or backward (regardless of the order of writing); prior to reading the
file can be positioned to any key, allowing search operations in an efficient way. Records
are replaced by simply writing the new version to the file. The special operation are

756

Record name | | | . ' U] Example: [RIU/N'E'V.E!N!T]

record number A run#

1
record number B I:]
]

Figure 2: Components of the record key. The assignment used by the H1 collaboration
for event data is shown on the right.

classification

realized on the IBM-MVS system with the "keyed access” extension of VS Fortran. The
simultaneous write-access, available with this extension, is an important property for
the central application in the H1 database (MDB)[5]. In a test version of the F-package
the special operations are available with standard Fortran too, simulating the keyed
access with Fortran direct access, called ”ordered access”. A copy of records between
files with different access methods is possible without any loss of functionality, since the
basic record structure is identical for the different access methods.

Network access. F-package files can be transmitted over networks by standard meth-
ods (FTP, NFS). Access to single records on another system is possible with a server
(FPserver), which is part of the F-package. The remote file access has been implemented
in a standard client-server model. There exist versions of the FPserver for IBM/MVS,
for UNIX-workstations including DEC-stations and for Macintosh PC’s. The network
part of the F-package has been written in C and is based on the Sun Remote Procedure
Call (RPC) library with the underlying transmission protocol TCP/IP. The FPserveris
running on the DESY IBM mainframe and on some UNIX computers since more than
a year.

The interpreter language

The interpreter language is used to steer all options of the F-package in batch or in-
teractive applications. The rules for the source form are identical to Fortran90 with
blanks being significant. Statements start with a keyword. They are interpreted and
immediately executed. Examples for OPEN statements are:

OPEN INPUT FILE = "F99ABC.DATA1,F99ABC.DATA9” HOST=DSYIBM

OPEN OUTPUT ACTION=WRITE FILE = ”F99ABC.NEW”' SPLITMB=200
In these examples INPUT and OUTPUT are symbolic file names, used also in 1O-calling
sequences and selections statements. Multi-file input and I/O via a server (keyword
HOST) are supported. Other options allow for example staging or the output of files of
limited length with automatic generation of file names (keyword SPLITMB defines the
space limit in megabytes).

There is a variety of possible selection criteria for records; certain criteria can also

757

generate an end-of-data condition for reading. The statement to select records (or
more general: to select data) start with the keyword RSELECT, and are followed by the
symbolic file name and one or several selection specifications. A simple example with
(read) selection of certain records, specified by their record number, is

RSELECT INPUT RECORD = 1:3, 90:100, STOPMB = 10.
Only records 1 to 3 and 90 to 100 are read from the input file. The end-of-data condition
is reached after record 100 or after reaching in total 10 Megabytes (keyword STOPMB).
Further selection options make use of the information in the record key. They allow to
select records with certain record names and (assuming event data with the assigment
by H1 shown in fig. 2) from certain runs or certain events. In the latter case the
complete record key is specified; the statement

RSELECT INPUT RECKEY = 'RUNEVENT’ 3033 17, &

RECKEY = 'RUNEVENT’ 3035 113

has the effect, that only the two records (events) with run# 3033, event# 17, and run#
3035, event# 113 are read. A very important option is the selection of events from one
or more physics classes, stored within the record key (see fig. 2). For example, the
statement

RSELECT INPUT CLASS = 'RUNEVENT’ 2, 8:10 ! D* candidates
means selection of all events from physics classes 2, 8, 9 or 10. Whenever meaningful,
different selection criteria can be combined, and are possible for input and output.
For almost all keywords the selection can also be inverted, for example the keyword
NOTRECORD indicates records to be skipped. Another option allows to select data
blocks within records, by specifying the names of data blocks to be accepted; the use of
this option requires of course, that the receiving program (BOS in the H1 case) allows
such a suppression of data blocks. Further keywords are CLOSE, REWIND and FILECOPY.
The statement

FILECOPY INPUT TO OUTPUT
copies the records from one file to another, eventually with selections, if these are defined
for the files by RSELECT statements.

References

[1] V. Blobel, The BOS System, Dynamic Memory Management, 2. updated printing, Report
DESY R1-88-01 (1988)

{2] V. Blobel, The F-package for Input/Output, H1 Software Note 1990; P. Binko, V. Blobel,
Z. Szkutnik, H1 Software Note 1992.

[3] M. Delfino et al., Rapid access to Event Subsamples in Large Disk Files Through Random-
Access Techniques, Computing in High Energy Physics '91, Proceedings, Universal Academy
Press, Tokyo (1991) p. 353-357

[4] V. Blobel, LOOK, a system for Data Analysis, H1 Software Note (1990, 1991, 1992)

(5] L. Criegee, MDB, Bank handling in the H1 data base, H1 Software Note (1992)

758

