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Abstract

The two–parametric quantum superalgebra Up,q[gl(2/1)] is consistently defined.
A construction procedure for induced representations of Up,q[gl(2/1)] is described
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I. Introduction

In [1], we suggested a method for explicit constructions of representations of the
one–parametric quantum superalgebras Uq[gl(m/n)]. When applied to Uq[gl[(2/2)],
this method allowed us to construct explicitly all (typical [1] and nontypical [2])
finite–dimensional representations of the latter quantum superalgebra. Certainly,
as emphasized in Refs. 1 and 2, our method is also applicable for other quan-
tum superalgebras and we could construct their representations in a similar way.
Particularly, we can apply the method to, for example, multiparametric quantum
superalgebras, [3–6], etc.. The multiparametric deformations were introduced [7]
and since considered by a number of authors from different points of view (see,
for example, Refs. 3–15). However, in spite of progresses in several aspects (e.g.,
group–space structures, differential calculus, exponential maps, etc.) representation
theory is only well developed for a few simple cases like Up,q[su(2)] (see for example
Refs. 8), Up,q[sl(2/1)], [6], etc.. Here, in order to show once again the usefulness of
the above–mentioned method we consider, as a further example, the two-parametric
quantum superalgebra Up,q[gl(2/1)] which, although resembles to the one–parametric
quantum superalgebra U√

pq[gl(2/1)], can not be identified with the latter. In this
paper we suppose that both p and q are generic, i.e., not roots of unity. Following the
approach of [1] we can directly construct explicit representations of the quantum su-
peralgebra Up,q[gl(2/1)] induced from some (usually, irreducible) finite–dimensional
representations of the even subalgebra Up,q[gl(2) ⊕ gl(1)]. Since the latter is a sta-
bility subalgebra of Up,q[gl(2/1)] we expect the constructed induced representations
of Up,q[gl(2/1)] are decomposed into finite–dimensional irreducible representations
of Up,q[gl(2) ⊕ gl(1)]. For this purpose we shall introduce a Up,q[gl(2/1)]–basis (i.e.,
a basis within a Up,q[gl(2/1)]–module or briefly a basis of Up,q[gl(2/1)]) which will
be convenient for us in investigating the module structure. This basis (see (3.10))
can be expressed in terms of some basis of the even subalgebra Up,q[gl(2) ⊕ gl(1)]
which in turn represents a (tensor) product between a Up,q[gl(2)]–basis and a gl(1)]–
factor. It will be shown that the finite–dimensional representations of Up,q[gl(2)],
i.e., of Up,q[gl(2) ⊕ gl(1)] can be realized in the Gel’fand–Zetlin (GZ) basis. The
finite–dimensional representations of Up,q[gl(2/1)] constructed are irreducible and
can be decomposed into finite–dimensional irreducible representations of the subal-
gebra Up,q[gl(2) ⊕ gl(1)].

In section II we shall define the quantum superalgebra Up,q[gl(2/1)] and consider
how to construct its representations induced from representations of the subalgebra
Up,q[gl(2)⊕gl(1)]. Finite-dimensional representations of Up,q[gl(2/1)] are constructed
in section III where the above–mentioned appropriate basis is described. The con-
clusion and some comments are given in section IV.

Throughout the paper we shall frequently use the following notation

[x] ≡ [x]p,q :=
qx − p−x

q − p−1
(1.1)

for quantum deformations of x which are operators or numbers,

[X, Y ]r := XY − rY X (1.2)
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for r–deformed commutators between two operators X and Y and

[m] (1.3)

for the highest weights (signatures) of the Gel’fand–Zetlin basis vectors (m). We
hope this notation will not confuse the reader.

II. Up,q[gl(2/1)] and its induced representations

The two–parametric quantum superalgebra Up,q[gl(2/1)] is consistently defined
through the generators E12, E21, E23, E32, Eii, i = 1, 2, 3, and L satisfying

a) the super-commutation relations (1 ≤ i, i + 1, j, j + 1 ≤ 3):

[Eii, Ejj] = 0, (2.1a)

[Eii, Ej,j+1] = (δij − δi,j+1)Ej,j+1, (2.1b)

[Eii, Ej+1,j] = (δi,j+1 − δij)Ej+1,j, (2.1c)

[L, E12] = [L, E21] = [L, Eii] = 0, (2.1d)

[E12, E21] =
(

q
p

)L−h1/2
[h1], (2.1e)

{E23, E32} =
(

q
p

)−h2

[h2]. (2.1f)

hi = (Eii −
di+1

di

Ei+1,i+1), (2.1g)

with d1 = d2 = −d3 = 1,

b) the Serre-relations:

E2
23 = E2

32 = 0,

[E12, E13]p = [E21, E31]q = 0, (2.2)

where

E13 := [E12, E23]q−1,

and

E31 := −[E21, E32]p−1. (2.3)

are defined as new odd generators which, as we can show, have vanishing squares.
Now the extra–Serre relations are not necessary, unlike in higher rank cases [1,2,16].
The commutators between the maximal–spin operator L and the odd generators
take concrete forms on concrete basis vectors.

These generators Eij , i, j = 1, 2, 3, are two–parametric deformation analogues of
the Weyl generators eij

(eij)kl = δikδjl, i, j, k, l = 1, 2, 3, (2.4)

of the classical (i.e., non–deformed) superalgebra gl(2/1) whose universal enveloping
algebra U [gl(2/1)] is a classical limit of Up,q[gl(2/1)] when p, q → 1.
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From the relations (2.1)–(2.3) we see that every of the odd spaces A±

A+ = lin.env.{E13, E23}, (2.5)

A− = lin.env.{E31, E32}, (2.6)

is, as always, a representation space of the even subalgebra Up,q[gl(2/1)0] ≡ Up,q[gl(2)⊕
gl(1)] which, generated by the generators E12, E21, L and Eii, i = 1, 2, 3, is a sta-
bility subalgebra of Up,q[gl(2/1)]. Therefore, we can construct representations of
Up,q[gl(2/1)] induced from some (finite–dimensional irreducible) representations of
Up,q[gl(2/1)0] which are realized in some representation spaces (modules) V p,q

0 be-
ing tensor products of Up,q[gl(2)]–modules V p,q

0,gl2
and gl(1)–modules (factors) V p,q

0,gl1
.

Following [1] we demand
E23V

p,q
0 = 0 (2.7)

that is
Up,q(A+)V p,q

0 = 0. (2.8)

In such a way we turn the Up,q[gl(2/1)0]–module V p,q
0 into a Up,q(B)–module where

B = A+ ⊕ gl(2) ⊕ gl(1). (2.9)

The Up,q[gl(2/1)]–module W p,q induced from Up,q[gl(2/1)0]–module V p,q
0 is the factor–

space
W p,q = [Up,q ⊗ V p,q

0 ]/Ip,q (2.10)

where
Up,q ≡ Up,q[gl(2/1)], (2.11)

while Ip,q is the subspace

Ip,q = lin.env.{ub ⊗ v − u ⊗ bv‖u ∈ Up,q, b ∈ Up,q(B) ⊂ Up,q, v ∈ V p,q
0 }. (2.12)

Using the above–given commutation relations (2.1)–(2.2) and the definitions (2.3)
we can prove the following analogue of the Poincaré–Birkhoff–Witt theorem

Proposition 1: The quantum deformation Up,q := Up,q[gl(2/1)] is spanned on all
possible linear combinations of the elements

g = (E23)
η1(E13)

η2(E31)
θ1(E32)

θ2g0, (2.13)

where ηi, θi = 0, 1 and g0 ∈ Up,q[gl(2/1)0] ≡ Up,q[gl(2) ⊕ gl(1)].

Then we arrive at the next assertion

Proposition 2: The induced Up,q[gl(2/1)]–module W p,q is the linear span

W p,q([m]) = lin.env.{(E31)
θ1(E32)

θ2 ⊗ v‖v ∈ V p,q
0 , θ1, θ2 = 0, 1}, (2.14)

which is decomposed into (four, at most) finite–dimensional irreducible modules V p,q
k

of the even subalgebra Up,q[gl(2/1)0]

W p,q([m]) =
⊕

0≤k≤3

V p,q
k ([m]k), (2.15)
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where [m] and [m]k are some signatures (highest–weights) characterizing the module
W p,q ≡ W p,q([m]) and the modules V p,q

k ≡ V p,q
k ([m]k), respectively.

As a consequence, for a basis in W p,q we can take all the vectors of the form

|θ1, θ2; (m)〉 := (E31)
θ1(E32)

θ2 ⊗ (m), θ1, θ2 = 0, 1, (2.16)

where (m) is a (GZ, for example,) basis in V p,q
0 ≡ V p,q

0 ([m]). We refer to this basis
as the induced Up,q[gl(2/1)]–basis (or simply, the induced basis) in order to distin-
guish it from another Up,q[gl(2/1)]–basis introduced later and called a reduced basis.

Any vector w from the module W p,q can be represented as

w = u ⊗ v, u ∈ Up,q, v ∈ V p,q
0 . (2.17)

Then W p,q is a Up,q[gl(2/1)]–module in the sense

gw ≡ g(u⊗ v) = gu ⊗ v ∈ W p,q (2.18)

for g, u ∈ Up,q, w ∈ W p,q and v ∈ V p,q
0 .

III. Finite–dimensional representations of Up,q[gl(2/1)]

We can show that finite–dimensional representations of Up,q[gl(2/1)0] can be
realized in some spaces (modules) V p,q

k spanned by the (tensor) products

[

m12 m22

m11
;

m32 = m31

m31

]

≡

[

[m]2
m11

;
[m]1
m31

]

≡ (m)gl(2) ⊗m31 ≡ (m)k (3.1a)

between the (GZ) basis vectors (m)gl(2) of Up,q[gl(2)] and the gl(1)–factors m31,
where mij are complex numbers such that

m12 − m11, m11 − m22 ∈ Z+ (3.1b)

and
m32 = m31. (3.1c)

Indeed, any finite–dimensional representation of (not only) Up,q[gl(2)] is always high-
est weight and if the generators L and Eij , i, j = 1, 2 are defined on (3.1) as follows

E11(m)k = (l11 + 1)(m)k,

E22(m)k = (l12 + l22 − l11 + 2)(m)k,

E12(m)k = ([l12 − l11][l11 − l22])
1/2 (m)+11

k ,

E21(m)k = ([l12 − l11 + 1][l11 − l22 − 1])1/2 (m)−11
k ,

L(m)k =
1

2
(l12 − l22 − 1)(m)k,

E33(m)k = (l31 + 1)(m)k, (3.2a)

lij = mij − (i − 2δi,3), (3.2b)
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where a vector (m)k
±ij is obtained from (m) by replacing mij with mij ± 1, they

really satisfy the commutation relations (2.1a)–(2.1e) for Up,q[gl(2/1)0]. The highest
weight described by the first row (signature)

[m]k = [m12, m22, m32] (3.3)

of the patterns (3.1) is nothing but an ordered set of the eigen–values of the Cartan
generators Eii, i = 1, 2, 3, on the highest weight vector (M)k defined as follows

E12(M)k = 0, (3.4)

Eii(M)k = mi2(M)k, (3.5)

The highest weight vector (M)k can be obtained from (m)k by setting m11 = m12

(M)k =

[

m12 m22

m12
;

m32 = m31

m31

]

. (3.6)

A lower weight vector (m)k can be derived vice versa from (M)k by the formula

(m)k =

(

[m11 − m22]!

[m12 − m22]![m12 − m11]!

)1/2

(E21)
m12−m11(M)k (3.7)

In particular, for the case k = 0, instead of the above notations, we omit the
subscript 0, i.e.,

(m)0 ≡ (m); [m]0 ≡ [m]; (M)0 ≡ (M), (3.8)

putting
mi2 = mi3, i = 1, 2, 3, (3.9)

where mi3 are some of the complex values of mi2, therefore, m13 − m11, m11 −
m23 ∈ Z+. We emphasize that [m] and (M), because of (2.7), are also, respec-
tively, the highest weight and the highest weight vector in the Up,q[gl(2/1)]–module
W p,q = W p,q([m]). Characterizing the latter module as the whole, [m] and (M) are,
respectively, referred to as the global highest weight and the global highest weight
vector, while [m]k and (M)k are, respectively, the local highest weights and the local
highest weight vectors characterizing only the submodules V p,q = V p,q([m]k).

Following the arguments of [1], for an alternative with (2.16) basis of W p,q we
can choose the union of all the bases (3.1) which are denoted now by the patterns







m13 m23 m33

m12 m22 m32

m11 0 m31







k

≡

[

m12 m22

m11
;

m32 = m31

m31

]

k

≡ (m)k, (3.10)

where the first row [m] = [m13, m23, m33] is simultaneously the highest weight of
the submodule V p,q = V p,q([m]) and the whole module W p,q = W p,q([m]), while the
second row [m]k = [m12, m22, m32] is the local highest weight of some Up,qgl[(2/1)0]–
module V p,q

k = V p,q
k ([m]k) containing the considered vector (m)k. The basis (3.10)

of W p,q is called the Up,q[gl(2/1)]–reduced basis or simply the reduced basis. The

6



latter, as mentioned before and shown later, is convenient for us in investigating the
module structure of W p,q.

Note once again that the condition

m32 = m31 (3.1c)

has always to be fulfilled.

The highest weight vectors (M)k, now, in the notation (3.10) have the form

(M)k =







m13 m23 m33

m12 m22 m32

m12 0 m31







k

(3.11)

as for k = 0 the notation given in (3.8) and (3.9) is also taken into account.

Proposition 3: The highest weight vectors (M)k are expressed in terms of the induced
basis (2.16) as follows

(M)0 = a0 |0, 0; (M)〉 , a0 ≡ 1,

(M)1 = a1 |0, 1; (M)〉 ,

(M)2 = a2

{

|1, 0, ; (M)〉 + q2l[2l]−1/2
∣

∣

∣0, 1; (M)−11
〉}

,

(M)3 = a3 {|1, 1; (M)〉} , (3.12a)

where ai, i = 0, 1, 2, 3, are some numbers depending, in general, on p and q, while l
is

l =
1

2
(m13 − m23) (3.12b)

Indeed, all the vectors (M)k given above satisfy the condition (3.4). From the
formulae (3.5) and (3.12) the highest weights [m]k can be easily identified

[m]0 = [m13, m23, m33],

[m]1 = [m13, m23 − 1, m33 + 1],

[m]2 = [m13 − 1, m23, m33 + 1],

[m]3 = [m13, m23, m33 + 2] (3.13)

Using the rule (3.7) we obtain all the basis vectors (m)k

(m)0 ≡







m13 m23 m33

m13 m23 m33

m11 0 m33





 = |0, 0, ; (m)〉 ,

(m)1 ≡







m13 m23 m33

m13 m23 − 1 m33 + 1
m11 0 m33 + 1






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= a1







−

(

[l13 − l11]

[2l + 1]

)1/2
∣

∣

∣1, 0; (m)+11
〉

+pl11−l13

(

[l11 − l23]

[2l + 1]

)1/2

|0, 1; (m)〉







,

(m)2 ≡







m13 m23 m33

m13 − 1 m23 m33 + 1
m11 0 m33 + 1







= a2







(

q

p

)l13−l11−1 (
[l11 − l23]

[2l]

)1/2
∣

∣

∣1, 0; (m)+11
〉

+ql13−l23−1pl11−l13+1

(

[l13 − l11]

[2l]

)1/2

|0, 1; (m)〉







,

(m)3 ≡







m13 m23 m33

m13 − 1 m23 − 1 m33 + 2
m11 0 m33 + 2







= a3 |1, 1; (m)〉 , (3.14)

where lij and l are given in (3.2b) and (3.12b), respectively. Here, we omit the
subscript k in the above patterns since there is no degeneration between them.
The formulae (3.14), in fact, represent the way in which the reduced basis (3.10) is
written in terms of the induced basis (2.16). From (3.14) we can derive their inverse
relation

|1, 0; (m)〉 = (m)

|1, 0; (m)〉 = −
1

a1
ql11−l23−1

(

[l13 − l11 + 1]

[2l + 1]

)1/2

(m)−11
1

+
1

a2p
ql11−l13

([l11 − l23 − 1][2l])1/2

[2l + 1]
(m)−11

2 ,

|0, 1; (m)〉 =
1

a1

(

[l11 − l23]

[2l + 1]

)1/2

(m)1

+
1

a2

(

p

q

)l13−l11−1
([l13 − l11][2l])

1/2

[2l + 1]
(m)2,

|1, 1; (m)〉 =
1

c3

(m)−11
3 . (3.15)

Now we are ready to compute all the matrix elements of the generators in the basis

(3.10). As we shall see, the latter basis allows a clear descriptios of a decomposition
of a Up,q[gl(2/1)]–module W p,q in irreducible Up,q[gl(2/1)0]–modules V p,q

k . Since the
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finite–dimensional representations of the Up,q[gl(2/1)] in some basis are completely
defined by the actions of the even generators and the odd Weyl–Chevalley ones E23

and E32 in the same basis, it is sufficient to write down the matrix elements of
these generators only. For the even generators the matrix elements have already
been given in (3.2), while for E23 and E32, using the relations (2.1)–(2.3), (3.14) and
(3.15) we have

E23(m) = 0,

E23(m)1 = a1

(

p

q

)l23+l33+3 (
[l11 − l23]

[2l + 1]

)1/2

[l23 + l33 + 3](m),

E23(m)2 = a2

(

p

q

)l23+l33+4 (
[l13 − l11]

[2l]

)1/2

[l13 + l33 + 3](m),

E23(m)3 = a3

(

p

q

)l13+l23+l33−l11+2






1

a1q

(

[l13 − l11]

[2l + 1]

)1/2

[l13 + l33 + 3](m)1 ,

−
1

a2p
([l11 − l23][2l])

1/2 [l23 + l33 + 3]

[2l + 1]
(m)2

}

(3.16a)

and

E32(m) =
1

a1

(

[l11 − l23]

[2l + 1]

)1/2

(m)1,

+
1

a2

(

p

q

)l13−l11−1
([l13 − l11][2l])

1/2

[2l + 1]
(m)2

E32(m)1 =
a1

a3

p

(

[l13 − l11]

[2l + 1]

)1/2

(m)3,

E32(m)(2) = −
a2

a3
p

(

q

p

)l13−l11−1 (
[l11 − l23]

[2l]

)1/2

(m)3,

E32(m)3 = 0. (3.16b)

Proposition 4: The finite–dimensional representations (3.16) of Up,q[gl(2/1)] are ir-
reducible and called typical if only if the condition

[l13 + l33 + 3][l23 + l33 + 3] 6= 0 (3.17)

holds.

When this condition (3.17) is violated, i.e. one of the following condition pairs

[l13 + l33 + 3] = 0 (3.18a)
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and
[l23 + l33 + 3] 6= 0 (3.18b)

or
[l13 + l33 + 3] 6= 0 (3.19a)

and
[l23 + l33 + 3] = 0 (3.19b)

(but not both (3.18a) and (3.19b) simultaneously) holds, the module W p,q is no
longer irreducible but indecomposable. However, there exists an invariant subspace,
say Ip,q

k , of W p,q such that the factor–representation in the factor–module

W p,q
k := W p,q/Ip,q

k (3.20)

is irreducible. We say that is a nontypical representation in a nontypical module
W p,q

k . Then, as in [2], it is not difficult for us to prove the following assertions

Proposition 5:
V p,q

3 ⊂ Ip,q
k , (3.21)

and
V p,q

0 ∩ Ip,q
k = Ø. (3.22)

From (3.16)–(3.18) we can easily find all nontypical representations of Up,q[gl(2/1)]
which are classified into two classes.

III.1. Class 1 nontypical representations:

This class is characterized by the conditions (3.18a) and (3.18b) which for generic
p and q take the forms

l13 + l33 + 3 = 0, (3.18a′)

and
l23 + l33 + 3 6= 0, (3.18b′)

respectively. In other words, we have to replace everywhere all m33 by −m13 − 1
and keep (3.18b′) valid. Thus we have

Proposition 6:
Ip,q
1 = V p,q

3 ⊕ V p,q
2 . (3.23)

Then the class 1 nontypical representations in

W p,q
1 = W p,q

1 ([m13, m23,−m13 − 1]) (3.24)

are given through (3.16) by keeping the conditions (3.18) (i.e., (3.18a′) and (3.18b′))
and replacing all vectors belonging to Ip,q

1 with 0:

E23(m) = 0,

E23(m)1 = a1

(

p

q

)l23−l13 ( [l11 − l23]

[2l + 1]

)1/2

[l23 − l13](m) (3.25a)

10



and

E32(m) =
1

a1

(

[l11 − l23]

[2l + 1]

)1/2

(m)1

E32(m)1 = 0. (3.25b)

III.2. Class 2 nontypical representations:

For this class nontypical representations we must keep the conditions

l13 + l33 + 3 6= 0, (3.19a′)

and
l23 + l33 + 3 = 0. (3.19b′)

derived respectively from (3.19a) and (3.19b) when the deformation parameters p
and q are generic. Equivalently, we have to replace everywhere all m33 by −m23 and
keep (3.19a′) valid.

Now the invariant subspace Ip,q
2 is the following

Propositions 7:
Ip,q
2 = V p,q

3 ⊕ V p,q
1 . (3.26)

The class 2 nontypical representations in

W p,q
2 = W p,q

2 ([m13, m23,−m23]) (3.27)

are also given through (3.16) but by keeping the conditions (3.19) (i.e., (3.19a′) and
(3.19b′)) valid and replacing all vectors belonging to the invariant by 0 subspace Ip,q

2 :

E23(m) = 0,

E23(m)2 = a1
p

q

(

[l13 − l11]

[2l]

)1/2

[2l + 1](m) (3.28a)

and

E32(m) =
1

a2

([l13 − l11][2l])
1/2

[2l + 1]
(m)2

E32(m)2 = 0. (3.28b)

In order to complete this section we emphasize that nontypical representations
have only been well investigated for a few cases of both classical and quantum su-
peralgebras (see, in this context, the Conclusion in Ref. 2 and also some comments
in Ref. 17). Therefore, the present results can be considered as a small step forward
to this direction.
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IV. Conclusion

We have just defined the two–parametric quantum superalgebra Up,q[gl(2/1)]
and constructed at generic deformation parameters all its typical and nontypical
representations leaving the coefficients ai, i = 1, 2, 3, as free parameters which can
be fixed by some additional conditions, for example, the hermiticity condition. As
an intermediate step (which, however, is of independent interest) we also intro-
duced the reduced basis (3.10) which, as it is an extension of the Gel’fand–Zetlin
basis to the present case, is appropriate for a clear description of decompostions of
Up,q[gl(2/1)]–modules into irreducible Up,q[gl(2/1)0]–modules. Although the present
approach has some specific features it is similar to the one in Ref. 1. That shows
once again the usefulness of the method of Ref. 1 which is thus applicable not only
to the one–parametric quantum deformations but also to the multi–parametric ones.

As the general procedure has been given, the next step is to consider the case of
non–generic p and q or to construct representations of larger quantum superalgebras
like Up,q[gl(n/1)], Up,q[gl(n/m)], etc. for both generic and non–generic deformation
parameters. Let us emphasize once again that our approach avoids the use of the
Clebsch–Gordan coefficients which are not always known, especially for higher rank
(classical and quantum) algebras and multi–parametric deformations.
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