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Kramers and Wannier’s successive screw method is applied to the three-dimensional
Ising lattice gauge system (I X m X 00). A sparse and large dimension 23™m~1 x 3/m—1
transfer matrix is to be dealt with. The partition function as the largest eigenvalue
of the transfer matrix is directly calculated by iteration on a supercomputer with
several GFLOPS of speed and several Gbytes of storage. This approach is entirely
different from a computer simulation.

Anomalous behavior of the specific heat thus obtaind even for rather small
values [ and m implies the existence of a phase transition of the second order.

Considering the high performance of presently available supercomputers, we are tempted
to solve the eigenvalue problem in the lattice gauge theory directly by a huge computer,
in a quite different way from computer experiments such as Monte Carlo simulations.

By means of Kramers and Wannier’s successive screw technique [1], the eigenvalue
problems of the two- and three-dimensional Ising spin systems were previously solved
on general purpose big computers [2](3]. In fact, a similar calculation for the three-
dimensional Ising lattice gauge system has required a computer with faster speed and
more storage [4].

Assuming a hypercubical lattice in d-dimensions with unit spacing, we compute a
partition function in the case of a pure gauge feild,

7 = 9—Nd S exp(K Y mipesiias), (1)

{pij==x1} plaquettes

where N is the total number of sites, a variable p;;(= 1) is assigned to each link (i)
of neighboring sites, a set of four neighboring links is a plaquette (ijk!), and K is the
coupling parameter which is inversely proportional to the temperature.

Table I. The duality relation between
pseudocritical parameters Ko and K
approximately holds.
Ixm Ko Kg Sinh?Ko-
sinh 2K
2x2 0.2886 0.6582 1.0555
2x3 0.2694 0.6681 1.0011
2x4 0.2626 0.6731 0.9847
Jx2 0.2756 0.6675 1.0248
3x3 0.2577 (0.6774) 0.9740
3x4 0.2512 (0.6824) 0.9587
4x2 0.2698 0.6731 1.0142
4x3 0.2514 (0.6830) 0.9604
4x4 0.2451 (0.6880) 0.9453

Fig.1. A part of the simple cubic lattice shows how
each torus-like layer is continuously connected with the
next layer.

373



In the three-dimensional Ising lattice gauge system, suppose that a multilayer torus
consists of n layers. (Fig.1) Over the surface of each torus layer, Im sites are distributed
along a continuous line twisting its way in a screw-like fashion. Each torus layer is contin-
uously connected with the next torus layer, so that Imn = N sites in all are distributed
along a continuous line throughout a simple cubic lattice. As a periodic boundary con-
dition, the (n + 1)th layer is regarded as equivalent to the first layer. We eventually let
n — 0o.

Taking into account the Boltzmann exponentials, we obtain the eigenvalue equation
from the figure,

M(K)A(K) = A(K)A(K) (2)

where M (K) is the 23™ x 2%™ transfer matrix, which can be reduced to two 23m=1x 93im=1

irreducible matrices Vi(K). Insofar as we discuss the thermal properties, we have only
to find the largest eigenvalue of V,(K) :
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where f;, g, fi, gi stand for the submatrices, each row of which has only eight nonzero
elements consisting of e*X and e*3X.

The largest eigenvalue A,,; of Vi(K) is calculated by iteration and gives the parti-
tion function Z as
Nlim N InZ =1n Aoz (4)

Then the specific heat is evaluated by

C, &1n Aoz
7= K"’W (5)

Figure 2 shows the C,/R versus K curves for the three-dimensional lattices (I x m x o)
for Im < 8. The fact that a sharp peak in the specific heat has appeared even for rather
small values of [, m, implies the existence of a phase transition in the three-dimensional
Ising lattice gauge system. By means of an appropriate extrapolation, the maximum value
of the specific heat for the lattices (3x3x00) and (4x4xc0) are estimated as in Fig. 2.

The peak value of the specific heat linearly increases with the logarithms of ! and
m, which suggests the second order phase transition. (Fig. 3)

Combining the pseudocritical parameters K, and K3 calculated separately for the
Ising spin system and for the Ising lattice gauge system, we see that the duality relation[5)
approximately holds for rather small / and m. (Table I)

Then, conversely assuming the duality relation and using the data of the pseudocrit-
ical parameters for the Ising spin system ({,m < 12), we obtain Fig. 4. This figure shows
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how the pseudocritical parameter approaches to the bulk value, K. = 0.7613, which is
estimated from the Padé approximants value for the Ising spin system together with the
duality relation.

As for the four-dimensional Ising lattice gauge system, the least lattice (2x2 x2 x c0)
needs 32 Gbytes of storage. The calculation will be carried out soon.
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Fig.2. The specific heat versus inverse tem 2 s 6 8 10 12 1

perature curves are shown for the three-

dimensional Ising lattice gauge system. Fig.4. The pseudocritical parameter Ko approaches to

the bulk value K, as [ = m increases.
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