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Abstract
The history of linear accelerators is now more than 50 years old and
after a difficult start presented many remarkable successes.  Theory and
technology encounter difficult problems briefly presented here with the
solutions so far developed on orbit stability, focusing, RF structure and
beam dynamics computations.  Questions still remain however about
high intensity limits which, when answered, might still open a more
brilliant future for these types of machine.

1 . BRIEF HISTORY OF LINACS

The first accelerators built for nuclear physics were of electrostatic type;  such machines
were efficient but limited in voltage due to electrical breakdown.

In 1924 a proposal was made by Ising to add several accelerations without having
anywhere the total voltage.
 The method was based on the use of drift tubes and time varying fields, as sketched in Fig. 1.

Fig. 1  Drift tube accelerator of Ising

Along the axis of metallic tubes, charged particles can drift without being subject to any
electric field except at their ends, in the gaps between two consecutive drift tubes, according to
their respective voltage V.  If an accelerating voltage is applied initially to all the tubes and is
switched off on each of them between the time of entrance and exit of a charged particle, the
particle will receive in each gap a succession of accelerations.  In practice, voltage pulses are
more appropriate, as used in present day induction linacs;  needless to say, however, that at the
time of the proposal shape and timing of high voltage pulses were not good enough to produce
a useful operation.

In 1928, Wideröe proposed to replace voltage pulses by an RF voltage (with a constant
frequency, the drift tube lengths have to increase with the β of the particles).  The method was
tested on a single drift tube (input + output) and with 25 kV RF peak voltage, it was possible to
observe an acceleration of 50 keV for singly-charged Na and K ions.

In 1931 Sloan and Lawrence built a real linac of 30 drift tubes giving to Hg ions an
energy of 1.25 MeV;  lengthening it later in 1934 to 36 drift tubes and increasing their voltage
they reached 2.8 MeV.  the intensity was of course very low and the beam quality not specified:
R.F. voltage differed from Ising pulses, having no real flat top, phase stability (see Section 2)
was not yet discovered and focusing was not ensured, except maybe by ES lens effect (see
Section 5).

No further development occurred until the war, due to the lack of proper high power RF
technology (limited then to 10 MHz) and to the discovery of the cyclotron.  The length of the
Sloan and Lawrence machine approached 2 m with a βmax of only a few thousandths;  with the

1) More details on the subject can be found in a Los Alamos report LA 11601 MS, Proton Linear Accelerators,
or in a CERN Yellow Report (in French) CERN 87-09



same RF wavelength of 30 m acceleration of protons would have led to a prohibitive length.  In
cyclotrons, on the contrary, the spiralling of the trajectories together with some focusing effect
allowed the succession of many accelerations over a limited extent, leading to the possibility of
producing 10 MeV protons.

The development of radars offered, after the war, pulsed high voltage equipment in the
metric and centimetric wave ranges;  science and technology of electromagnetism and beam
dynamics of already high level were then available.

The parallel development of circular accelerators (synchrocyclotrons and synchrotrons)
was also helpful with the discovery of phase stability.

Ginzton, Hansen, Chodorow, Slater, Walkinshaw used 3 GHz to accelerate electrons.

Alvarez and Panofsky used 200 MHz for protons.

2 . LONGITUDINAL MOTION.  PHASE STABILITY.  ACCELERATION BY
A TRAVELLING WAVE

For a given geometry of the drift tubes which corresponds to a certain rate of acceleration,
particles must receive at each gap an exact energy gain and the voltage must have an exact value.
The RF voltage V  applied is larger and there are two phases per RF period for which the
voltage has the right value Vs (see Fig. 2).  When the field is rising the phase is stable since a
particle arriving too early will be less accelerated and slip slightly in phase until the next gap;
vice versa for a late particle.  The other phase is unstable.  The stable phase is called the
synchronous phase φs and one has

Vs = Vcosϕ s

with φ = 0 corresponding to the crest (proton case).

Fig. 2  Phase instability
In a first approach one can replace the discrete gap configuration by an equivalent

continuous interaction (in Section 5 will appear a justification).  One may say that the field
distribution along the axis in the successive gaps presents an analogy with a standing wave
pattern, sum of a forward and a backward wave.  One would then consider the interaction of the
forward synchronous wave with the particles.



Introducing relativity symbols and letting ϕs ,  βs ,  γ s  refer to the synchronous particle,
one has

γ = 1 + W

m0c2

and putting
δγ = γ − γ s

one can write, following the path of a particle, along the axis
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Forgetting about the change in γs one then obtains
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where ET is the amplitude of the synchronous wave.

Such a motion derives from the Hamiltonian
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Neglecting the change in γs is only valid for heavy particles (protons and ions) for which
it is slow enough.  It corresponds to an acceleration fighting against a constant breaking force
(or to a forced pendulum model as often presented for circular machines).

One gets from it the usual stability bucket of Figs. 3 and 4;  Fig. 5 shows the phase space
plot relative to an operation with ϕs = 0 (fixed point as used by Sloan and Lawrence).

Taking into account the change in γs opens up the bucket and gives the so-called golf
club, see Fig. 6 (notice that the coordinates used are not conjugate).



Fig. 3  Classical stability bucket

Fig. 4  Non-accelerating bucket

Fig. 5  Fixed-point operation



Fig. 6  Golf club

For electrons γ increases very rapidly and β becomes close to 1 over a short distance.

Most of the accelerating structure (apart from a buncher) is a constant velocity β = 1 structure.

The previous derivation must be modified;  keeping γ  instead of δγ, it leads to:

1 − β
1 + β

= γ − γ 2 −1 = eET

ωm0c
cos ϕ −  cos ϕ0( )

where ϕ  refers now to a 0 of the field expressed as ET sin ϕ  (electron linac convention).
Figure 7 shows a corresponding phase space plot.  One may notice that the ϕ0 of a curve
corresponds to its position for γ  ∞ .

Introducing, as is the custom

α = eETλ
m0c2 = 2π eET

ωm0c

one can see that for α ≥ 2π  the curve corresponding to ϕ0 = π/2 which provides the maximum
acceleration can start from W = 0.  For α < π , however, there can be low energy electrons just
slipping in phase and not accelerated (Fig. 7).

Fig. 7  Electron acceleration phase plot for α < π



3 . TRANSVERSE MOTION.  DEFOCUSING ACTION OF THE 
ACCELERATING FIELD

The fields at the entrance and exit of a gap produce focusing and defocusing actions (see
Fig. 8).  If the field is rising the overall effect is defocusing.

Fig. 8  Focusing and defocusing actions in a gap

Calling on the travelling wave accelerator concept one may transform the EM field of the
synchronous wave in a frame moving at the same velocity (supposed constant).  A TM
accelerating field becomes electrostatic.  Then
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If there is a longitudinal stability in z, there is instability in the transverse direction.

This has been a strong handicap for ion linacs until AG focusing was invented and
applied (thin foils were destroyed by breakdown and thick wire grids, if transparent enough,
introduced bad aberrations).  New methods exist now, in particular the RFQ principle for low
β.

For electrons, which become very quickly relativistic, the transverse effects are very
weak.

4 . LINAC ACCELERATING STRUCTURES

(Only a general review is given here;  details can be found in more specialized lectures, in
particular on ion linacs.)

In a circular waveguide, the phase velocity of the waves β ph  is always larger than 1.  It is
then necessary to slow them down.  Periodic loading is used and/or field concentration or
reorientation via drift tubes.

The structure must also provide space to install quadrupole focusing (at least at low β for
ions and protons).

Stability of the field distribution is also a concern.
β << 1 (ions)



Sloan and Lawrence structure (present design, see Fig. 9a);  the large drift tubes can
house quadrupoles (frequency from 10 to 100 MHz).

H-type structure (see Fig. 9b);  the field of the transverse electric mode is made
accelerating through the drift tube configuration;  since there is not much space for focusing, the
fixed point operation (see Fig. 5) is used, with focusing and rebunching from place to place
(frequency up to 100 MHz).

Fig. 9a Fig. 9b

0.02 < β < 0.1

Quasi Alvarez structure (see Fig. 10);  the large drift tubes (almost 2βλ long) can house
quadrupoles;  the rate of acceleration is lower than with the H-type structure (frequency up to
200 MHz);  high intensities can be accelerated.

Fig. 10

0.03 < β < 0.4

Alvarez structure (most common for protons, see Fig. 11);  a quadrupole is put in each
drift tube.  Such a structure allows very large intensities (frequency between 100 and
400 MHz).  For β approaching 0.5 the RF losses increase, the drift tubes becoming resonant

like λ/2 antenna.

Fig. 11
β > 0.4 (protons)



Side-coupled cavities (Fig. 12).  At this β the focusing is installed in between sections of
cavities (frequency from 600 to 1200 MHz).

Fig. 12
β  = 1 (electrons)

Iris-loaded cavity (Fig. 13) with three or four irises per wavelength λ (frequency usually
3 GHz).

Fig. 13

Other types of structures

Superconducting (or normal temperature) independent cavities for heavy-ion boosters:  a
few gaps or even a helix.  Very flexible for various particles and different β:  for each velocity
and particle (charge and mass) the phase of the independent cavities is correspondingly
adjusted.

RFQ (low-β protons and ions):  cavity excited on a quadrupolar EM mode with profiled
vanes or rods to provide acceleration.
5 . DETAILED PARTICLE DYNAMICS COMPUTATION



Acceleration through a gap
Transit time factor
Simulation codes

The initial approach (Panofsky equations) was developed from the experience gained on
electron beam tubes with grids (see Fig. 14).  In the case of grids the field in a gap can be
uniform of value E0.  With open holes on the contrary it penetrates inside and can have, on the
axis, a distribution as shown on the figure.

Fig. 14  Accelerating gap

With the initial approach (with grids) if one assumes a particle crosses the gap with a
constant velocity v with the phase ϕ  in the middle, the energy gain is:

∆W = q E0 cos 
ωz

v
+ ϕ





−g /2

+g /2

∫ dz = qVT cos ϕ

with
V = E0g

voltage across the gap, and
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where

θ = ωg / v

θ is the transit time (in phase) through the gap and T is called the transit time factor (always
< 1):  it is the reduction in acceleration with respect to what the voltage V would give.

In the real case (without grids) it is possible to express the amplitude of the field Ez (z) on
the axis (as obtained from measurements or rather from a computer) with the help of a Fourier
integral:
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In such an expression the field is represented as the sum of an infinite set of travelling
waves of amplitude proportional to T(kz) (in a standing wave configuration only two waves are
present).  Each wave T(kz) is an EM wave the complete distribution of which can be known
from Maxwell's equation (assuming circular symmetry) in such a way that the complete field
distributions can be derived throughout the gap inside of a cylinder of radius a, the hole radius:
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With such expressions, making use of inverse Fourier relations, one can easily compute
the energy gain.  Along a parallel to the axis, at the distance r, one has:

∆W = qVT kz( )I0 krr( ) cos ϕ

where kz = ω/vφ and T(kz) is the amplitude factor relative to the synchronous wave;  the fact
that only the synchronous wave interacts justifies the approach used in Section 2.  It also
explains a correction often introduced in the expression of the transit time, as follows:

T = sin θ / 2
θ / 2

I0 krr( )
I0 kra( )

with, for θ, a slight correction to take into account the effect of the chamfer of the hole.

With the field equations above one can compute the phase change across the gap,
accounting for the change in velocity, and the transverse motion.  It is also possible to consider
a trajectory with a slope, such that

r = r0 + r0
' z

Such integrals lead to expressions involving T(kz) and its first and second derivatives with
respect to kz, according to the relation given above (see the report LA-11601-MS, page 80).



These expressions are used in common codes like PARMILA and MAPRO, valid
however only for protons and ions.

A more recent code, DYNAC, valid for all particles (including electrons), with a better
accuracy, introduces instead of the radius r the reduced radius

R = r βz   with   R' = dR

dz
leading, in the paraxial approximation, to:
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such that R and R' are conjugate (which was not the case for r and r').

This equation shows, in addition to the phase dependent term usually defocusing (see
Section 3), a focusing term of the electron lens type, mainly important for electrons but also for
very low velocity particles (explaining probably the weak focusing observed by Sloan and
Lawrence, see Section 1).

Such a term for a uniform field just leads by integration to the classical solution and the
relation between r and R;  it can however in the case of localized fields (gaps) exhibit an
appreciably enhanced effect, not at all in contradiction with the considerations developed in a
moving frame at constant velocity.

The derivation of the equation in R, not given in the report LA-16601-MS, is developed
in the Appendix.

6 . SPACE CHARGE EFFECTS.  INTENSITY LIMITS

Particles of the same charge repel each other.  Space charge field tends to increase the
beam size and hence entails a risk of loss.

According to Poisson's law a linear space charge field requires ρ = Cte.

The only solution for a uniform density, only possible for a continuous beam is the so-
called Kajchinsky-Vladimirsky (K.V.) distribution, which is a surface distribution in the 4D
space.  Such a distribution is, of course, not very physical but fortunately it happens, from
energy consideration, that the K.V. beam equations are satisfied approximately (over short
enough distances) by r.m.s. dimensions (size and emittances) for all distributions (for a K.V.
distribution r.m.s. dimensions are half the real ones and r.m.s. emittances one quarter of the
real ones).  Such a property is extremely useful, in simulation studies for instance, for finding
good matching conditions.

When the intensity increases, various phenomena occur, due to the non-linear character of
space charge forces.

Beam emittance can transfer from one coordinate to another and total emittance tends to
increase.

Around the beam core a "halo" develops;  when trying to scrape it, it reappears.  Even if
such a halo contains only one or a few per cent of the particles or even less this can be a very
serious problem for large intensity machines.

For small average intensity on the other hand, the emittance (beam quality) is the main
concern.  A practical recipe which leads to good operation is as follows:



AG focusing is usually specified by the phase advance per focusing period of the
incoherent oscillations;  calling σ0 the value for zero intensity and σ  for full beam

one must have σ0 < 90˚ and usually σ0 in the range of 60 or 70˚ with σ/σ0 > 0.4.

In addition focusing and longitudinal stability should be adjusted, as far as possible,
in such a way that transverse kinetic energy and longitudinal oscillation energy
remain as close as possible to avoid emittance transfer.

Several simulation codes are available to study numerically the space charge effects.  The
beam is represented by a few thousand of macroparticles and several methods are used to
compute their space charge field:

A fast Fourier transform (FFT) routine to solve Poisson's law when one can
assume a circular symmetry for the bunch (PIC, particle in cell code)

A numerical integration using analytical expressions valid for an ellipsoidal bunch
shape (Ellipsoidal profile code)

A point-to-point computation which does not make any assumption on the geometry
but requires some care to avoid "collisional effects" (Particle-to-particle interaction
code);  this last code is much slower when increasing the number of macroparticles.

Present theoretical approaches to study the details and analyze the phenomena strongly
related to highly non-linear space charge fields are making use of the modern theories of
stochasticity with resonance overlap effects and Arnold's diffusion.  They are still under
development.
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APPENDIX

EQUATION OF THE TRANSVERSE MOTION WITH THE REDUCED
RADIUS IN THE PARAXIAL APPROXIMATION

The equation

d mvr( )
dt

= q Er − vzBθ( ) (A.1)

can be written
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Now, from Eq. (A.2), in the paraxial approximation
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with, according to Maxwell's equations

∂Er

∂r
= − 1

2
∂Ez

∂z
   and   

∂Bθ
∂r

= 1

2c2
∂Ez

∂t
(A.7)

But one has from Eq. (A.2)
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and, for the longitudinal motion
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so that one also has
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Eventually one obtains

d2R

dz2 − R
q

2m0c3
1

β 3γ 3
∂Ez

∂t
+ R

q

2m0c2







2
γ 2 + 2

β 4γ 4 Ez
2 = 0


