A Parallel and Distributed Environment in GA.SP Data Acquisition
System

B. D'Avanzo. M.De Poli, G. Maron, M.L.Mazza, S. Scanferlato, G Staiano, X.N. Tang
G. Vedovato

INFN-Laboratori Nazionali Di Legnaro
Via Romea 4, 135020 Legnaro (Padova)
Italy

Abstract

A parallel and distributed environment of GA.SP data acquisition system is developed in INFN-
LNL. The system consists of various tools distributed on from UNIX workstations to Transputer
NETwork(TNET) and implemented by Yacc, X-Window and Occam Toolset etc. In general, TNET is
a multichain architecture in which each chain is a pipeline machine for number crunching. Parallel
programming on this TNET is assisted by NEO compiler and TNET shell and communication
between TNET and outside is through a VME workstation which is connected to other high level
control workstations by Ethernet.

1 Introduction

GA.SP is an array of suppressed Germanium detectors which consists of 40 Ge-
suppressed dectors(70-80% efficiency) and 80 BGO detectors(multiplicity filter) and its data
acquisition system is designed to deal with 50 us/event and 2MBytes/s. In order to achieve this
high speed on-line data processing, a parallel and distributed architecture was designed and
reported elsewhere[1]. The general layout of this data acquisition system is in Fig. 1 and major
components of this system are summarised as the follows:

1) A special designed distributor(5] injects the event from FERA bus into the TNET

based on round robin and interrupt request scheme.

2) About 100 nodes of Transputer NETwork - TNET is used as "number crunching"”

machine for the major computation in the data processing.

3) A number of workstations connected via a local network is used to analysis data and

control data acquisition system, the latter is the host of TNET.

4) A Nuclear Experiment Oriented(NEO) Language has been developed to facilitate

writing data analysis program.

Event from FERABus ¥

1 J J J e %0 ﬁeglems//s | Format { Formar H Format |
|T-3vent Distributer yles/s
VME
e B —~— | Check |
Transputer Network Transgu[er
(TNET) Links |
! |
VME Host
|
] e
[Analysis |—————
Fig. 1: General Layout of GA.SP Data Acquisition System Fig.2 Achain of Transputers

A great effort has been dedicated to developing the appropriate softwares to build an
integrated parallel and distributed environment based on this architecture since 1991 and we
report four major modules here: User Interface, Unix Server, NEO Compiler and TNET Shell.

2. User Interface
The aim of the User Interface is to hide all the underlying NEO, VME and TNET

processes which are introduced in the following sections and to give users a comfortable and
effective environment for nuclear measurements. The whole interface has been developed on an

297

HP 9000-750 series computer using X-Window 11R4 and Motifl.2 standard libraries. As a
development tool, HP Architect 2.0 is also extensively used.

The main part of the interface is the "Open Control Panel" which handles the TNET
commands(Start, Stop, etc.), the setting up of the whole system (VME, TNET and CAMAC), the
Tape operations like mount and finally the execution of any predeclared display or analysis
program.

A particular effort has been spent to realize the graphic display interface, "Spectra
Manager", since we have to deal with a large number of monodimensional spectra either for
measurement control or for on-line analysis. For this reason a dynamic memory based network
data structure has been developed to handle the properties of the histograms[3]. The data
structure does not impose any limitation to the maximum number of histograms handled and is
used by a geometry manager for the layout of the display. Actually the user can switch between
16 different "screens" with any number of histograms displayed and for every screen he can
recursively select histograms to obtain from them a new higher level display configuration. To
allow easy comparisons, every histogram can be in a "independent” or "homogeneous” state with
regard to scaling and offsetting operations which are performed dynamically with respectively
private or global scroll bars. Standard analysis tools like energy and width calibration, peak
search, peak integration, multiple gaussian fit, etc are also provided.

A two dimensional display interface with the same characteristics and an interactive NEO
program generator tool are now under development.

3. Unix Servers

Because of the complexity of modern data acquisition system, one of widely used methods
to build such system is the distributed computing technology. It consists of a network
connecting the needed computing nodes in which each one performs some special functions
which it is apt at. The Remote Procedure Call(RPC) technique is then used to deal with the
communication among the nodes in the network. A VME Unix workstation is chosen as a host
to the TNET with 4 x 64 MBytes histogram database which can be accessed by Transputer
directly. Four types of server have been developed on this Unix workstation to support the
communication between HP workstation and TNET .

The Host Iserver is a modified Inmos Toolset Iserver which is transplanted into VME
workstation to support loading and debugging Occam program because the object code of NEO
language is Occam. The original Iserver only supports the link level accessing Transputer and is
not enough in our case. By using shared memory IPC mechanism, our host server can support
both link and shared memory communication schemes. The current Host uses two Transputers
to separate the compilation and communication in order to support concurrent activities of the
running and compilation of NEO program.

The Message Server is in charge of all the information exchange between the VME
workstation and TNET. Its communication is through both one dedicated Transputer link and a
dual port memory in which the link passes the special signal to coordinate the read/write
operation and the dual port memory contains the corresponding parameters whose dimensions
are usually big. Because we adopt dual port memory mechanism, the message server actually
consists of two parts, C and Occam components respectively. Both can look through the same
external memory to exchange message.

The HP Server is facing the HP by receiving request from the HP workstations and calling
the corresponding TNET servers to execute them. The main issue here is to divide the remote
requests into different groups so that each group can use its appropriate protocol to pass
parameters avoiding unnecessary data transfer. The reason is that RPC call always transmits the
fixed amount of data and different requests usually don't have the same parameters. For example,
the Start TNET hasn't any parameters to pass but the command of Loading program to TNET
needs a large array to contain the object program. So, grouping remote requests will increase the
RPC call efficiency.

298

The last server is the Histogram Server which dumps the histogram database to HP
workstation for visualization. Due to the big dimension of histogram, RPC call is not enough to
deal with this dumping and socket mechanism is adopted to access the VME histogram memory
directly. During current operation, all workstations are connected by Ethernet with TCP/IP
protocol which is only at the speed of 500KBytes/s. A FDDI ring has been set up and tested
showing the speed of 2MBytes/s for the future experiment.

4. NEO Language

As the Occam is a concurrent language and unfamiliar to ordinary users, a Nuclear
Experiment Oriented(NEO) Language has been developed to support easy programming on the
TNET. Since the NEO has been reported in [2], we only summarize the characteristics of NEO
here and introduce its new features in current version.

1) The NEO is a section based C-like structure language. There are six sections in the
NEO: Format, Check, Calibration, Histogram, Filter and Analysis which are corresponding to the
general steps used in data processing of Nuclear Physics Experiment. Each section is a
independent computation unit and can be executed concurrently. The event schedule between
sections is manipulated by the compiler and programmer need only concentrate on the logic part
of his NEO program.

2) The NEO not only supports basic data types such as Integer, Boolean and Real but also
high level data structures like histogram which is necessary in data processing of Nuclear
Experiments. So, programming in NEO will become more easily by using those domain specific
structures.

3). Each section of the NEO program is allocated to one or several Transputers depending
on the its complexity, see Fig. 2 . But the assignment of Transputers is transparent to the user.
Each section is accessed by its logic name no matter what actually the architecture is. The NEO
hides end-users from the details of hardware architecture and assists them to do concurrent
programming.

NEO is implemented by standard Unix tools Yacc and Lex. Thus, it's easy for us to add
the needed features. The first version of NEO has no I/O abilities and the program behaviour
can't be changed during the running. But interactive communication with NEO program is
compulsory during the program debugging and experiment monitoring. A new data type
MESSAGE is introduced in the NEO to assist user interaction with the running program
dynamically.

There are three levels of MESSAGE which can be used to change program behaviour:
single variable, array of variables and a section of program. A user can associate a BOOL
variable with a procedure and control whether using that procedure or not by issuing the
MESSAGE command to modify the value of the BOOL variable. For the calibration constants,
user can send an array MESSAGE to adjust the corresponding calibration process. Furthermore,
if user wants to dramatically replace his algorithm in one section, he can dynamically reload
whole section program while keeping other sections unaffected. For example, dynamic loading
the Analysis section doesn't affect the data flow to the Tape as well as the Filter section
processing.

5. TNET Shell

TNET is the key part of GA.SP data acquisition system and we can look through it in two
levels. On the first level, TNET is a multichain structure in which each chain is independent and
works in pipeline, see Fig. 1. Because the event distributor has two T222 Transputers on board,
upmost § chains can be supported. The strategy of distributing event is combining the round
robin and interrupt request which is sent by each chain so that not only events can be divided
evenly but also the unready chain can be skipped to achieve both high speed and fault-tolerance.
On the second level, each chain consists of the fixed sections corresponding to NEO language
and they are arranged according to the requirement of data analysis, see Fig. 2. Because we use

299

T222 Transputer for the Format and Check sections and T800 for others, the Convert node is
inserted in between to transfer between 16 bits and 32 bits which is unseen from the NEO point
of view. One of key principles in designing pipeline machine is to keep every stage balance.
TNET solves this in two ways. First, for those sections whose computation are heavy as well as
every event must be processed in them, the farmer Transputer array is used to speed up their
computation like Format section. Second, for those chains in which events are not required to be
processed in 100 percent, the software interrupt request is used to make it work as fast as
possible so that the whole chain processing is not blocked, such as Histogram and Analysis
sections.

The TNET shell is built on the above architecture and assists user to operate TNET. There
are three modules in TNET shell: a special router for message passing, a command interpreter
for data flow control, and the tape driver for storing data.

The TNET router is a distributed one because each Transputer uses its neighbourhood
structure to direct message passing and the whole structure is represented distributively on each
Transputer node. Thus, the complexity of routing function in each node depends on how many
connections it is linked to its neighbours. From Fig. 2, we can see the router for the first Format
is more complex then that of the second Format. Due to the limited links of each Transputer, the
TNET router implements the virtual channel to overcome this limit so that different information
flows such as events, commands, feedbacks, loaded program, partial and final results etc. can fly
through TNET freely and safely through the four available links in each node. Because there is
only one link to connect VME workstation and TNET, the router use a special propagation
strategy to broadcast some commands in order to reduce the link overhead between VME host
and TNET, especially when dynamically changing program.

The command interpreter of TNET just relies on this TNET router to direct information
flows in the network and the main idea here is to reduce the number of control signals which are
across the Transputer link because it will deteriorate the network performance. For example,
when using the polling of interrupt request to avoid sending unacceptable message, it's better to
use a simulated buffer on the output link rather than asking next Transputer through the link
directly. The most difficulty command in the implementation point of view is Dynamic Loading
command because it needs to kill some active process while keeping the event flow active. We
implemented it as follows: first buffering event message, then sending process killing signal to
stop current process and using lower level facility provided in Occam Toolset[4] to load
program again. After the replacing operation, release the event flow so that the processing returns
normal.

The tape driver is written in Occam and run on a SCSI board which can arrive up to the
speed of S00KB/S for EXBytes-8500. The data path for collecting data is organized as a three
level tree structure because of the link limitation of Transputer and two board controller are used
to reach the speed of logging data to tape in 1MBytes/S. There are two modifications to the
original tape driver, one is to support STK-4280 tape for higher speed and the other is to provide
asynchronous tape commands for concurrent operations, such as writing, loading and
rewinding.

Reference

[1]. D. Colombo et al, "The Transputer Based GA.SP data Acquisition System", IEEE Transaction on Nuclear
Science, April 1992.

[2]. D. Colombo et al, "A Multiprocessor Based Language for Data Processing in Nuclear Physics Experiment”,
IEEE Real Time '91, Julich, Germany, June 24-28, 1991.

[3].D.E. Knuth, " The Art of Computer Programming”, Vol. 1, Addison-Wesley Pub. Company, 1978.

[4]. Parsytec, "Occam 2 Toolset User Manual”, Dec. 1990

[5]. Z. Cavedini et al, " A FERA to Transputer Interface board for the Gasp Experiment”, LNL-INFN 58/92.

300

