HANTLTONIAN THEORY AS A TOOL FOR ACCELERATOR PRYSICISTS

H.L. Hagedoorn, J.I.M. Botman, V.J.G.M. Kleeven
Eindhoven University of Technology,
Cyclotron Laboratory, Eindhoven, The Netherlands

Abstract

Hamiltonian theory is treated for the purpose of the
description of orbit motion in accelerators. The
fundamental theory is presented leading to Lagrange’s
equations of motion, the canonical equations of motion,
flow lines in phase space, canonical transformations,
conservation laws, etc. The theoretical principles are
applied to a number of practical cases.

INTRODUCTION

Classical Hamiltonian theory has proven to be an adequate tool for

analytically solving complicated motions of charged particles in
electromagnetic fields as exist in accelerators.
The main subject of these lectures is not to go into details of the
foundations of classical mechanics but more to show that the results can
be used fruitfully. For acquiring deeper insight a number of excellent
books is available [1-6]. Purthermore the contribution of Bell (71,
proceedings of the CERN Accelerator School 1985, should be read.

As a rather vague remark one can state that the Hamiltonian theory can
be seen by the user as a convenient way to "manage" the mathematics
leading to a deep insight in the phenomena and yielding practical model
descriptions for the particle orbits. In this respect one should remember
that the matrix theory for ion optics, which in itself is a consequence of
the Hamiltonian theory, behaves roughly in the same way: simple
representations and meaningful quantities as matrix elements, as well as a
well organized way of calculation.

The Hamiltonian theory should not be seen as a replacement of numerical
methods: for orbits in realistic fields it gives understanding but
generally not exact solutions in a simple way. It helps in finding errors
in the numerical programs, in finding the right way of solving the



equations, in indicating what the right presentation of output quantities
should be, etc.

In the first section Hamilton’s principle, Lagrange’s equations of
motion and phase space properties will be treated. The second section
deals with applications of the variational integral (circulation integral,
principle of least action, etc.). The harmonic oscillator will be used as
a representation for an ion optical lens. In part 3 the basic principles
will be applied to explain the canonical transformations. Finally in part
4 some examples of transformations are shown together with the use of
action and angle variables and a qualitative indication of the adiabatic
invariance of the action integral.

1. BASIC PRINCIPLES AND CONSEQUENCES
1.1. Lagrange equations of motion

In real space a function L(qy,qx,t), called the Lagrangian, is
assumed, where qy means a coordinate, q, the time derivative (i.e. the
velocity) and t the time. The index k indicates that one deals with all
relevant degrees of freedom.

From variational calculus it is found that if the variation of the
line integral for fixed end points and times is zero, i.e.:

2
6 { L(qk;(.lkat)dt =0, (1)
then
d ,dL dL
T @ - %o (2)
dt 5qk Q

The variations may be taken between two fixed points (space, time), see
Fig. 1.

ql’tl

Figure 1. 4 trajectory in real space between two fized points and times
and a small variation.



Until now we have not said anything about physics. However, the equations
of motion in classical mechanics follow the equations (2), the Lagrange
equations of motion. Consequently the quantity L has a physical meaning; L
is the Lagrange function or the Lagrangian. Equation (1) is called
"Hamilton’s principle", while the integral is called "Hamilton’s principal
function". In the case of motion in a potential field, L has a simple form

L=T-V, (3)

- where T is the kinetic energy and V the potential energy.

The equations have a representation which is coordinate independent
and thus may lead to general results and also to an easy choice of a
coordinate system that fits the problem in the best way.

If the end points are not fixed but varied with 6q1, 6q2 one gets

2
5 1t = [%sq] .
6qk 1

1.2. Hamiltonian function

The Lagrange equations of motion can be rewritten with the
definition:

Py = —/— > (4)
k i
to
L
R T (2a)

k

where Py is called the canonical momentum. Note that %%— acts as a
k

gradient of a potential function, i.e. as a kind of force.
A function H(pk,qk,t), called the Hamiltonian function or the

Hamiltonian, is defined as:
H(Pk’qkat) = pkék - L(qkaék:t)- (5)

(Note that in a product like pkdk’ we mean the summation over the index k.

Sometimes even the index will be omitted; at places where one dimension is



used, it will be explicitly mentioned.)
On the left hand side of Eq. (5) we have a function of P>y »t, on

the right hand side a function of py,q, dk,t which gives some confusion.
However, in the Hamiltonian formalism the (pk,qk) should be taken as the
two independent variables in the same way as we have the (qk,dk) in the
Lagrangian. The transformation from (qy,q) to (py,q) with Eq. (4) as the
relation between py and (qk, dk) is known as a Legendre transformation.

Taking variations at both sides of Eq. (5) we get

_0H ol i) |
o8 = 5&; 6qk + 35; 5pk + 5 ot
k qu
We had already, by definition (Eq. (4)), P = Q%—. Therefore the coeffi-
dq
k

cient of 6&k cancels. Further the coefficients of 6qk, 5pk, 6t must be

equal on both sides. This yields

gE 4L ) S/

P SR SR SR (6)
: : . oL
The Lagrangian equations (2a) show that p, = . Thus
k qu
. o . il
= = - . 7
Qe ‘aﬁ ’ Py ‘aﬁ (7)

These are the canonical equations of motion. The Hamiltonian H represents
the energy of the mechanical system. In the simple example of a particle
in a potential V we have
2
H=5 +V.

Relativistically we have H = W + V,

where W the total energy = (E? + p2c2)1/2, with E_ the rest energy of the



particle and ¢ the velocity of light:
= {E% + p2c2}1/2 + V.

Having a system which obeys the canonical equations, one finds a
Hamiltonian function Eq. (7), via Eq. (5) a Lagrangian function and the
Lagrangian equations of motion and thus also Hamilton’s principle, the
variational integral Eq. (1), is valid (this is illustrated in Fig. 2).

Canonical equations (7)
l T

Hamilton function (7)
l 1

Lagrangian function (5)
| T

Lagrangian equation of motion (2a)
l T

Hamilton’s principle (1)

Figure 2. Formulations of the laws of mechanics.

Now Hamilton’s principal function can be written as
2 2
{ (P gy - H)dt = { (pdqy - Hdt).

A variation of the endpoints as well as the end time thus yields

2
(P, by - H&t]l.

1.3. Incorporation of a magnetic field
The Hamiltonian of a charged particle in an electromagnetic field

2
- eA
H:K.LQmiL.;ev, (8)

where p is the canonical momentum, A the vector potential of the magnetic
field and V the electric potential (p and A are vector quantities). As the

can be written as

kinetic momentum P equals (p - eA), the Hamiltonian function still repre-
sents the total energy. The derivation of Eq. (8) will be done by first



setting up the equations of motion and then writing these in such a way
that they are in the canonical form. The Hamiltonian then follows
directly.

At first a simple case is treated where the vector potential of the
magnetic field is represented by one component only: A,. The components of
the magnetic induction now are

_0A 0A
B = , B =
z dy y 0z

_ _Jd8 _ 4 . . .
Further, as V x B = - 5= = - = (V x A), vhere E is the electric field
strength generated by a time variation of the magnetic induction, we have

_ _ OA
E=- i
The equations of motion become:
P, P P,
X:—m, y:—-%, z:_m,
0A
_edV e €03y

Py =" tm (BB, ~PBy) -7

s _ edV e

Py—_W+ﬁ(—Psz)’

_edV e
P =--35 +r (PxBy).
o S o,

Substituting in the last three equations y for == etcetera and Bz =" %

etc. and rewriting the magnetic field part

€ an
B (Psz - Psz) - € 3t =
.\ oA oA

BV U U U
el I iy R )RR



. . 0A
we get P_ = - ¢ N ek +ex X P = mx
X ox X ax ’

where A is the total time derivative of A . Ve define a new (canonical)

momentum p_ = P_ + eA . Then the two equations of motion in the
X x x q

x-dimension are

oA
Py =~ € 3% + ex EEE ’
P, eAx
X= 2w

or substituting x in the first equation

oA
. av ? _ N
Py = "¢ & * % (py - edy) EEE T T x>
Py €y ? O
X owom T ek g

These equations of motion follow from a Hamiltonian

1 2 1 2 1 2
B =5 (px - eAx) tog Py tag Pyt ev.

The other two sets of equations (for y and z) also follow from this
Hamiltonian.

Next the derivation in vector notatiom: A,P,x are vector quantities.
Then

dp oA d
F=-W-% P (V*), TP

(vhere for simplicity e,m = 1 is taken). The operator * represents the
cross product. Vith P * (V * A) = V(P - A) - P - VA it follows that



dP
T=-W K P-VA + V(- A),
J
-1
_dx
P =F .
Take a new momentum p = P + A.
dp _ d(P+A ?
- -13%-1 = - W+ V(P - A) - VH, (9)
dx _ 5 _ 1 vy (10)
a'f‘p ‘p9
where by definition V.H = (w2 , -0- LO)g.
P [ M

As a remark we note that in the old system V(P -A) works on the vector
component. In the new system we have to take

V(P - A) = V((p-4) - A) + 2 V(A - ). !

From Eq. (9) ve find B=V - (p-4) - A -5 A - A+ £(p). From Eq. (10)
we find H = % (p -A)2 + g(x), where f(p) and g(x) are arbitrary functions

of p and x respectively.
It follows that

B=V(x) +5 (p- )2

1.4. Coordinate system

Using the equations (1) and (5), Hamilton’s principle can be written
as

5 J(ply - Bt = 0,



or 6 pdg, - Hdt

|
o
~.

1]
(=4

or 6 fp-ds - Hdt

From this variational integral all equations of motion are derived. The
formulation is such that it is coordinate system independent. For
cartesian coordinates we have

p-ds-= pxdx + pydy + pzdz;
for cylindrical coordinates
P
p-ds=pdr+ (—%) rd8 + p,dz;
for curvilinear coordinates (curvature in a plane)
Ps
P-ds=pdx+ () (1+kx)ds+p,dz.
Setting up the Hamiltonian one has to realize that the components of the
P p
vector p are (pr’ ;g , pz) and (px, T?Ei , pz) in the case of the cylin-

drical and curvilinear coordinates. The coefficient k is the curvature
(= %) and is generally a function of s.

The Hamiltonians for cylindrical and the above given curvilinear
coordinates are (taking againm = e = 1)

2 P 2
0= % Py + % (—%)2 +p, + V(r,8,2),
p2
2
H = % pi + % (I—i—;i + % p, * V(x,s,2),
+kx

and e.g. with a vector potential for the last representation

2 1 ,P 1 2
B=g (p, - A) +2(1S ~1)% 4 Lo, - )%+ V(x,8,2).
+kx

1.5. Some simple properties of the Hamiltonian
1.5.1 A purely time-dependent part in the Hamiltonian can be omitted.
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B =1, + (1),
.o
% - ®
N L
be- T m

Thus f(t) has no meaning for these equations of motion and thus may be
skipped. As a natural consequence a constant can also be skipped.

1.5.2 If H does not depend explicitly on time it is a constant (constant
of motion or integral of motion):

H H. Ji. JH
H=H(p,q), %E=?qu+35p+ﬁ,
g% = 0 by assumption, q = + g% , P = - g% ,
thus %% =0, H = constant.

1.5.3 If a coordinate is not explicitly present in the Hamiltonian, then
its conjugated momentum is a constant of motiom:

Suppose qQ; is not present

- _ _Oh _ - q =
P; = - 36; =0 - p; = a = constant.

q; is called a cyclic coordinate. In one degree of freedom we have

di =+ g%T = g% = constant,
i

taking o as a parameter.

Therefore q; = Ct.

1.5.4 If a Hamiltonian can be split in separate parts, each part depending
only on one coordinate and its conjugate momentum, then each part can be
treated as a separate Hamiltonian:

H= ? Hi(pi’qi’t)’
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_— BHi . oH
p; = 3az ) q = 35; .

1.5.5 For one degree of freedom a constant Hamiltonian means that the
problem is solved:

i = H(qi,pi) = constant.
For each q;5 the corresponding Py is found algebraically. The aim of the
problem treatment in orbit dynamics is often to achieve a presentation for

H that is explicitly time independent.

1.6 Scaling

The canonical equations of motion remain canonical if we scale the
coordinates and momenta by a constant factor. For example q = eq and p =
p. We have

. oH : i
q=%9 pz_gaa
a=aq=48, $-p--94.

Thus the new Hamiltonian H becomes

i = of.

In the same way we find for q = q, p = fp that H = gH.
Scaling the independent variable also leads to a change of the
Hamiltonian:
t = vt then H = H/u.

So for q = aq, p = fp, t = wt one finds

As a special case one may put
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then
. d dg _ O
q= =U(t) = = ;
%= 5

and we have in the new time

q=%e, p=- B,

= R
S0 H = ETET .

This may sometimes be helpful if the revolution frequency depends on time
(e.g. in a microtron).

1.7. Choice of the independent variable
The variational integral is symmetric in coordinates and time, in
momenta and - H (minus H):

] J pkqu - Hdt = 0.

The equations of motion follow from this variational principle. If we take
- K as Py and t as qy we have

) J p,cdq,c =0, k=1,2, 3, 4.

In fact any coordinate can be used as new independent variable ("time")
and the negative of its conjugated momentum as the new Hamiltonian.
This property is especially useful for Hamiltonians that are not

explicitly dependent on time: i.e. g% = 0. Then

H = H(p,q) = const.
Solving algebraically for p; ve get

K=-p;=-p,(p,q,q;,H).

From the Hamiltonian H we get a set of six differential equations. In the
Hamiltonian K we only have a set of four equations, thus simplifying our
problem. Often the new independent variable can be physically interpreted
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such as, e.g., the position along a central trajectory (closed orbit,
optical axis).

The procedure of choosing a new independent variable often already

amounts to solving the problem altogether (an example is given in Section
2.4).

1.8. The meaning of a first degree part in the Hamiltonian

A first degree part in a Hamiltonian that can be described by a power
series in the canonical variables has a close connection with a central
trajectory around which small variations can be described. Let the
Hamiltonian be (one degree of freedom)

| = aijxlpJ , i,j = 0,1, .....

For simplicity the coefficients are taken as constants. In that case a
special solution can quickly be given. However, it often occurs that the
coefficients are time dependent, for example in circular accelerators with
a certain periodicity. The derivation of a central orbit in that case does
require some extra work (an example is given in Section 4.1).

As a first remark we note that agy can be omitted. The first degree
part is represented by

alox + a,Olp.

A special solution is found from

M
|

of . i j-1
" = dayx P = 0,

. ol . i-1 3
p:—m:‘laijxl p‘]=0.

From these equations x and P can be solved algebraically, which gives the

special time independent solution Xys Py

A nev Hamiltonian can now be constructed without a first degree
part. We take new variables

X=X-X,p=p-p, .

Further x and p are substituted in H. The new first degree part in H is
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or

2
X+ ¢'x = - a,

being the differential equation for a free oscillation around the

equilibrium point, X, = - 25.

7

1.9. Phase space and flow lines

The coordinates q and the conjugated momenta p are represented in a
six dimensional space, the phase space. The motion is represented by a
flow line in this space. In any case two flow lines can not cross. This
follows from the canonical equations

q=%, p:—g%.

In any point the derivatives, i.e. the local direction of the flow lines,
are unambiguously defined by the coordinates and momenta of that point.

The flow in phase space can be seen as the flow of an incompressible

fluid. If the velocity in the six dimensional phase fluid is denoted by
Ves then

; da;  9p;
. V6—'aq_i+a-f)—i.
94 . 2 . 2
As 7q 1. 55 gp and apl = - aa gp
9; 9994 i 9;9P;

it follows that V - Ve = 0, which shows that the flow behaves as an

incompressible fluid.

This is Liouville’s theorem: The phase space volume remains constant.

For a two-dimensional phase space (qy,px) the study of flow lines
reveals a lot about the orbit dynamical properties. Two flow lines lying
near to each other will show a higher phase velocity if they come closer
to each other, due to the incompressibility (see Fig. 3). By definition
the phase space velocity is given by the canonical equations.
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Figure 8. Two flow lines in phase space.

The study of flow lines shows whether a motion is stable or
unstable; the stability region and the stable and unstable fixed points
can easily be found. A few simple examples illustrate this.

1) H = % pi + % w2x2, ellipse, stable motion.
Scaling x =
i = % wﬁz + % wi2, circle, stable motion.
Scaling time § = 4t
i = % ﬁi + % £2, circle, stable motion,
unit frequency.
= 1-2 1-2 .
2) B = 3 Py -5 x5, hyperbola, unstable motion,
as H = constant, only the difference of 52 and i2 is constant. They
both can grow to infinity.
3) i = % (u—l)(x2 + y2) + D(x3 - 3xy2),

where x and y are the coordinate and canonical momentum respectively (for
cyclotrons they represent the coordinates of the orbit centre). This
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Hamiltonian describes a third-order resonance excited by a third-harmonic
perturbation (used e.g. for extraction purposes in synchrotrons). The flow

lines are given in Fig. 4. .
‘1L\//
i
( d

(1) Stable fixed point
(2) (3) (4) unstable fixed points y /@/

,/<f/fr
/// |
i |
(O, =~ 'A*‘Qr {
I\ &
s L/ b
\\\ ' X
\\ |
K S

Figure 4. Flow lines, separairiz and fized points in the case of a third-
order resonance.

The flow lines are triangularly shaped. We see a stable region,
where the flow lines are closed lines and an unstable region where they go
to infinity (in reality higher degree terms in a Hamiltonian prevent this;
however, these are not incorporated in the above given H).

First : for small values of x,y the second-degree term is most important,
showing a harmonic oscillator motion which is stable (regiom 1).
Second : there are four fixed points. These are found by putting

a o, &=
The question arises which point is stable:
For a stable fixed point we must be able to find a closed curve around it
with a value of H which is for all points on it slightly larger, than the
value of H in the fixed point, or for all points on it slightly smaller.
So in a three dimensional landscape a stable point is either the top of a
mountain or the lowest point of a valley. For an unstable fixed point one

2 2
observes a saddle shape. If g;g and Q—g have different signs, then surely
dy

there is an unstable fixed point. If these second derivatives both have
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the same sign it is not absolutely sure that the point is a stable fixed
point.

In any case in the example given above (see Fig. 4) point (1) is a
stable fixed point. Points (2), (3) and (4) are unstable fixed points.

The coordinates of the fixed points are

(1)x=0,1 y=0,1
(2) x = g y = =
) 23D
(3) x = &, y=-Z,
2{37D
(4) x = - 35, y = 0.

Third : the boundary between the stable and unstable regions is called
the separatrix: In the figure it is the triangle. The equation of the
separatrix is found by substituting in the Hamiltonian the values of x and
y belonging to an unstable fixed point. Then the value of H is found and
one gets the equation for the separatrix

H(x;,y;) = constant = H(x,y).
In the example it follows that

(x +ay + b)(x - ay + b) (x - D) = 0,

where a = / 3, b = vl This equation represents the three straight lines
3D

of the separatrix.

2. THE VARTATIONAL INTEGRAL AND SOME APPLICATIONS
2.1. The circulation theorem
A number of particles start at t, all lying on a closed curve. Ve

follow those particles until t, where they again will lie on a closed
curve (see Fig. 5). From Hamilton’s principle we know that for each

particle the integral
2
S = | (pdg - a),
1

is stationary.
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» 4

Figure 5. Particle trajectories in real space, starting and ending on a
closed curve.

We now make a variation of the starting point, keeping the time t, fixed.
Because t does not enter in this variation we have

Sp = Sy + Poday - pyday,

for two nearby trajectories.

Moving the start point along a closed curve at t; until a trajectory N
which coincides with the first trajectory A we have

Sy =85, + épdq)2—(<jgpdq

and by definition SN = SA'

Therefore é;pdq = constant as a function of time. This is the circulation
theorem. In fact the variation dt may be applied also, as long as we come

back to the original point and time: 4;(pdq - Hdt) = constant.

2
The quantity S = J pdq is called the action integral, or quite often ’the
1
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now given by
i _j-1-

- . i-1 3 - - .
g + 1 aijxo Py X + 3P + ] aijxo Py, P,

in which the original first degree part has been taken out of the
summation. By the special solution of the canonical equations this first
degree part equals zero. The new Hamiltonian H(x,p) does not have a first
degree part. Inspection of the canonical equations of motion following

from H(x,p) shows that a solution X =0 = p = x = p exists. So all
solutions are now described around the central one (xo, po).

As said before, time dependent coefficients give some extra work:
the simple statement x = 0 = p for finding x, and p  does mot work. Also
the new Hamiltonian can not be found by simply substituting x = X + xo(t)
and p = p + po(t). Canonical transformations (see section 4.1) should be

applied.

s H(x + x5 P + D)
(In the treatment above x = x = Qﬂ%gigl = Oi 9%; therefore if
dp

X,» P, are constants, the new Hamiltonian is found by simply substituting

X=X+ X, P = p + P, in the old one.)

As a simple example we now consider the following Hamiltonian

The equations of motion are x =p, p=-a - uzx . The special solution

x = 0 = p yields X, = - 95 s P, =0, and the nev Hamiltonian becomes
W

1
H=§

2
where a constant term 2—5 has been omitted. Combining the two original
20

first order differential equations we have
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2
optical path length’ (see Section 2.3). (Sometimes also J(pdq - Hdt) is
1

called the action integral.)

2.2. An application of the circulation theorem

Ve assume a magnetic field B(r). At t, ve have a number of ioms
lying on a circle with radius r, = p,/(eB(ty)) with p, the kinetic
momentum. Ve are interested in the radius r, at t, if we very slowly

change the magnetic field. At first one would think

Py

Iy = eBitzi ’

thus in case of a homogeneous field, one would expect for a decrease in B
by a factor 2 an increase of r by a factor 2. This is wrong because of the
betatron acceleration which always has its influence, no matter how slowly
we change the magnetic field.

From the circulation theorem we know that é pcands is a constant,

where Pean is the canonical momentum:

Pean = Pkin ~ ©A-

Starting all particles on a circle, there is no reason why the particles
should not lie on a circle at the end of the time interval during which we
changed the magnetic field. Thus

§ pca.nds = é pca,nds"
(t) (ty)

gﬁ (Pysq - eh)ds =<ﬁ (Ps, - eA)ds,
(tq) (t5)

21rr1p1 - e¢1 = 21rr2p2 - e¢2 = constant,



21

2

where ¢ is the enclosed magnetic flux. For a homogeneous field ¢ = 7r“B,

so that with p = eBr we have
2
7r°B = constant.

Thus by a factor two decrease in B the enclosed area of the particles
increases with a factor 2 and the radius 2.

B1 p1/e
r =T B— = -
2 "1 /B [B,5;

The betatron condition follows if we require the radius of the particle

Thus

orbit to be constant for all values of the magnetic field. For very small
values (= zero) the flux will go to zero and also the kinetic momentum.
Thus the circulation integral is zero

27rp - €4 = 0.

Vith p = eBr we have B = —l—g 4,
27r
which shows the betatron condition, stating that the magnetic induction at

the orbit equals half the average induction over the enclosed area.

2.3. The principle of least action and focusing
If the Hamiltonian is time independent we may state Hamilton’s
principle as

S = J pdq = stationary.

S is called the action integral and has a minimum value as long as there
is no image of the two end points in between them (principle of least
action). In this way it equals the statement in optics that a light ray
will follow a path that has the least optical path length (Fermat’s
principle).
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~_.{ image of 1.

Figure 6. Two trajectories in real space.

In the case of imaging we know that many trajectories start from a
source point and come together at the image point (see Fig. 6). Thus all
trajectories have the same optical path length. In Fig. 7 two trajectories
are drawn crossing a magnetic field. From the action integral we know
that, if a and b start at (1) and come together at (2), the optical path
lengths are equal. 0f course we have to consider nearby trajectories.

Figure 7. Two trajectories in real space, enclosing magnetic fluz.

Thus S S

a b?

ey
—~~
O
wl
[
=
!
[¢)
b
~—
(=¥
wm
|

= l (Pyip - €A)ds.

Because we assumed no explicit time dependency the kinetic momentum is a
constant. It follows that
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J Ppigds - l Ppipds = ¢ J Ads - e l Ads,
a a

4; pkinds = e é Ads,

Prin AL = e,

where Al is the difference in geometrical pathlength between a and b and ¢
the enclosed flux. A general focusing condition therefore is

A1=5§€.

Let us apply the general focusing condition on a thin lens (see Fig. 8).

_//"////’////T;\\\\\\\\\‘\\s

a ’ b

Figure 8. Azial and off-azis trajectory through a thin lens.

Al = (x2 + a2)1/2 + (x2 + b2)1/2 -a-b

H

2
= a(l + 55)1/2 +b (1 + J—(—)1/2 -a-b,
a b
for x << a,b
1 2,1 1 1 .2 1
Al 5 X (5 + 5) .

1l
(&}

e
oy

with F the focal length.

S
Therefore F= e

For a quadrupole with length L

_ 1 L dB 1 _
b=alx* s F= /e
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For a sector magnet with an angle a

1 2
$=5 B, f=g75

with R the radius of curvature.

2.4. An orbit dynamical example

Ions moving in a cylindrically symmetrical magnetic and electric
field will be considered. The magnetic field is pointing in the
z-direction, the electric field has a radial component. Thus in the median
plane we have Bz $ 0, Br = BB = 0 and Er $ 0, Ez = EB = 0. In this problem

several of the treated concepts will be used:

- Choice of the independent variable (Section 1.7)
- Elimination of a first degree part (Section 1.8)
- Scaling (Section 1.6)

The magnetic field can be represented by one component of a vector
potential: Aa(r). The Hamiltonian in cylindrical coordinates becomes
1, Pe 2,2 2
B=an { (5 -ehg)” +p]+ p,} + e¥(r) .
The Hamiltonian is time independent, therefore it is useful to choose a
nev independent variable. The Hamiltonian H is equal to the total energy

p.2
of the particle. VWe put H = —%ﬁ . For the new independent variable we take

the azimuth B8. Thus the new Hamiltonian is

2

K=-pg=-r1 {pﬁ -p. -2 meV(r)}l/2 - edgr,

2

omitting for simplicity the vertical motion. Observe that P>

2 meV(r) <«
pg (the electric field is taken as a small correction for isochronism or

for focusing).

The second step is scaling of the coordinates and momenta:

'UI"U
o IH

X = , r =r  (1+x), T =

in which r is a reference radius, not yet defined.
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Then K = EE__ .
oPo

Furthermore we define a normalized, dimensionless electric potential ¢(r)
by:

The electric potential is expanded around the reference radius T,
! 12"
¢=¢0+x¢o+§x ¢O
! d .. . . .
vhere 4 = ¢(ro), 4, = ro(ag)ro, etc. The magnetic induction is given by
B = Bo(l + nx), with n the field index. A vector potential is defined by
2 1 2
eAgr = - er B (x + 5 (n + 1) x7).
(This representation is chosen such that for x = 0, AB equals zero. One
has to note that this is only allowed for time independent fields!)

The third step is an expansion of the square root, keeping terms up

to the second degree and taking ¢0 = 0, the potential at r = r,- The

Hamiltonian becomes
1] ! 1" )
=51 +3 x2 (1 +n+ 6+ ¢o + i (¢0)2 + % ¢0 -x+ (1 + 0)x + % X ¢0,

er B
in which 00

=1 + §; due to the electric field the radius of the orbit
0

will not be given by er B, = p,-

The fourth step is the choice of § such that there is no first
degree part.

1|
6=-§¢0.

2

f n
Thus K = % ™+ % X2 (1 +n+ % b, + % $,)>

in which % (¢;)2 being small, has been omitted. The problem is now solved;

it shows a harmonic oscillator with frequency
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2 _ 1) 1"
vy = 1 +n+ 5 ¢0 + 5 ¢0.

-+ normal magnetic focusing

5 ¢o -+ electric focusing, equivalent to the magnetic focusing as it
gives the radial derivative of the electric field strength

5 ¢, - a special term, which may be seen as an "energy focusing".

It is due to the fact that particles loose or gain emergy if they

move radially in the electric field. This causes a different
radius of curvature outside the equilibrium orbit. The same type
of focusing occurs in the Vien filter.

2.5. A special feature of the harmonic oscillator
The Hamiltonian for a particle trajectory is quite often represented

by H = % p2 + % w2x,

where the independent variable is the pathlength s. Further v = w(s). The
equations of motion are

X =p, p =- x.
It follows that x + v’x = 0.
For a small path element we have Ax = - wxAs.

If wz(s) only deviates from zero over a small path length where x is not
varying significantly, we have
. 9 _ X
Ax = - x - J v'ds = - e
The lens strength is given by

% = J v2ds (thin lens approximation).

Thus for a system which is described by the simple Hamiltonian given
above, one may always consider that system as a lens (thus following the
approximate derivation above as a combination of many thin lenses, thus as
an optical system). The second-order differential equation leads to the
ion optical linear matrix theory, which is not treated further here.
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3. CANONICAL TRANSFORMATIONS
3.1. Canonical transformations

The canonical transformations are in many cases a powerful method
for getting analytical solutions of rather complicated particle trajec-
tories. The aim generally is to transform the coordinates and momenta,
often via several steps, such that the final Hamiltonian is time
independent, easy to understand (e.g. via the study of flow lines in phase
space) and/or shows originally coupled motion as a system where uncoupling
exists for well chosen variables. In all cases it is wise to construct the
trans- formations in such a way that the resulting new variables still
have some physical meaning, as close as possible to realistic practical
quantities.

The Hamiltonian equations follow from Hamilton’s principle

2
5 J L(q,G,,t) dt = 0.
1
In a transformed system we want to have the same principle

2
6| T @yt = o.
1
The difference between the two Lagrangians must be a function that does
not depend on the special path between the points (1) and (2). So we may

put
L(g,4t) - T (q,q,t) = $0008:0)
2

The integral J g% dt only depends on the initial and final coordinates
1
only and thus

I-1-%,

satisfies Hamilton’s principle.

Let us make small variations é&q, 6q, dq, 6&. These variations are
not independent of each other (only two of them can be chosen freely).
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G Lo Gron - Lgg-Logg Lo (8 sqr 674 B sy,
0q oq o q dq
Knowing that P = é? ) P = Q¥ ’

we find that, after equating the coefficients of the same variations, the

coefficients for 6q , 6q yield

p = gg and p = - 9 . (Type 1) (11)

The other coefficients do not give new information, as the reader can find
out for himself.

Both systems follow the Hamiltonian mechanics. Thus
= - - S dg -= ag - . 3¢ - 9
B(q,p,t) =pg - L =pq-1L+ a% =pqg - L+ 35 q + p q+ 3% -

l l

P -P

Thus it follows that H(q,p,t) = pg - L + gﬂ ,

or H=0+9% (,3,1). (12)

The relations (11) and (12) together form the rules of the canonical
transformation. Knowing ¢ the relation between the old and new variables
follow from Eq. (11). The function ¢ is called "the generating function".

An easier method is writing the principal function as J (pdq - Hdt).
Then  [(pda - Bdt) - [ (W3- Tat) = [ a6, 4= 4(a,0)

= J (gg dq + gg dq + g% dt).

Then p = gg , Pp=- gg , H=-1H+ g% .
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The following forms of 4 also obey a canonical transformation:

¢ = ¢(q, I—)at)a (Type 2) (13)
T
$ = ¢(P,<_1,t)a (Type 3) (14)
= - 0 P = - 9¢ , E=1 9
q 5% ’ p P + 3%
$ = ¢(p353t)a (Type 4) (15)

=
1]

q=- gg y q = g% , 0+ g% .

The transformations keep the equations of motion Hamiltonian. Therefore
Liouville is preserved in each system. Later we will see that the phase
space volume is also conserved from one system to another system, trans-
formed into each other by the above given canonical transformations.

3.2. Description of a particle trajectory by a canonical transformation

Suppose we have a trajectory as given in Fig. 9. At all times the
system 1is canonical. Then if we know the equations describing the
trajectory, we may always say that the variables at t, are a known
function of those at t,, the time interval 7 = t, - t;, and t;. So the
transformation that relates the variables between a time t; = t and a
later time t, = t + 7 should be a canonical transformation.

‘?ql

Figure 9. 4 particle trajectory in real space.
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Therefore we must have

L(t + 7) - L(t)

_dg

t
| me e n - e - - @ - ).
1;O
t t t+r ty 47
Now, JL(t + 7)dt = J L(t)dt +J L (t)dt -J L (t)dt.
tO to t to
t+ 7 t +7
0
Thus wve have j L(t)dt - J L (t)dt = - (1) + 4(t,),
t to
t+7
and we may choose #(t) = - J L (t)dt.
t

The generating function ¢(t) which yields the canonical transformation
between the variables at t and those at t + 7 equals Hamilton’s principal
function between the two times, t and t + 7.

Starting with initial coordinates P;» 4; we see that the final

coordinates Pg>qg are related with them via

Pf%. ’ pf=_§%'

i

So Hamilton’s principle function - if known - describes the trajectory.

A slightly different reasoning starts from the variation of Hamilton’s
2

principal function J (pkqu - Hdt), with 7 the time interval.
1

Ve get Pqu2 - szt2 - (pldql - Hldtl) = d4,

where d¢ is the difference in value of the varied function w.r.t. the
unvaried function. The quantities Pys; Gy, B, are the new momenta,

coordinates and Hamiltonian coordinates. This has the same shape as was
found for the construction of the generating function. Therefore 4, in

this case Ldt is the required generating function.

ok ey DD
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3.3. Lagrangian invariant

In Section 2.1 we have seen that the circulation integral is a
constant during the motion

qudq = constant.

The same constancy arises when transforming from one Hamiltonian system to
a second one via the canonical transformations, which originated from

L(q,a,t) - L(3,3,t) = §2 .
Writing L=pqg-1
we find pdq - Hdt - pdg - Hdt = dg.

As ¢ is a function which only depends on begin and end points we can state
that

93 (pdq - Hdt) =¢ (pdq - Hdt) = conmstant,

and thus invariant with respect to canonical transformations.
Keeping t fixed we have at that time:

<ﬁ pdq is invariant w.r.t.canonical transformations.

The circulation integral can be seen as an infinite summation of
circulations around small areas (see Fig. 10). In this way it can be
represented as a surface integral. Total circulation = sum of elementary

circulations.

/|
Qo

constant

constant

Figure 10. The circulation integral decomposed into small elementary
circelations.
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In Fig. 10 lines of constancy for two variables u and v are drawn. A
variation 5v, keeping v constant gives a variation in p and q:
6vqi ’ 5vpi'
In the same way a variation in v yields
5uqi ? 6upi'
It follows after some reflection that

6,p;6,9; - 6,p;6,4; = constant, (16)

and equals the elementary circulation. Integrating over the total area
gives

Op; 9q; dp; dq

and thus also
dp, da; Op; da
G w & Hﬁ_) constant. (17)

(Note that we mean summation over i, i = 1, 2, 3.) Equation (16) is called
the "Lagrange bilinear invariant". The Lagrange invariant (Eq. (17)) is
often written as

8pi aqi ‘9p q
[v,u] = E (au & "W T
i
[v,u] is called the "Lagrange bracket".
(Note: The Lagrange brackets are directly related to the Poisson brackets.
The invariance of the one implies the invariance of the other.

Given a variable F the total time derivative of F is given by

dfF _oF  oF - aF -
&t - ® * g Yt Pi

If p and q are canonically conjugated variables the total time derivative
may be rewritten as

df _OF OF OB _OF OH
dt = 3t " 8q; dp; Fp, Fq; ’
or as %% 5F + (F,H),



33

_dF OH dF ol
Where (F,H) —aq a’p—i - EIT{ aq .

(F,E) is called the "Poisson bracket". As the total time derivate of F
must be invariant with respect to the special choice of the system of
canonically conjugated variables the Poisson bracket (F,H) must be
invariant w.r.t. canonical transformations. As a consequence any (F,G) is
invariant under canonical transformations as we can always interpret an
arbitrary function F or G as a representation of a Hamiltonian function.

Having a number of dynamical variables U , We can construct a matrix
(u,u) with the elements given by the Poisson brackets (ui,uj). In the same
way a matrix [u,u] can be constructed using the Lagrange brackets [ui,uj].
The relation between these two matrices is given by

(u,u) = - [u,u]—l.

Therefore the invariance of the Poisson brackets implies directly the
invariance of the Lagrange brackets and reversely.)

3.4. Symplectic conditon
Taking two small variations X, and x, represented by column vectors

5491 5491
6up1 §vp1
X, = 6,9, X, = 6,9y
) 6yPy
6uq3 6vq3
5up3 5vp3

and a square matrix 7
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0o 1 0 o 0

-1 0 0 o 0

;- 0o 0 0 0o 0
o 0 - o 0 0 ,

o 0 o o0 1

0 0 0o -1 0

the bilinear invariant is written as §u 7 x, = constant, where X means the
transposed of x. Let us now make a canonical transformation to new
variables. The variations in the new system are represented by primes: xh
and x;. Having small variations there must be a linear relationship
betveen the primed and unprimed quantities, expressed by a matrix M:

x! = Mx , x! = Mx_.
v v

The bilinear invariant in the new system equals

»42
=
=3
»
]
>4
=
E
"
M2
=
=3
>
<

= 2
-3
=
1}
=3

From this follows

The matrix M is called symplectic. All canonical transformations show this
symplectic behaviour. Thus also a transformation that shows the progress
in time of the phase space for small variations from t; to t,. Thus ion
optical transfer matrices, as long as they use canonical conjugated
variables, show this property. Mapping the phase space at t; to the phase
space at t, by numerical methods must show symplecticity. This is a good
check, together with conservation of phase-space volume, of the numerical
results.

As MM = 7,
we have det MpM = det 7 = 1,
and therefore det ¥ = 1.

This shows that the phase volume remains constant after any canonical
transformation (Liouville).
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4. APPLICATIONS OF THE CANONICAL TRANSFORMATIONS, ACTION AND ANGLE

VARTABLES
4.1. Removal of a first degree part in the Hamiltonian

A first degree part in the Hamiltonian often describes a situation
in which a central orbit is not known beforehand. In the case of a
synchrotron a change in the central orbit occurs if a small variation in
the energy is present. Normally in this case the central orbit is a well
known fixed orbit for a certain energy. In cyclotrons one really has to
find central orbits by calculation (numerical or analytical).

Let us assume a simple Hamiltonian representing linear motion in a
periodic accelerator such as a cyclotron or a synchrotron

H = Al x sin n@ + % p2 + % w2x2 + ...

Ve want to remove the first degree part of this Hamiltonian and try a
transformation of the form

X = x - x,(8), B=p -0, (8).

The transformation is made via a generating function 4(p,x,8).

Then
x=- g - 6= - %p - x,(8)p + £(B),
D= - Qg - $ = - xp + p,(8)x + g(p)-

ox

Thus a suitable ¢ is given by
= -Xp - xO(B)p + p0(9)§,
and H=H + gg .

Note that ¢ = - Xp results in the unit transformation. It is quite often
advisable to start with this one and add a number of correction terms to
it in such a way that the new variables are roughly equal to the old ones.
The new Hamiltonian becomes

ol . 1n82 w1 2 1 282 20 1 .22
B =A;x sin nf + A;x sin nB + 5 p° + Pp+ 5 P, + 5 ¢ X + XX + 5 0"X]

' '

~
- + X+ ceae
xop pO



36

' dx o
with = 55— etc.

Xo = @8
The functions x (8), p,(B) are chosen such that the first degree part
vanishes.
Then H=%52+%w2§2 .
The Hamiltonian is now explicitly time independent and thus constant. The

problem is solved (see Section 1.5). The solution for XD, is found by

putting the coefficients of X and p zero:

~N . s
Coefficient of x : A151n ng + w2x0 +p, = 0.
~ 1
Coefficient of p : Py - X, = 0.
h ] 2 A .
Thus X, + ¢'x, = Assin nf.
Substituting X, = Ao sin n@ + B, cos nf, one finds in this simple case:
Al
By =0 » A= 57,
n° - w
and
Al nAlcosnﬂ
X_ = sin n0 p. = ——%5 -
0 n? ~ w? ’ 0 0% - 2

One must be careful about the influence of higher-degree terms in H, which
also may have B-dependent coefficients. Furthermore second-order constant
(A2) coefficients may arise in the equations yielding x, and p,. These may
be important if the circumference of an orbit has to be investigated as
they directly have an influence on synchronism.

4.2. Removal of an oscillating part in the second degree of the
Hamiltonian.
An oscillating part in the second degree arises when alternating
focusing and defocusing elements are present along the particle orbit in a
circular accelerator. The Hamiltonian may have a form like

i = % p2 + % o (1 + A sin nB) x2.
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Normally An is small and n large.

Ve try a transformation generated by ¢ = ¢(X,p,0) with
gg (x,p,8) = - % o A sin nB % .

At first sight this eliminates the oscillating term as long as

X = x(note that § = H + gg). Therefore ¢ is now given by

= - Xp + % %— A cos n8 2 .
2
Furthermore X = - g% =x and P = - 9 . p-2 4 cosnf X .
3;6 n n

The result of the substitution of X and p in the Hamiltonian shows a cross
term p X with a periodic coefficient. Therefore try as a next step

¢ = - §p + Flﬁp + F2§2 + F3p2 ,

with F,, F,, F, periodic functions in 8 (period n). Some Ilengthy

calculations follow, but it will prove to be possible to choose Fl’ F,, F

22 73
such that all first-order oscillating terms vanish.

A method used often to tackle the problem is the transformation to
action and angle variables. The conjugated variables p,x are rapidly
changing over a large range. Therefore new variables which give less

variation will make it easier to proceed.

4.3. Action and angle variables
A system of one degree of freedom will be considered. For a closed
curve, S = 4; pdq will be constant and is equivalent to Liouvilles

statement of conservation of area in the two dimensional phase space. In
Fig. 11 a closed curve in phase space is given with particles on it. The
enclosed area remains constant during time evolution. Suppose now that the
closed line coincides with a flow line. We thus have an oscillatory
motion.
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T
NP

Figure 11. Particles on a closed curve in two-dimensional phase space.

Suppose now that an infinite number of particles lie on the flow line.
They will all perform the oscillatory motion many times.

T
NPA

Figure 12. 4 flow line in phase space for an oscillatory motion.

At a certain time we start to change slowly a parameter due to which
the flow line will change slowly. We follow one particle and observe it at
a second time, where we stop the parameter change but where we still have
an oscillatory behaviour, thus a closed flow line. The new flow line may
be as given in Fig. 13.

—

o
—

Figure 18. The flow line in phase space a long time after the situation
presented in figure 12.

During the time interval many oscillations are performed by all
particles. On the average they all will have experienced roughly the same
variation of the slow parameter change (except for initial and final
conditions). The result will be that all particles will approximately
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remain on the flow line; the slower the change the more this becomes true.
As the circulation integral remains constant we may state that also for
each particle alone

J = épdq = constant.

This integral is called an adiabatic constant, the variation an adiabatic
variation. The quantity J is called "the action" variable.
For a harmonic oscillator the action equals

{ﬁ pdq
(H = 1.2 1 22

=507 + 5 vx", p =5{,f)=—w2x,x=Asinm;,

<ﬁ pdx

The adiabatic invariance states that for a slow variation of v with time
the action J remains constant.

(]
"

1wA2 = constant.

Area = rwA2.)

"

Thus the oscillation amplitude varies inversely proportional with

the square root of w
A~u_1/2.

Ve now take J as a new canonical momentum which must be acquired after a
canonical transformation. As J is a constant, the new Hamiltonian does not
depend on its conjugate coordinate ¢. Therefore

B = 0(J).

Ve take H(J) = wJ and try to find the transformation.

H_=H+g%=w.], ¢ = w,
6 = 6(x,4), Jz—‘g%, p=.

Thus we have to find a generating function which satisfies

H(-g-g,x,t) + g%: - w%% .

If G is known, in fact p,x can be solved algebraically from J and ¢, which
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are a constant and a cyclic variable (¢ = wt). This procedure is the start
for the Hamilton-Jacobi method.

In general for one degree of freedom we like to find a function G

such that

(‘a)—(),) 5G"H(J¢)

If we have succeeded in finding this function G, the problem is solved as
H = constant and J,¢ are algebraically related to each other.

In the following H is taken explicitly time independent and also the
generating function is assumed to be time independent.

Ve take B = % p2 + 5 u2x2 .

L]

The value of J equals ] = cJS pdx = 1uA2

with A the oscillation amplitude. The new Hamiltonian is given by

= % P2 + % o*x? = g% =1 p = %; , J = constant .
Ve further know J=- %% , p = gg

Therefore after substitution in the Hamiltonian:

_ v G ()2 22
r Tg - 2 .

Suppose G = ¢(p) - X(x) (separation of variables), then

' ' 1 22
_g_fx¢ :%X2¢2 + wa,
or
1 §
s _1x2¢2 . 1%
T “2X 2 X -
y-dependent x-dependent
Take X 22 ¢ -2, then X< 222
eX = 2 ux” = ¢“x , then X—_'“ W
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1

Then - gg— = 1+ w2¢2 and ¢ = % cotg 27y,

2

G =X¢ = % vx“ cotg 27y.

From this generating function the relations between the old and new
variables follow:

2
06 06 _ Twx
p = = vx cotg 27y, J = - = —5—
o ’ Jv sin“27yp ’
or
J . = J
P=]| 4, COS 27y, X = Q% sin 27p, H = g; .

Application of scaling J= %; and ¢ = 271y yields the more normal form. The

scaling could be omitted by directly taking a different G (H remains the
same):

G = % wx? cotg v, 1 (J,p) = o,
p = { 2Ju'cosy, X = %l sing.

(Remark. Try the generating function G = % vx? tan p. What is the new

momentum, and the new coordinate?)

4.4. Removal of an oscillating part in the second degree of H, using
action and angle variables
Ve return to the Hamiltonian in second degree with an oscillating
part (Section 4.2):
H = % p2 + % v (1 + A sin nB)xz.

First step: change to action and angle variables

X = ' %i CoS ¢, P = |2Jw sin p,

(¢ = momentum, J = coordinate).

Then H=uwl+ chos2¢ An sin nf.

In this Hamiltonian rapidly oscillating terms are present. Therefore,
remembering that ¢ is still rapidly changing we put v = k + Aw, with k an
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integer and Aw generally small. The second step involves a change in the
momentum g:

¢ = ¢+ k8.
As p changes roughly with «8 we see that p will change roughly with As8.

This transformation is gemerated by a function

G =1Jp - JKk8.
The new Hamiltonian becomes

2

H = Aw) + wlcos® (p - kB)A sin n@,

H=Auwl + J£(0,p).

In the third step the oscillating part is removed (in fact replaced by a
new term that has second order of size in A, and that is generally much
smaller). A transformation function G(3,¢,8) is applied with, in any case,
two properties: first we should be somewhere around the unit
transformation (therefore a part - Jy is needed); second we like to remove
the oscillating part Jf(8,yp):

H = 8o + 35(8,p) + 5.

A good trial is thus 6(J,p,8) = - Jp - jUz(B,w),
au

bo

with

)

= 3U2 0U2 -
It then follows that H= (AU + < 3‘0— W >)J.

The oscillating terms are at least of order (A2) and can be eliminated by
a second step, then yielding a 4th order constant part and a 4th order
oscillating part, etc. For many applications the above approximation is
sufficient.

A resonance occurs if n = 2k, then the Hamiltonian becomes, in most
important order,

H = Aw] + acos2p].

If |e|<|dw| then there will always be stability. If |a|>|Aw| then one can
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find an angle ¢y for which the total coefficient of J equals zero, driving
the action variable to infinity, as H = constant.

As a general remark: rapidly oscillating terms can be averaged over
a long period and then yield a zero effect. However, it may be that the
above given transformation shows that small remaining constant parts may
be important for a good estimation of frequency deviations. The transfor-
mation for eliminating oscillating terms can be applied also for higher
degree terms in the Hamiltonian, following roughly the same lines.

4.5. Trajectories in a solenoidal lens
Quite often these trajectories are described in cylindrical

p
coordinates. However, a term with Eﬁ' then appears in the Hamiltonian,

giving rise to problems for particles around the axis:
1 Pe 2 2 2
B=5z{(-edg)” + (p, - ed )" + (p, - e4))"}.

Vith cylinder symmetry there is B-independency. Further an adequate vector
potential can be represented by one component Ae(r,z) with z the position

along the axis. Apart from the situation for small r there is a coupling
between the different dimensions. It is more profitable to use cartesian
coordinates. For a homogeneous magnetic field the vector components are
given by

1 1
Ax = -3 By , Ay =+ 3 Bz .
The Hamiltonian is taken to be K = - x_ (see Section 1.7) and the

resulting square root is expanded up to the second degree. Scaled momenta
are used:

P
- X = J =2
xTp, 0 yThp, "2 p,
N 1 1eByy2 . 1, _ 1 eBx\2
Then K=-1 =5 (rx + 5 po) + 5 (xy 5 pO) .

The coupling between x and y space is solved by applying a coordinate
transformation such that the new XY-system is rotating with half the
cyclotron-frequency w.r.t. the old system (this new frame is sometimes
called the Larmor frame):
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X = X COS ¢ - y sin ¢,
y

y = x sin ¢ + y cos ¢,
. dp _ _w _ _5eB _ -1
with a-g-—%—'mvo-mlc’

vhere B is the magnetic induction along the axis (B = B(z)), v, the
particle velocity, and Rc the cyclotron radius in a magnetic field with

induction B. The transformation is generated by
G = G(x, ;x’ Y, ?y) = ;xx cos ¢ + ;xy sin ¢ - ;y x sin p + ;yysin v.

This generating function is found by first making the coordinate transfor-
6
01y

momenta are found from Ty = gg etc. The new Hamiltonian is

mation, remarking that x = , etc. A form of G follows and the new

2,2
T _ 06 _1-2 1 ,1e“B°\-2 1-2 1 ,1e“B° -2
K=K+ =5 +35 (G ( )y"
Po Py
The problem is uncoupled and therefore solved (see Section 1.5). The

Hamiltonian represents two equal lenses with the same sign in a rotating
frame.

. . .|
In matrix notation x¢ = Ry LR x.,

where R is the rotation matrix, L the lens matrix and, x the four vector

x, x', Y, ¥

field.

outside magnetic field and x, T ¥, ry inside magnetic

The initial rotation can be taken equal to zero: Ri = unit matrix. Inside
the magnetic field canonical momenta must be used. The relation between

the canonical variables and the geometrical variables is given by



45

X 1 0 0
1
Tx 0 1 - ER._ 0 !
c
X = y = 0 1 0 y
1 '
Ty I 0 y
c
Suppose that inside the magnetic field x" = 0 = y", occurring for example

in the situation of an Electron Cyclotron Resonance (ECR) source, then

1
]
o

If the beam cross section is circular and the field is cylindrically
symmetrical, the emittance area in X and Y phase space is given by
2

e = ¢ =1

b y ?E; ’
where r is the radius of the beam cross section. Further one observes that
the phase spaces are strongly coupled (one point within the X phase space
has only one point in the Y phase space). Because of the cylinder symmetry
rotational matrices can be skipped. The above matrix relating the diver-
gencies with the momenta is denoted by C, the lens matrix of the
solenoidal field by L; we then get

Xg = L X5 = LC)_(i .

outside B inside B

where X = (x,x",y,y")

The transformation matrix LC keeps the volume from (x,x'y,y') space to
(x¢5 rxf,yf, wyf) constant. So Liouville is fvalid’ but is the

transformation canonical? Therefore LC must be symplectic. It is easy to
check that

CnC # 1,
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but inL = g5, so L is symplectic. Clearly C is not a canonical
transformation (x' and y' were not canonical momenta). A 2 * 2 matrix with
determinant A = 1 is symplectic.

4.6. An evaluation of a general Hamiltomian

The Hamiltonian for particle trajectories in electric and magnetic
fields is given by

B={E+ (p -ed)?c®+ (p, - eb)c? + (l_is_z_ - ek )% 12 4 ev.

p(s)
The representation is given in curvilinear coordinates in the median
plane. It is important first to have an appropriate representation of the
vector potential, secondly one has to realize that electric fields in
cavities do not follow from a scalar potential function, third the choice
of a vector potential is not free when the orbit encloses time varying
magnetic fields (betratron acceleration [8]). RF acceleration should thus
be treated via the vector potential. Remember that, within the Lorentz
gauge,

_ v, JA

E=-V.V- T -

In the case of stationmary fields, it is often useful to find a represen-
tation of the vector potential such that

AS = 0 on a reference orbit.

Then around a circle (radius R) and assuming cylinder symmetry

AS

A

X

B
1 /7o 2 1 2 _14dB
—BX+E(p——b1)X +§b1Z+ ..... ,bl—l{ai,

0
0, 4 =0.

Ve will now treat a solution for which there is
- no time dependency

- no acceleration

- cylinder symmetry and medium plane symmetry.

The aim is to find a separated representation for the three dimensions and
only the linear motion will be considered. Four steps are involved:
1. Elimination of first degree parts
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[\

. Scaling

[

. Expansion of the square root, skipping constant terms
. A final transformation for separating the dimensions.

W

4.6.1 Elimination of first degree parts.
For this a reference momentum P, is chosen:

In the case of cylinder symmetry P, is taken not to be a function of s
Py = - eBOp.

By this choice first degree parts disappear.

4.6.2 Scaling.
The scaled coordinates and momenta are

T =ut, w ﬁ (1 - 17)1/2 .
Yo
¢ is the velocity of light and T = g— , where m, is the rest mass. The
()
new Hamiltonian is scaled as

ﬁ:TH :
pOUO

4.6.3 Expansion of the square root.
After expansion of the square root up to the second degree in the
variables the new Hamiltonian becomes

1.2 1 2 1 1 2 _
i = 5 P+ E(l—n)x + 5D, + 50z + 5—7 Pg + Pg ~ PgX + «vny 7, =

<2
o
5|E
Q<

In this Hamiltonian the bars have been omitted, further n means the field
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index (n = - by).

The Hamiltonian is (was already from the beginning!) independent of
s. Therefore p, = constant. For Pg # 0 a first degree part in x is still
present: we then did not make the right choice for p,. For p; = 0 there is
no first degree part and the Hamiltonian describes the two well known
betatron oscillations as two separate modes.

Vhat does the coupling term pgx mean? Even for p; = 0 we may not
skip it.

§ = g%; = -x+1, (pg = 0)-

The position of the particle on the trajectory thus depends on x, the

radial coordinate of the radial oscillation. Differently said: the

particle position gives rise to a phase which depends on the radial
coordinate.

4.6.4 The canonical tranformation.

The coupling is removed by a canonical transformation generated by
G=p_xX+p. z+7p. S - L P. D
X z s 1-n s *x°
The generating function in this case is time independent so that

E = H.

The relation between old and new variables is given by

_ Py _
X=X + +— P. =P
1-n X x?
Z=2, PZ=I_>Z,
_ Py _
§ =8+ 95> Pg = Pg
The new Hamiltonian is
1 -2 1 -2 1-2 1 -2 1-2,1 1 -
H = 5 Pyt 3 (1-n) x* + 5 P, + 5 Nz + 5 P (;7 - T:ﬁ) + Dg-

0
Now the three dimensions are uncoupled. Note the large difference in the
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coefficient before ﬁg w.r.t. the coefficient of pg in the Hamiltonian H.
Due to this substantial change the above transformation must always be
carried out for the study of longitudinal effects [8].

The transformation shows that there is an extra contribution in x due
to the fact that ps # O gives a new equilibrium orbit. In s there is a

contribution due to the betatron oscillations resulting in the fact that

- p
the real particle phase s differs from a measured phase by T§ﬁ . In
cyclotrons this is illustrated by the fact that the orbit centre is
shifted (see Fig. 14).

shift orbit centre
- pXR
pX

(=5 ~ Pk for n = 0)

Figure 14. Shift of orbit centre due to betatron motion.

4.7. Some final remarks

In many practical cases the transformations are rather complicated
and it is advisable to carry them out in steps, each step having a special
purpose. However, the examples should give some guidance on how to start
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and how to proceed. Sometimes it is sufficient to choose the position
along the axis as a new independent variable in order to get the solution
of the problem. For numerical calculations one has to take care of
approximations made in the equations of motion as then these may turn out
not to be canonical. It is a safer precedure to start with a proper
Hamiltonian and then skip those terms that are of minor importance.
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