Computer Animation for Scientific Visualization

Michael E. Bauer & Ken C. Hu
Sterling Software, Palo Alto, CA, U.S.A.

Abstract

During the past few years computer animation has proven itself as a powerful tool to assist
researchers in understanding complex scientific data sets. One major scientific application of
computer animation is the field of computational fluid dynamics. In this field, animating the
time dependent numerical solutions of such phenomena as shock waves, vortices, shear
layers, and wakes is of major importance.

This paper concentrates on the mathematical representation of transformations for
hierarchical objects such as translation, rotation, and scaling which is essential for animation.
A description of the application of these transformations between world and local coordinate
systems is presented. Several interpolation techniques to define the motion in key frame
based animation systems are discussed. Comprehensive C-code covering these topics is
provided in appendix B.

A brief description of other animation techniques such as cycled objects, camera
choreography, parametric based, and model driven systems is presented. In appendix A a
short discussion of the various hardware components required for an animation recording
environment is given.

Introduction

What is computer animation? The most general description of computer animation
may be stated as follows: Computer animations may be created by using a rendering
device that will produce consecutive frames consisting of relative changes in visual
effects. These changes in effects may be due to either motion dynamics, such as time-
varying position of rigid or non-rigid bodies, or update dynamics. Update dynamics is
associated with a change in shape, color, transparency, structure, or texture. Other
changes in effects can be accomplished by modifying the lighting characteristics or
changing the camera position.

Animation Environments

1) Homogeneous Coordinate System

Before one can discuss. the various animation techniques, it is essential to
understand the basic principles of the environments in which these animations are
performed. If one analyzes the transformations of a vertex point P(x,y,z) to P'(x',y",z)
where P is represented as a row vector and

P'=P+ T (for the translations)

P'=P* S (for scaling)

P' =P * R (for rotations),
then one can see that translations are a linear transformation, and the scaling as well as
the rotations are associated with scalar transformations. By using the homogeneous
coordinate system, all three transformations can be treated as multiplications. This is
accomplished by introducing the w coordinate where

P(x,y,z) > P(X.,Y,Z,w) and w # 0.

179

The 3D Cartesian coordinates can then be represented as
x=X/w, y=Y/w, z="2Z/w.

In computer graphics w is set equal to 1 to simplify computations. Hence the vertex point
P in the homogeneous coordinate system can be represented as P(x,y,z,1).

2) Transformation Matrices

To transform an object in the homogeneous coordinate system, vertex points of an
object are multiplied by a 4x4 matrix. The representative matrices for translations (T),
scaling (S), and rotations (R) are shown below and will be referred to as such throughout
this paper.

Translations Scaling
1 0O 0 o Sy © 0 0
- 10 1 0 O 0o S, 0 O
TMeTyT2) =16 o0 1 o S(S,Sy:S;) = o o s o

Ty Ty T, 1 z
0 o 0 1

Rot ations

1 0 0 0 cos® 0 -sine O
) = 0 cosé sine 0 _ o1 0 O
Ry 0 -siné cosé O Ry(e) “ |sine 0 cos6 O
0 0 0 1 0 0 O 1

cose sine 0 O
-sine cosé 0 0
0
1

R(® =1 0o 1
0o 0 0

Note: The scaling and rotation matrices are derived to transform vectors about the origin
of a Cartesian coordinate system.

3) World and Local Coordinate Systems for Hierarchically Defined Scenes

To discuss these two coordinate systems, an example of a robot will be used. The
robot consists of a base, two arms, and a claw. A graphical representation of the robot is
shown in Figure 1 below. Figure 2 shows the hierarchical relationship of the various
objects. One can see in Figure 2 that the top node is referred to as the "picture node”.
The "picture node" represents the entire scene to be displayed. The world coordinate
system (WCS) defines the space of the entire scene, and many objects can be placed
within it. The initial placement as well as any transformations of these objects will be
performed with respect to the origin of the WCS. An artificial pivot point may be
introduced into the scene to provide extended motion capabilities. This will be discussed
in more detail below. The data structure associated with the picture node is called
"FOREST_DEF". The data structure associated with the root node and the children
nodes is referred to as the "NODE". Both of these structures as well as several other

180

functions referred to later in this paper are available in the C-code reference listed at the
end of this paper.

Referring to Figure 1, only one hierarchical object, the robot, which is defined in
the scene, is shown. If additional objects were added, they would be attached to the
picture node. The node which represents the entire object is called the "root node".
Transformations of the "root node" may be performed either in the WCS or the local
coordinate system (LCS). It is essential to allow the root node to be transformed in the
WCS so that it can be moved throughout world space. In addition it is necessary to
transform the object with respect to its own LCS moving about its own axes. Objects are
modeled with respect to their own LCS, i.e., all points of the object are defined with
respect to this coordinate system. In general the origin of the LCS coincides with the
pivot point of the object. The pivot point may either be the center of rotation, center of
mass, or any pre-defined point on the object.

In Figure 2, one can see that all other nodes, or objects, defining the characteristics
of the robot, are linked in a hierarchical manner. These nodes are called children nodes.
The node above a child node is called the parent node. Children nodes may have their
own children attached to them. Children nodes may be transformed only in their own
LCS. Without this restriction, the hierarchical linkage of the objects could be easily
separated. Even with this restriction, problems may arise if care is not taken. It is
generally necessary to introduce motion constraints on the individual nodes. For
instance, an object that may be moved around a joint should not be allowed to translate;
otherwise it will be separated from its parent node. The beauty of defining objects in a
hierarchical manner is that children nodes may inherit the transformations as well as
attributes from their parent.

Whenever transformations are performed in either the world coordinate or local
coordinate system, respectively, world and local transformations are required. These will
be discussed next.

2z

Figure 1: Display of a Hierarchically Linked Robot

181

T,
Picture Node (Picture 15 Wor/ld Space

Root Mode [Robot | Wor/d & Local Space

| Robot Arm?2

["Robot Base

Children Nodes Local Space
Robot Arm1 Robot Arm
[Robot Arm | [Robot Claw | [Robot Joint] [Robot Boom]

[Robol Joinl”Robot Boom| |Robot Joint “Robot GuargHRobot JaiH Robot Jan

Figure 2: Hierarchical Diagram of the Robot

4) Transformations in World and Local Space

Whenever transformations are performed in either the LCS or the WCS, a set of
rules are required to perform the matrix multiplications. The following techniques were
implemented in an animation package developed at NASA Ames Research Center called
Ames Research Center Animation Development Environment (ARCADE). This paper
does not claim that the following method is the only way to perform transformations on
hierarchically linked objects. This method, however, has produced the best results for the
animation package.

All transformations in either world or local space require incremental update of the
node transformations. An incremental change in motion of a selected node is added to
the accumulated motion of this node.

4.1) Local Coordinate System
To describe transformations with respect to the LCS the following components need
to be defined:

Ra = Incremental rotational matrix

Sa = Incremental scaling matrix

Ta = Incremental translational matrix

T p = Translations with respect to the local pivot point

M| = Previously computed resultant transformation matrix in local coordinates
M1 = New resultant transformation matrix in local coordinates

These components are used in the following matrix calculations:

ML = RA(®) * SAGSx, §ly sz2)* ML '
ML =Tax2,¥2,22) * TLp(-X, -y, -z) * M'L * TLp(X, ¥, 2)

For example, these matrix multiplications can transform an object (see Figure 3)
from position P to position P via a set of translations, rotations, and scalings in the local
coordinate system. To do this, a translation matrix must be established to translate the
object from (A) to (B). Note that the scaling and rotation matrices defined previously are

182

only valid. for transformations about axis' origin. To transform the object with respect to
its pivot point, the pivot point is translated to the origin (C), the rotations and scales can
then be applied (D&E), and the pivot point is then translated back to its previous location.
Now the translational matrix is applied to position the object to the point P>. Appendix B
provides sample C code performing these operations (see the function called
"local_transform()").

® v, @ ©

>
° X ° X X X

® ® ®
Y Y Yl A‘\Q;Av
) X : ié X' © X

Figure 3: 2D Transformation with Respect to the Local Coordinate System

4.2) World Coordinate System

To describe transformations with respect to the WCS the following components
need to be defined:

R = Incremental rotational matrix

S = Incremental scaling matrix

Ta = Incremental translational matrix

Twp = Translations associated with the world pivot point

Mw = Previously computed resultant transformation matrix in world coordinates
M w = New resultant transformation matrix in world coordinates

Mw =Mw * Ta(X2, ¥2, 22) * Twp(-X, -¥, -2) * RA(®) * SA(sx, Sy, $2) * Twp(X, ¥, 2)

For example, these matrix multiplications transform an object from position Py to
position P3 via a set of translations, rotations, and scales in the world coordinate system.
Again a translation matrix may be established to translate the object from (A) to (B).
Next the rotations and scales of the object may be computed about an arbitrarily defined
pivot point in world space. Generally, this pivot point is set to equal the world axes'
origin. However, to allow more motion flexibility it may be located anywhere in world
space. The rotations and scales are then performed about this arbitrary pivot point. As
mentioned earlier, all rotations and scales must be computed about the axes' origin. To

183

assure this, the arbitrary pivot point is translated to the world axis origin (C), the rotations
and scales can then be applied (D&E), and the arbitrary pivot point is then translated back
to its previous location. At this point the translational matrix is applied to position the
object to the point Po. The C-code performing these operations can be found in the
function called "world_transform()". Note in Figure 4, section E, that, whenever a
scaling operation is performed on an object about an arbitrary world pivot point, a
translation toward this pivot point is introduced. This can be very useful in animating
imploding (bursting inward) objects.

®
(@
T Y|y

® ®
E g_, Y yﬁ@

Figure 4: Transformation with Respect to the World Coordinate System

® ©

><><;
<

4.3) Switching Between World and Local Transformations

As mentioned above the root node of any object may be transformed with respect to
either the WCS or the LCS. To assure continuity between switching from one space to
the other, the object matrix must be converted to the respective coordinate space.
Without this conversion, the object would not maintain its position (i.e., it would jump
when switching between WCS -> LCS ->WCS). Simple matrix multiplications on the
node matrix M must be performed to maintain continuity. The following general
equation is used to switch from the WCS to the LCS or from the LCS to the WCS
depending on the value of "direction.”

M' = direction * (-T1p) * M * direction * (+T1p)

where LCS -> WCS: direction =1
WCS -> LCS: direction = -1

184

Animation Techniques

5) Key Frame Systems

Now that the fundamentals (e.g., coordinate systems, hierarchy, etc.) have been
covered, it is time to move on to animation techniques. The most commonly used
animation technique is called "key frame" animation. Key frame animation was
originally developed by Walt Disney to create cartoons (reference #1). In these systems,
skilled animators designed or choreographed images at a specific instance in time
representing the animation. These images, the so called key frames, would then be
interpolated by less skilled animators to complete a sequence of "in-between” frames.
Animating the key frames along with the in-between frames resulted in the desired
cartoon.

Within computer graphics, the key frames represent a 4x4 transformation matrix
associated with an object (node). The in-between frames are then computed by the
computer using a variety of interpolation techniques. The most frequently used
interpolation techniques are linear, Hermite, splines, and quaternions, all of which are
described in this section.

5.1) Key Frames in Computer Graphics

To create the desired key frames it helps to have an intuitive user interface to
control the manipulation of scene objects. Selecting desired nodes from some sort of
tree representation (see Figure 5) of the hierarchical object works quite well. Once a
node has been selected, transformations can be used to establish a series of key frame
matrices. For example, the manipulation of a hierarchically based robot object (see
Figure 5) to create key frames (see Figure 6) could adhere to the following scenario. First
the user would select the robot arm1 object (node at (A)) and perform a rotation about the
z-axis. This matrix is then saved as the first key frame. Note that a translational motion
constraint, to prohibit translations in either X, y, or z direction, should be imposed on any
of these "arm" joint nodes. Translating these nodes would separate them from their
parent node. It can be clearly seen in Figure 6 that the children nodes inherit the
transformation of the applied matrix. Next a transformation matrix of the robot claw
object (node at (B)) and the transformation matrix of the robot arm2 object (node at (C))
are saved, each creating their own key frame matrix. By interpolating the motion of the
key frame matrices and displaying the object with each interpolated matrix, a nice motion
of the robot can be visualized.

The C-code to display the current picture as well as display the nodes of a tree is
shown in the functions "display_scene()" and "display_tree()". The function
"display_tree()" takes care of the inheritance issues associated with hierarchical objects.
This is accomplished by using the function calls pushmatrix, popmatrix and
pushattributes and popattributes which preserve or delete the matrix and attribute
information on a stack accordingly.

185

e
(Picture 1)

Robot Base

Robot Arm2

WArml Robot Arm

[Robot Arm | [Robot Claw | [Rebot Joint | [Robot Boom |

[Robot Joint|[Robot Boom] [Robot Joint [[Robot Guard][Rebot Jaw || Robot Jaw |

Figure 5: Selecting Nodes for an Animation

Figure 6: Selected Key Frames for an Animation

5.2) Controlling the Kinematics of the Animation

The placement of the key frames with respect to time determines the kinematics
(motion) of an object. Key frames, which are placed closer together with respect to time,
produce a faster motion than key frames that are placed farther apart. It is the opinion of
the authors that an interactive user interface should be used to easily facilitate control of

186

the kinematics in an animation. As an example the user interface developed for the
animation package ARCADE is shown in Figure 7.

g Regulor Ubieot

Figure 7: Animation Strand within ARCADE

The user interface shown in Figure 7 displays a graphical representation of the time
line for each node that will be animated. Each displayed time line is called a "strand."
Besides having control features, the strand also contains a key frame "bucket" where
graphical representations, i.e., icons, of the key frames are displayed. A user can place
these matrix icons onto the strand of the respective node to control the kinematics of the
animation.

5.3) Interpolating the Key Frames

Key frame interpolation is an essential part of animation because it allows the
animator to define a small number of strategic frames that the software then uses to create
numerous in-between frames, thereby producing a smooth animation. There are several
interpolation techniques possible (reference #1, #2, #3), however only a few of them are
suited to produce an appropriate animation. Figure 8 shows possible candidates for an
interpolation method. Each curve in this figure will be discussed in more detail.

Hermite Bezier Cubic B Linear

Figure 8: Spline Comparison Diagram

187

5.3.1) Linear Interpolation

The easiest interpolation technique is linear interpolation. Linear interpolation
generates continuous motion, however it also generates first- and second-order derivative
discontinuities at the key frames. As a result the animation experiences abrupt changes in
direction at the key frames which give the animation a mechanical look. Sometimes this
is the desired effect especially with very rigid bodies; however, a much smoother motion
is usually desired. One advantage of the linear interpolation is that it guarantees that the
animated path will go through the set of selected key frames.

5.3.2) Hermite Interpolation

A much more desirable interpolation technique is the Hermite interpolation. The
Hermite interpolation guarantees derivative continuities, hence producing the desired
smooth motion. As with linear interpolation, the animated path of the Hermite
interpolation passes through the set key frames. One potential disadvantage of the
Hermite interpolation is the exaggerated path it produces, which can bee seen in Figure 8.
The top portion of the loop swings out beyond the region of the key frames. This region
may, however, no longer be in the viewing volume (visible on the screen), and the object
could temporarily disappear from the displayed scene.

5.3.3) Cubic B-Spline

Splines in general prevent objects from disappearing from the viewing volume
because splines are confined by the convex hull of the set of control points. As long as
each control point (key frame) is in the viewing volume, at least a portion of the object
will always be visible in the scene. The cubic B-spline produces derivative continuities at
the control point and enjoys the properties of being confined within the convex hull. The
animation path of the cubic B-spline generally does not pass through the control points,
which may create a problem. This can be overcome by doubling or tripling the particular
vertex point as was done at the beginning and end control point in Figure 8. This action
considerably reduces the motion's smoothness if performed on other than the begining
and end control points and it increases the number of required computations.

5.3.4) Bezier Curve

From the curves shown in Figure 8, the Bezier curve is the least desirable since it
completely dampens the animated path. The loop specified by the key frames shown in
Figure 8 is "washed out" when using the Bezier curve to compute the in-betweens;
consequently, it is rarely used for key frame animations.

5.3.5) Beta Spline

The Beta spline (see Figures 9 and 10) has many of the same advantages as the
cubic B-spline, such as continuous derivatives at the control points and the spline being
confined within the convex hull. Furthermore, the Beta spline has unique controlling
parameters which provide total control of the curve's shape, making this spline a nice
candidate for computing the in-betweens. The parameters that control the shape of this
curve are the bias (B1) and the tension (83). In Figure 9 the tension is set to zero and the
bias is changed. One can clearly see that when 81 = 0, a linear interpolation is obtained.
When B = 1, the Beta spline is equal to the cubic B-spline. As the bias is increased the
actual shape of the curve can be controlled by shifting toward the left and approaching
the control points. In Figure 10 the bias was set to one and the tension was modified. As
the tension is increased the curve is stretched vertically to approach the control points.

188

_

= = = Cubic B-Spline

° |31=1‘

BZ=O <

Beta-Spline

B, = 100

Figure 10: Evaluation of the Beta Spline (modifying the tension 8)
5.3.6) Quaternions

The above mentioned techniques work very well for computing the in-betweens
for the translation and scaling parameters, but not for the rotation parameters. In the past

189

the Euler angles, the angles defining the 4x4 rotational matrix R above, have been used
extensively for animating orientation; however, interpolating Euler angles leads to
unnatural interpolation of the angles. For this reason quaternions should be used as the
interpolation technique for rotations (reference #1 , #2). In previous discussions the 4x4
matrix M was computed for either the WCS or the LCS. This matrix was computed by a
series of matrix multiplications of translations, rotations, and scales. In order to perform
the quaternion interpolation it is necessary to extract the rotational components from the
matrix M. Since the scaling components Sy, Sy, and S; are multiplied by the rotational
components, this may not be a trivial task. If g x = Sy = S; then the task of extraction is
simplified. However if they are not equal, shearing matrices must be introduced to
extract the scaling components. Reference 4 provides a detailed explanation of this
procedure. In general the matrix M must be separated into five different matrices, three
of them are shearing matrices (see below). The in-betweens associated with shearing
matrices, the scaling matrix as well as the translation parameters may then be computed
either using splines, or the hermite or linear interpolation. The normalized 3x3 rotational
matrix can now be converted to its respective quaternion representation. The quaternion
in-betweens for the set of quaternion key frames may be computed using conventional
interpolation techniques. This produces a spherical linear interpolation of the key frames.
The in-betweens as well as key frames need to be converted back to their respective
rotational matrix representations. At this point the related in-betweens for the
translations, rotations, scales, and shears must be multiplied to produce the respective in-
between matrix M used in the animation.

Scaling Shearyy Shear,, Shear,, Rotation & Translation
S¢ 0 0 0/|1 o001 oo0o0f{[l1 o 00 0
M<|0 Sy o0 oS 10040 10001 00 R[3X3] | ©
“lo o S, 0 0 010 Syy 0 1 0 0 Syz 1 0 o
00 o 1/lo oo1][0 o001]jo o o1 | TxTyTz1

C-code for the above mentioned routines is available via several functions (normalize(),
QuatFromMatrix (), QuatToMatrix (), Interpolate(), slerp()) in Appendix B.

6) Cycled Object Animation Technique

Another animation technique used in conjunction with the key frame systems is the
cycled object animation technique (e.g., display of consecutive frames of time dependent
objects or data), which is used extensively in scientific visualization. A large set of
objects, representing either time dependent data or a display of varying physical object
characteristics, such as position, shape or color, may be presented by the scientist by this
method. Displaying each object of the entire set over time may produce an animation
containing vast amounts of data. Generally key frames are established to define the
position of the cycled objects within world space. Initially a skip range is established
which determines the objects from the set that will be displayed. Next the set of objects
are cycled with respect to time using several simple techniques. A bounce cycle may be
used where the cycle begins the display with a pre-defined start object and incrementally
displays the next object based on the skip range. Once the last object is reached, the
cycle begins with the last object and cycles forward to the first object where the cycle
starts again.

Bounce cycle: objs -> objj -> objy; 0bjy -> 0bjj -> 0bjs; .eveeeeenee.

190

The looping cycle is similar to the bounce cycle, however rather than continuing
with the last object when the last object has been displayed, the cycle continues with the
first object.

Looping cycle: objs -> obj; -> objy; objs -> obj; -> objp; .eeveeee.
The growth cycle allows the objects to be accumulatively displayed.
Growth cycle: objs -> objs + 0bjs+] -> 0bjs + Objs+1 + Objgs2 > cvune...

7) Camera Choreography

Besides manipulating data, animations can be created by keeping the data static and
manipulating the camera (reference #2). This type of animation allows an animator to
"fly" about the data and view it from various locations in world space. Zooming and
panning techniques may be used to produce other views. Several different parameters
may be modified for camera choreography (refer to Figure 11). The camera viewpoint or
twist, which establishes the actual physical location and orientation of the camera in
world space, may be modified. In addition, the reference point of the camera, the
location where the camera is looking at, may be changed. When creating animations with
the camera, start and end any motion slowly (slow-in & slow-out). In addition, jerky
motions throughout the animation should be avoided.

An advantage of camera choreography is that the data does not have to be
manipulated, it only needs to be viewed. For this reason the time required to produce an
animation may be reduced considerably.

Twist

Viewpoint

o)

el O

ﬂ:&

Reference Point

o

Camera _Object

Figure 11: Camera Choreography

8 Other Animation Techniques

Besides using key frames and camera choreography, there are many other
techniques that are available to enhance the visualization experience. In general these
other techniques are used in conjunction with the key frame and camera choreography
animations. They include parametric systems, P-curves, animating object attributes such
as color and transparency, as well as introducing special objects used to visualize a range
of phenomena. These special objects may be contour lines and sweeps; particles,
streamlines and vectors; ribbons and streamers; as well as isosurfaces and cutting planes.

8.1) Parametric Systems

Parametric systems are an extension of the key framing technique. In some
applications, while it is tedious to generate key frames, the 4x4 transformation matrix can
be easily created by procedures (functions). In this case, an object would be linked to one
or several motion functions, where the motion is determined by a set of time dependent

191

parameters. These parameters may be modified through an interactive user interface. A
simple example of a parametrically based system would be the rotation of propellers of an
aircraft. By specifying the revolutions per minute as a function of time, the rotational
matrices required for the animation can automatically be calculated by the computer. It
would be a very tedious job to create such an animation via key frames alone. Another
significant aspect of this system, which cannot be achieved by key frames, is to
incorporate some constraint into the system. For example, two colliding objects should
not penetrate each other.

8.2) P-Curve

The P-curve is a parametric representation of the motion or any attribute associated
with an object. Rather than using functions as mentioned in the parametric systems
above, the P-curve establishes the animation via a graphical user interface. The
positional coordinates of the motion x(t), y(t), and z(t) for instance are described by
spline curves (see the 2-D analysis, Figure 12). By specifying the position (or attribute)
on the curve at each frame, the animation is created. Obviously, the graphical user
interface plays an important role in controlling animations. By editing the parametric
curve, animations with different paths or attributes can be ceated. (For details see

references #2, #5)
'J/,
> L

t X

X

Figure 12: P-Curve

8.3) Animation Object Attributes (Color and Transparency)

Color is used extensively in scientific visualization to analyze the dynamic range
and distinguish particular values of a data set. Colors are mapped to a specific value or a
range of values which allow researchers to have a clearer understanding of the topology
of their data. Transparency is used extensively to provide a view of data hidden behind
data of another plane.

8.4) Animating Special Objects

8.4.1) Contour Lines and Sweeps

Contour lines are used to visualize the threshold of a range of data sets in a
particular plane. Data values equal to user defined threshold settings are graphically
linked via lines which may or may not be colored by the magnitude of the data. The
contour lines may be shown either by themselves or with the remaining data of the plane
that has already been colored. Contour sweeps can be used to demonstrate the progressive
change in data by visualizing the contour lines of various data planes. If time varying

192

data is available, then these contour lines are set into motion depending on the dynamics
of the data.

8.4.2) Particles, Streamlines, and Vectors

Particles and streamlines are used extensively in the visualization of
computational fluid dynamics. To understand the path and the dynamics of the flow,
particles are "injected"” in the computed flow. Streamlines are obtained by connecting the
paths along which the particles travel. Vectors may also be used to demonstrate the
magnitude and direction of the flow. Vortices and other physical flow phenomena can
clearly be shown using these techniques. Particles, streamlines, and vectors may be
colored by the magnitude of the particular physical parameter to be displayed.

8.4.3) Ribbons and Streamers

Visualization using ribbons and streamers is very similar to visualizing particles
and streamlines. The primary difference is ribbons and streamers produce a segmented
surface representation of the flow.

8.4.4) Isosurfaces and Cutting Planes

These two techniques are used extensively in scientific visualization. Isosurfaces
represent the three dimensional surface asociated with a particular value in the data set.
As an example, isosurfaces are used to show the volumetric surface of a particular
pressure or temperature. Data hidden by an isosurface may be displayed by either
making the isosurface transparent or by using cutting planes. Cutting planes allow a
scientist to slice discrete planes within the isosurface exposing any hidden visualized
data.

Advanced Animation Techniques

9) Soft Object Animation

Shape distortions in animations are generally used to highlight dynamic actions of a
scene, such as objects experiencing an impact (reference #6, #7, #8). Generally the shape
distortions are completely arbitrary and under the control of the animator. The exception
to this is when shape distortions are created from physically based models, i.e., forces
acting on an object which produce the distortions. Simply speaking, shape distortions can
be achieved by either moving the vertices of the polygonal model or by modifying the
control points of a representative parametric surface of the model. When changing
vertices, the polygonal resolution of the model may constrain the nature of the
deformation. Models with low polygonal resolution may experience shape degradation.
A better method for generating shape deformation is to modify the control points of the
parametric surface.
By changing the coefficients of the basis functions of the parametric surface, the
functional description of the surface is altered. Bezier or B-spline patches are well suited
for parametric surface representation. This method can produce deformations of any
complexity while maintaining a smooth surface of the model.

10) Animation of Particle Systems

Many complex models may be animated by animating representative particles of
the particular model (reference #9). Animating rain drops, the flow of water, a flock of
birds or even a table cloth are among the typical applications. There are two different
methods for animating particle systems, namely, the scripted and non-scripted systems.
The latter provides for much more realistic physically based animations.

10.1) Scripted Particle Systems

193

In scripted systems the objects, which are represented by particles, may be
animated by user defined scripts controlling the particles' dynamics and appearance. A
frame by frame generation of the animation would be accomplished by the following
method:

First, new particles are generated and injected into the system. The number of particles
released, N(t), may be computed by

N(t) = M(t) + rand(r) V(t)

where M(t) is a mean number of particles as a function of time. The product rand(r)V(t)
would represent a random variable of variance, as a function of time. Each new particle
would be assigned its own initial conditions such as position, velocity, direction, size,
shape, color, transparency, and its lifetime. Any particle which exceeds its lifetime will
be extinguished from the scene. The particles would move according to their user
defined scripts based on dynamic constraints. At this point the particles can be rendered.

10.2) Non-scripted Particle Systems

During the last three years increased computational power as well as sophisticated
computer graphics hardware has made it possible to produce very advanced animations
using physically based modeling of particle systems. The motion of the particles is
completely based on Newtonian mechanics. Various types of forces may act on these
particles, which may either be unary forces (gravity, drag, etc.) that act independently on
each particle, n-array forces (springs) that are applied to a fixed set of particles, or forces
of spatial interaction (attraction, repulsion) that may act on all or pairs of particles. Mass-
spring systems may be created that approximate the motion of rigid or elastic bodies as
well as fluids. In this system the mass of a body may be lumped into a collection of mass
points. The motion between these mass points may be approximated by a set of springs.
By changing the spring constant one can modify the viscosity of a fluid or the elasticity
of an object. Several papers have been written (reference #4) over the last three years on
how to incorporate these techniques into computer graphics animation.

10.3) Behavioral Animation

Behavioral animations may be used to simulate biological systems (reference
#10). Once again the concept is based on particle systems. With this method particles
are no longer independent, they interact with each other to simulate various flocking
mechanisms. The flocking of the entire system is controlled by global positions or global
direction vectors. The flocking individuals are controlled by the following criteria. A
flock mate will always avoid a collision with a nearby flock mate, while maintaining the
closest proximity to the other flock mate. In addition a flock mate will try to maintain
the velocity of the nearby flock mates. Very nice animations of a flying flock of birds
have been created using this method.

Summary

11) Although its most common application is in the comercial entertainment industry,

computer animation has become an important tool for visualizing complex and time
dependent data in recent years. This paper details the animation fundamentals and
provides an overview of most commonly used animation techniques in Scientific
Visualization. Some techniques such as the key frame systems were discussed in more
detail because of their underlying importance associated with animations. Due to
increased computational power and sophisticated rendering devices, advances in
animation techniques, such as physically based modeling, animation will play a more
important role in simulation and visualization of the real physical world.

194

Acknowledgments

The authors owe the warmest thanks to Eric Hibbard, who read the text with
meticulous care. His extensive and penetrating comments have been most important in
improving the paper in all its aspects. The authors are very grateful to Randy Kaemmerer
for commenting on the draft.

References

1) Allen Watt, Mark Watt, "Advanced Animation and Rendering Techniques,"
ACM Press/Addison-Wesley, New York, '92;

2) J.Foley, A. van Dam, S. Feiner, J. Hughes, "Computer Graphics, Principles and
Practice," Second Edition, Addison-Wesley, Nov, '91;

3) R.Bartels, J. Beatty and B. Barsky, "An Introduction To Splines For Use In

Computer Graphics & Geometric Modeling," Morgan Kaumann, Los Altos, CA.,

‘87,

J. Arvo, "Graphic Gems II," Academic Press, San Diego, CA., '91;

R.M. Baecker, "Picture Driven Animation," SICC, AFIPS Press, 1969;

M. Gascuel, "An Implicit Formulation for Precise Contact Modeling," Computer

Graphics, pp. 313-20, August 1993. Proceeding of SIGGRAPH '93, held in

Anaheim, CA, 1-6 August, 1993;

7) D. Baraff and A. Witkin, "Dynamic Simulation of Non-penetrating Flexible
Bodies" Computer Graphics, pp. 303-308, July 1992, Proceeding of SIGGRAPH
'92, held in Chicago, IL, 26-31 July, '92;

8 D. Metaxes and D. Terzopoulos, "Dynamic Deformation of Solid Primatives with
Constraints" Computer Graphics, pp. 309-312, July 1992, Proceeding of
SIGGRAPH '92, held in Chicago, IL, 26-31 July, '92;

9) M. Kass, A. Witkin, D. Baraff and A. Barr, "An Introduction to Physically Based
Modeling," 1993 Siggraph Course Notes 60, Anaheim, CA;

10) C. W. Reynolds, "Flocks, Herds, and Schools: A Distributed Behavioural Model,"
Computer Graphics, pp. 25-34, Proceeding of SIGGRAPH '87;

0L

Appendix A
(Typical Hardware Components)

In general, to produce an animation, naturally some type of display device is
required to produce the image on a monitor. In addition a device is required to convert
the RGB signal(s) from the display device into a recordable signal like RS-170A. A
frame controller is required to accept commands from the computer to cause one or more
frames of the animation to be recorded. Finally, a recorder is used to record the image
data on some media.

The basic components used at NASA Ames Research Center are listed as follows:
The display device used is either a workstation or an X-terminal. A scan converter, such
as a Lyon Lamb real time scan converter (RTC), converts the RGB signal to a recordable
signal. A Lyon Lamb miniVAS controls the sequence of frames. A Betacam SP deck is
used as the mastering deck, however, any recording device that support frame accurate
recording may be used (e.g., U-matic SP, VHS, S-VHS, etc.).

Appendix B
(C Code)

[st sk sk shestestesk sk ske sk skeok sk skeok HierarChicalStruCtures ***************/
/***

195

Tree structure

kkok /
struct node {
/*
.... node data
*/
PIVOT_PTR node_pivot; /* Local pivot point of the node */
MATRIX_PTR node_matrix; /* Actual drawing matrix */

MATRIX_PTR original_mat; /* Will never be changed */
MATRIX_LIST animate_mat; /* List of saved Keyframes */
struct node *next;

struct node *parent;

struct h_node {

int length;
struct node *first, *last;
} *leaves;

1

typedef struct node =~ NODE;
typedef struct h_node H_NODE;
typedef H_NODE *LEAVES;

typedef NODE *TREE;
/***

Linked list of picture structures (forest of trees)
Seskok /

struct forest_def

{

/*
... picture data
*/
TREE tree_address; /* Pointer to a tree structure */
Gen_matrix pict_mat; /* Camera transformation matrix */

CAMERA_LIST camera; /* List of camera keyframes */
struct forest_def *previous;
struct forest_def *next;

)

typedef struct forest_def FOREST_DEF;
typedef FOREST_DEF *FOREST;

/***************** InitialiZing the Node Mam ***************/

[R*E*

Create the Node Matrix. If an ARCgraph matrix exists, use it as a node matrix.
kK /

void init_node_matrix(TREE tree_node)

if (tree_node->original_mat != NULL)
copy_matrix(*(tree_node->original_mat),*(tree_node->node_matrix));
else
copy_matrix(Identity, *(tree_node->node_matrix));

196

[rExFERERREX Computing the World Transformation Matrices

JEx*E

Compute the world transformations
***/

void world_transform ()
{ /*
COMPUTE THE NODE MATRIX
*/
pushmatrix();
loadmatrix(Identity);
/*
translate the world pivot point to the world origin (0, O, 0)
*/
translate(active_node->node_pivot->wrld_piv_pnt[0],
active_node->node_pivot->wrld_piv_pnt[1],
active_node->node_pivot->wrld_piv_pnt[2]);
/*

incremental rotation about the desired axis of the world origin

*/
if (xrot_flag)
rot(xrotval, 'x');
else if (yrot_flag)
rot(yrotval, 'y');
else if (zrot_flag)
rot(zrotval, '7');
/*
scale about the desired axis of the world origin
*/
if (xscale_flag)
scale(1.0 + xscaleval, 1.0, 1.0);
else if (yscale_flag)
scale(1.0, 1.0 + yscaleval, 1.0);
else if (zscale_flag)
scale(1.0, 1.0, 1.0 + zscaleval);
else if (xyzscale_{flag)
scale(1.0 + xscaleval, 1.0 + yscaleval, 1.0 + zscaleval);
/*
translate back to the local origin
*/
translate(-active_node->node_pivot->wrld_piv_pnt[0],
-active_node->node_pivot->wrld_piv_pnt[1],
-active_node->node_pivot->wrld_piv_pnt[2]);
/*
perform a local transformation
*/
if (translate_flag)
translate(xval, yval, zoomval);
/*

sk skokskokkksk ok f

multiply the old accumulated matrix to get the new resultant matrix*

*/
multmatrix(*(active_node->node_matrix));
/*

197

SET THE RESULTANT NODE MATRIX
*/
getmatrix(*(active_node->node_matrix));
popmatrix();

[rExxpRxRRR* Computing the Local Transformation Matrices ***¥*¥¥x¥x%/

JHEE

Compute the local transformations
***/

void local_transform ()
{ n
COMPUTE THE NODE MATRIX
*/
/*
multiply the local node matrix
*/

pushmatrix();
loadmatrix(*(active_node->node_matrix));
/*
incremental rotation about the axis of the local pivot point
*/
if (xrot_flag)
rot(xrotval, 'x');
else if (yrot_flag)
rot(yrotval, 'y');
else if (zrot_flag)
rot(zrotval, 'z');
/*
incremental scale about the axis of the local pivot point
*/
if (xscale_flag)
scale(1.0 + xscaleval, 1.0, 1.0);
else if (yscale_flag)
scale(1.0, 1.0 + yscaleval, 1.0);
else if (zscale_flag)
scale(1.0, 1.0, 1.0 + zscaleval);
else if (xyzscale_flag)
scale(1.0 + xscaleval, 1.0 + yscaleval, 1.0 + zscaleval);
/*
get the local node matrix
*/
getmatrix(*(active_node->node_matrix));
popmatrix();
/*
incorporate the total linear translation
*/
pushmatrix();
loadmatrix(Identity);
/*
translate the local pivot point to the world origin (0, 0, 0)
*/

198

translate(active_node->node_pivot->pivot_pnt[0],
active_node->node_pivot->pivot_pnt[1],
active_node->node_pivot->pivot_pnt[2]);
/*
multiply the local node matrix
k

multmatrix(*(active_node->node_matrix));
%k

translate back to the local origin
*/
translate(-active_node->node_pivot->pivot_pnt[0],
-active_node->node_pivot->pivot_pnt[1],
-active_node->node_pivot->pivot_pnt[2]);
/*
perform a local transformation
*/
if (translate_flag)
translate(xval, yval, zoomval);
/*
get the resultant node matrix
*/
getmatrix(*(active_node->node_matrix));
popmatrix();
}

[rEFxxsxixsx Switching Between World and Local Space *****x¥kx%/

Vol

Toggle between transforming the objects about the world coordinate axes or about the
objects' local coordinate axes.
***/
void switch_coord_system(int direction)
{
/*
From world to local: direction = -1,
From local to world: direction = 1.
*/
pushmatrix();
loadmatrix(Identity);
translate(direction * active_node->node_pivot->pivot_pnt[0],
direction * active_node->node_pivot->pivot_pnt[1],
direction * active_node->node_pivot->pivot_pnt[2]);
multmatrix(*(active_node->node_matrix));
translate(-1.0 * direction * active_node->node_pivot->pivot_pnt[0],
-1.0 * direction * active_node->node_pivot->pivot_pnt[1],
-1.0 * direction * active_node->node_pivot->pivot_pnt[2]);
getmatrix(*(active_node->node_matrix));
popmatrix();

[rEERxRxRRxxx Displaying the Current Picture Node ****¥¥¥¥%x/

/***

Display the entire current picture (scene)

199

void display_scene()
{

/*
Clean the matrix stack
*/
pushmatrix();
/*
Make the viewing volume
*/
make_viewing_volume();
/*
Set the lighting environments
*/
set_lighting environment();
/*
Apply global translation and scaling
*/

translate(cur_picture->pict_mat.xpos, cur_picture->pict_mat.ypos, -32.0);

scale(cur_picture->pict_mat.global_scale[0],
cur_picture->pict_mat.global_scale[1],
cur_picture->pict_mat.global_scale[2]);

/*

Display each node of the current picture with its appropriate transformations.

*/

display_tree(cur_picture->tree_address);

/*

Restore the original matrix
*/
popmatrix();

/¥*%%* Displaying all of the Nodes Associated with the Current Picture Node *****/

/***

Display the tree nodes using a preorder tree traversal.
kokk /

void display_tree(TREE tree_node)
{
TREE temp;

/*
Push the node matrix and attributes
*/
pushmatrix();
pushattributes();
/*
Apply current node transformations if present
%

if (tree_node->node_matrix)

multmatrix(*(tree_node->node_matrix));
/*

Draw the node object of the tree with its associated attributes
*/

200

d*raw_the_node(tree_node);

i Pretraverse the tree

if/ (tree_node->leaves != NULL)
iemp = tree_node->leaves->first;
while(temp != NULL)

display_tree (temp);
temp = temp->next;

}
/*
Restore the original node matrix and attributes
*/
popmatrix();
popattributes();
}

[EERxERERRER Computing the Animation Inbetweens for the Saved Keyframes ******x%/

/ * Author: Kenneth Hu
* Date: 11/1/93

*/

#include <stdio.h>
#define X O

#define Y 1

#define Z 2

#define W 3

#define EPSIL.ON 1.0e-8
#define HALFPI 1.570796326794895
typedef float Tmat[4][4];
typedef float Vec[3];
typedef float Quat[4];

JEE*

Extract the scaling parameters from the general 4x4 transformation matrix.
Input is the 4x4 matrix m which contains translational, rotational, and scaling
parameters.
Output is a 4x4 matrix only containing the rotations and translations. In addition
the scaling vector and the shear parameters are obtained.

kkck /

void normalize (Tmat m, Tmat mat, Vec scale, Vec shear)
{

float sxy, sxz, syz;

nti;

scale[0] = fsqrt (m[0][0]*m[0][0]+m[O][11*m[0][1}+m[0][2]*m{O][2]);
if (scale[0] < EPSILON) {
printf("WARNING: singular matrix, can not be processed\n");
return;
}
for (i=0; i<3; i++) mat[0][i] = m[O][1)/ scale[O];

201

sxy = 0.0;
/*
Perform a dot product on the first row and the second row
*/
for (1=0; 1<3; i++)
sxy += (mat[0][1]* m[1][i]);
/*
Subtract first row component from second row
*/
for (1=0; i<3; i++)
mat[1][i}l=m[1][i] - sxy*mat[0][i];
scale[1] = fsqrt(mat[1]{0]*mat[1][0]+mat[1][1]*mat[1][1]+
mat[1][2]*mat[1][2]);
if (scale[1] < EPSILON) {
printf("WARNING: singular matrix, can not be processed\n");
return;

for (i=0; i<3; i++) mat[1][i] /= scale[1];
shear[0] = sxy/scale[1];
sxz = 0.0;
syz = 0.0;
/*
Perform a dot product on the first row and the third row
*/
for (1=0; i<3; i++) sxz += (mat{0][i] * m[2]{i]);
/*
Perform a dot product on the second row and the third row
*/
for (i=0; i<3; i++) syz += (mat[1]{i] * m[2][i]);
/*
Make the third row perpendicular to the first two rows
*/
for (i=0; i<3; i++)
mat[2][i] = m[2][i] - sxz * mat[O][i] - syz * mat[1][i];
scale[2] = fsqrt(mat[2][0]*mat[2][0] + mat[2][1]*mat[2][1] +
mat[2}[2]*mat[2][2]);
if (scale[2] < EPSILON) {
printf("WARNING: singular matrix, can not be processed\n");
return;
}
/*
Normalize the third row
for (1=0; i<3; i++) mat[2][i] /= scale[2];
/*

Scale the shear factor
*/
shear[1] = sxz/scale[2];
shear[2] = syz/scale[2];

for (1=0; i<4; i++){

mat[i][3] = m[i][3];
mat[3][i] = m[3][i};

202

}

/***

Compute the quaternions from the normalized rotational matrix
kokek /

void QuatFromMatrix (Tmat mat,Quat q)
{
inti,j, k;
float tr, s;
int nxt[3]={Y,Z X};
tr = mat[0][0] + mat[1][1] + mat{2][2];
if (tr>0.0) {
s = fsqrt(tr + 1.0);
qgWl=s*0.5;
s =0.5/s;
q[X] = (mat[1]{2] - mat[2][1]) *s;
q[Y] = (mat[2][0] - mat[0][2]) * s;
q[Z] = (mat[0][1] - mat[1][0]) * s;

else {
i=X;
if (mat[Y][Y]> mat[X][X]Di=Y;
if (mat[Z][Z] > mat[i][i])i =Z;
j=nxt[i]; k = nxt[j];
s = fsqrt((mat[i][i] - (mat[j}[j]+mat[k][k])) + 1.0);
if (i==X) {
q[X]=s*0.5;
s =0.5/s;
q[W] = (mat[1][2] - mat[2][1]) * s;
q[Y] = (mat[0][1] + mat[1][0]) * s ;
q[Z] = (mat[0][2] + mat[2][0]) * s;

}

elseif (i==Y) {
qfY]=s*0.5;
s =0.5/s;
q[W]1 = (mat[2][0] - mat[0][2]) * s;
q[Z] = (mat[1][2] + mat[2][1]) * s;
q[X] = (mat[1][0] + mat[0]{1]) * s;

else {
q[Z] =s * 0.5;
s =0.5/s;
q[W] = (mat[0][1] - mat[1][0]) * s;
q[X] = (mat[2][0] + mat[0][2]) * s;
q[Y] = (mat[2][1] + mat[1][2]) * s;

!

}
}

/***

Compute the inbetweens for two keyframes (inputl & input2) for "steps”
inbetweens. Linear interpolation will be performed on the scaling and translational
vectors as well as the shear parameters. Spherical linear interpolation will be
performed on the quaternions. After all interpolations are completed the components

203

of each inbetween is combined to a respective 4x4 matrix used in the animation.
***/
void Interpolate(Tmat m1, Vec scalel, Vec shearl, Quat ql,/* input 1 */
Tmat m2, Vec scale2, Vec shear2, Quat g2,/* input 2*/
Tmat *matrix, int steps) /* output */

int i, j;
float delta, trans[3], scl[3], shear[3], qt[4], t;
delta = 1.0/(float)steps;
t = delta;
for (i=0; i< steps; i++) {
for (j=0; j<3; j++)
trans[j] = linear(m1[3][j], m2[3][j1, t);
for (3=0; j<3; j++) {
scl[j] = linear(scale1[j], scale2[j], t);
shear[j] = linear(shear1[j], shear2[j], t);

slerp(q1,92.t, qt);
QuatToMatrix(qt, matrix[i]);
/*
Combine translation, scaling, shear, and rotation to one matrix
*/
for (j=0; j<3; j++) {
matrix[i]{3][j] = trans[j];
matrix[1][2][j] = shear[1]*scl[2]*matrix[i][0][j]+
shear[2]*scl[2]*matrix[i][1][j]+
scl2]*matrix[i]{2][j];
matrix[i][1][j] = shear[0]*sc][1]*matrix[1][0][j]+
scl[1]*matrix[i][1][j];
matrix[1][0][j] *= scl[0];

t += delta;
}
}

JRx*

Perform the spherical linear interpolation for the quaternion keyframes to produce
the quaternion inbetweens. P and q are input quaternions, t is the distance from
p(between O and 1), qt is the interpolated quaternion.

***/

void slerp(Quat p, Quat g, float t, Quat qt)
{

float omega, cosom, sinom, sclp, sclg;
it i;
float templ, temp2, tempql[4], tempq2[4];
/*
Determine the shortest distance (arclength) on the sphere, use either +q or -q
*/
templ = temp2 = 0.0;
for (1=0; i<4; i++) { '
tempql[i] = pli] - q[i];
tempq2[i] = p[i] + qfil;
templ = templ+(tempql[i] * tempq1[i]);
temp2 = temp2+(tempq2[i] * tempq?2[i]);

204

}

if (temp2 < templ) {
for (1=0; i<4; i++) q[i] = -q[i];

}
cosom = p[X]*q[X] + p[Y]*q[Y] + p[Z]*q[Z] + p[WI*q[W];
if ((1.0+cosom) > EPSILON) {
if ((1.0 - cosom) > EPSILON) {
omega = facos(cosom);
sinom = fsin(omega);
sclp = fsin((1.0 -t)*omega)/sinom,;
sclq = fsin(t*omega)/sinom;

else {
sclp=1.0-t;
sclg=t;

}

for (i=0; i<4; i++) qt[i] = sclp*p[i] + sclg*q[il;
}
else {

qt[X] = -p[Y]; qt[Y] = p[X];

qt[Z] = -p[W]; qt[W] = p[Z];

sclp = fsin((1.0-t)*HALFPI);

sclg = fsin(t*HALFPI);

for (i=0; i<4; i++) qt[i] = sclp*p[i] + sclq * gt[i];
1

JEEX

Linear interpolation for the translation, scale, and shear parameters.

***/
float linear(float p, float g, float t)

{

return (p+(g-p)*t);

JEEE

Convert the quaternion inbetweens back to the required rotational matrix

***/
void QuatToMatrix(Quat q, Tmat matrix)

{

float s, xs, WX, XX, VY, VS, ZS, WY, WZ, XY, XZ, Yz, ZZ;

s = 2.0/(q[XT*q[X]+q[Y]*q[Y]+q[Z]* q[Z]+q[W]*q[W]);
xs = q[XJ*s; ys = q[Y]*s; zs = q[Z]*s;

wx = q[W]*xs; wy = q[W]*ys; wz = q[W]*zs;

xx = q[X]*xs; xy = q[X]*ys; xz = q[X]*zs;

yy = alY]*ys; yz =q[Y]*zs; zz = q[Z]*zs;

matrix[0]{0] = 1.0 - (yy + zz);
matrix[0][1] = xy + wz; matrix[0][2] = xz - wy;

matrix[1][0] = xy - wz; matrix[1][1] = 1.0 - (xx+z2);
matrix[1][2] = yz + wx;

matrix[2][0] = xz + wy; matrix[2][1] = yz - wx;

205

matrix[2][2] = 1.0 - (xx + yy);
matrix[0][3] = matrix[1][3]=matrix[2][3]=

matrix[3][0] = matrix[3][1]=matrix[3][2]=0.0;
matrix[3][3] = 1.0;

206

