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ABSTRACT

We investigate growth of the emittance in intense, strongly coupled heavy ion
beams. A set of coupled differential equations is developed which describe the
dynamics of the beam’s envelopes and the emittances. The emerging estimates
of emittance growth are compared with numerical results from molecular dy-
namics computer simulations.

1. INTRODUCTION

In most applications of high-current beam transport, a good quality of the beam and thus low

emittances are desired. So, in these cases one has to deal with both the strong coupling between the ions
and space charge effects. The usual treatment describes the dynamics of the beam’s spatial extension
through envelope equations which require the emittances as input (usually treated as constant). We aim
to develop an extension of the envelope equations which allows to describe the coupled dynamics of the
envelope and of the emittance. To this end, it is necessary to include collisional effects which play an
important role in beam transport at high phase-space densities. The derivation of the extended envelope
equations is presented in the following steps:
We first recall the well-known envelope equations in their special form when the beam’s cross section
is elliptic. We then give a schematic outline of our model and derive a set of temperature-relaxation
equations which extend the envelope equations. Finally, we derive formulas for the averaged emittance
growth rates and compare the predictions of our model with results derived from molecular dynamics
(MD) simulations.

2. COLLISIONLESS BEAM TRANSPORT

We investigate a beam in a periodic quadrupole channel. Here, the external transversal forces Fy
and F, are proportional to the displacements z and y from an ideal trajectory. We will derive all our
results in the rest-frame of the beam. We parametrize all quantities by means of the elapsed time t = 55:,
where s is the distance along the accelerator and v, is the mean beam velocity. Usually, the beam’s
transversal dimensions vary rather slowly in z-direction of beam propagation. Thus we can assume
that the external forces act uniformly on the beam over its whole length and are switched on and off
periodically. In space-charge-dominated beams one describes the beam dimensions in terms of the second
moments (z?) and (y?) where the brackets denote avaraging over the whole phase-space:
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We further assume, that the beam’s cross section is elliptical and that the density is homogeneous.

We derive the equations of motion for zrms = \/(22) and yrms = 1/{y?} by the second time-derivative of

Eq. (1) and inserting the equations of motion for the phase-space density n(r,v). This yields the envelope

equation [1]
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where ket » describes the external forces, Ze and m are the ions charge and mass, ng is the beam density,
and Trms,0 and Yrms,0 are the z- and y-envelopes at t = 0. The quantity

Lrms = kext,:x:xrms

Ermsz = <x2>(12> — (zz)? (3)
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is the root-mean-square emittance of the beam in z-direction. An analogous definition exists for the
y-direction. The emittances €rms . and &msy of the beam remain constant if the total forces F; and
F, acting on an ion are proportional to its displacements z and y. In that case the equations for the
envelopes are complete and one can solve them numerically where one looks in particular for solutions
which are ‘matched’, which means that they have the same periodicity as the focussing structure.

3. TEMPERATURE OSCILLATIONS

We consider a FODO-section, where the beam is focussed and defocussed alternatingly.
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Figure 1: Lens arrangement of a FODO-section in
the z-z-plane. L is the length of one focussing period.

Fig. 1 shows the arrangement of the lenses in the z-z-plane. A corresponding arrangement exists for
the y-z-plane such that the beam is defocussed in y-direction when it is focussed in z-direction and vice
versa. Now consider point a) in Fig. 1. There, the z-envelope is large and thus the y-envelope must be
small. The phase-space volume in z-z- and y-y-space is approximately conserved, and consequently, the
width of the phase-space density must be small in z-direction and large in y-direction, delivering a small
kinetic energy in z-direction and a large one in y-direction. Relating a temperature to the kinetic energy,
one can interpret this as a temperature anisotropy in z- and y-direction driven by beam guiding fields.
Collisions between the ions drive towards thermal equilibrium, diminishing the anisotropy, increasing the
entropy, and also increasing the emittance. The repeated deformation of the beam will then lead to a
steady growth of the emittance.

4. TEMPERATURE-RELAXATION EQUATIONS

We define the local beam temperature in z-direction from the kinetic energy as

In the case of linear external forces the correlation between :E(r) and z is linear and we can write

=, {zz) .
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In addition, we assume that the beam temperature varies little over r such that we can approximate the
local temperature by its global value
JErn()To(x) _ m (22)(3%) = (22)® _ m Elmss
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(6)
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This establishes a relationship between beam temperature, emittance and envelope. As discussed above,
there are two mechanisms which change the temperature:

1. envelope oscillations cause the temperature to oscillate with the squared inverse envelope as

m d 1 = m, _(_11:)_ (8)

Tz,osc = Esrms,xzm - Eerms,x <l’2>2

2. collisions diminish the temperature anisotropy. We describe this with a relaxation ansatz:

Tr,rel =-D [(Tz - Ty) + (Tr - Tz)] (9)
where D is an inverse relaxation time.

The total time derivative of the temperature is thus T = .:r:,osc +TI‘,31. This is inserted into Eq. (7) and
yields the time evolution for the emittance
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Analogous results are obtained for €2, , and (). The envelope equation (2) together with the emittance
equation (10) and with the analgous equations in y- and z-directions form a set of coupled differential
equations taking care of space-charge as well as collisional effects. The inverse relaxation time D is a
parameter of the model. The dielectric theory predicts for weak coupling [2]

D x w,T321n A (11)

where w, = 4/ ﬂ‘f—;—ei is the plasma frequency and In A o In 3 —InT is the Coulomb-logarithm. In practice,
we adjust D to data from MD simulations.

5. AVERAGE EMITTANCE GROWTH

The total emittance ef, = e, ;¢2n , (27}, serves as a measure of total phase-space volume. Its

time derivative is Ed;efms as:
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The terms in the round brackets are each of the form 2 — 1 — ¢ < 0 and thus the total emittance is
monotonously increasing,

d 6 6
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similar as the entropy. In order to estimate the average growth of the emittance, we approximate the
beam’s envelopes as

(z3)(t) = r? <1+Asin?%f> (14)
W) = r* (1—Asin?%ff> . (15)

It turns out, that the emittance growth is dominantly driven by the oscillations of the envelopes. Inte-
gration of Eq. (12) over one period yields

AR (19
And thus the average growth of the emittance can be written approximately as

1-V1-A?
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6. NUMERICAL RESULTS

The results from MD-simulations for the envelopes and emittances in z- and y-direction are shown
in Figs. 2 and 3. The emittances oscillate as discussed in section 3. For example, if the x-envelope is larger
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Figure 2: Envelopes in z-direction Figure 3: Emittances in z-direction
(solid curve) and in y-direction (dashed (solid curve) and in y-direction (dashed
curve). curve).

than the y-envelope, then the emittance in z-direction increases because the temperature T is lower than
the temperature T,,. Similar patterns are obtained by solving the extended envelope equations. Note that
the emittance increases on the average because the relaxation process is irreversible. This is in accordance
with the result of Eq. (17) from the extended envelope equations. The development of the emittance over
a long distance of about 350 focussing structures is shown in Fig. 4, for the MD-simulation (solid curve)
as well as for a solution of the extended envelope equations (dashed curve).
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Figure 4: Emittances drawn from MD-simulations
(solid line) and from a solution of the extended en-
velope equations

The beam parameters were identical in both calculations. The relaxation coefficient D in the extended
envelope equations was fitted to reproduce the initial emittance growth of the MD simulation. The Fig. 4
shows that the temperature model provides an appropriate description of the general trend and order of
magnitude, but it underestimates the emittance growth somewhat in comparison to the MD-simulation.
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Finally, we want to discuss the dependence of the emittance growth rates on the plasma frequency w,
and the plasma parameter I' of the beam. According to Egs. (17) and (11) one expects %&ms/erms to
be proportional to w,I*/2In A. We test this hypothesis against the results of full MD simulations.
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Figure 5: Emittance growth raies versus Figure 6: Emittance growth rates versus
plasma frequency (arbitrary units). plasma parameter (arbitrary units).

The dependence of %5rms/5rms versus wy for fixed T' is shown in Fig. 5. The linear dependence on w,
as predicted by the dielectric theory is nicely visible. The dependence of %srms /Erms ON I3/21n A for
fixed wp is shown in Fig. 6. The growth rate increases with increasing I'*/?In A, but there remains a
non-zero intercept at I3/2ln A = 0 deviating from the dielectric prediction. The most probable reason
is that the dielectric theory overestimates the relaxation coefficient D at high I'. Moreover, our starting
configuration for the MD-simulation (elliptical cylinder with sharp edge in ordinary space and Maxwellian

in velocity space) may lead to a transient softening of the beam edge at high temperatures (i.e. low I')
which causes an additional emittance growth.

7. CONCLUSION

We have shown that the envelope oscillations produce emittance growth in space-charge-dominated,
strongly coupled heavy ion beams. The MD-simulation results confirm the prediction of our simple model
based on a temperature anisotropy and equilibration.

The emittance growth rates increase with increasing I'. Therefore, we think that this effect must be
taken into account in attempts to produce crystalline ion beams with a more complicated structure than
a linear chain.
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