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Abstract

Stochastic Precooling at the ESR storage ring of GSI in Darmstadt will be used to
cool ’hot’ secondary beams on the injection orbit, before f stacking and further elec-
tron cooling on the stack orbit [1]. The secondary beams arise from nuclear reactions
at the GSI fragment separator. A maximum momentum spread of ép/po < +0.35%,
as well as transverse emittances of < 207 mm mrad are to be cooled. The beam
energy will be about 500 MeV /u and the number of particles per shot will be < 108.
The system will be used for heavy ions up to uranium. It will operate on all three
phase planes.

1. BASIC DESIGN FEATURES

The Palmer method is used for longitudinal cooling. Because of the excellent signal-to-noise
ratio of heavy ion beams, notch filtering is unnecessary. There are two pick-up and two kicker
stations. The presence of the stacked beam leads to the constraint of placing all electrodes
in regions of sufficient dispersion. The optical parameters of the pick-up and kicker stations
are given in table 1. We use the signal line P1-K1 for both vertical and longitudinal cooling.
The line P2-K2 serves for horizontal cooling. As the P2 signal contains a large contribution of
unwanted longitudinal Schottky noise, the P1 and P2 signals are adequately superposed at K2
in order to get a clean betatron signal.

The system works in the frequency band 0.9-1.7 GHz where Schottky bands overlap during the
first few seconds of cooling. This is due to the large value 7 = 0.25 of the frequency dispersion.
The time of flight between pick-up and kicker for particles at the high and low momentum ends
&p/p, = +0.35% differs by an amount of up to +223 ps. In the chosen frequency band, this
would lead to intolerable phase errors. Therefore the signal from the left and right plates of the
pick—ups can be delayed by Ty, = £200 ps in order to restore synchronism. The delays can be
varied in steps of 50 ps during each cooling cycle.

The pick-up and kicker modules consist of eight quadruplets of superelectrodes placed around the
injected beam. The electrodes are conventional quarter wave plates in 50 {1 geometry. They are
mounted on microstrip lines which also serve for the signal combination inside superelectrodes.
For the signal transmission to the vacuum feedthroughs, vacuum coaxial lines are used. Near
the electrodes, resistive dampers are installed to suppress higher waveguide modes. All modules
ate completely designed, the first unit (P2) has been built.

The cut—off frequency of the large ESR vacuum chamber is at about 750 MHz. Electromagnetic
feedback from the kickers to the pick—ups is suppressed by means of resistive dampers installed
in the chambers of ring quadrupoles.

Twelve horizontal and eight vertical steerers are available in order to center the beam at the
pick—ups and kickers. With the ordinary electron-cooled beams, precision measurements of the
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location D B B P Lz
P1 399m | 1.6m |17.3m | 0° 0°
P2 576 m | 39.5m | 43 m | 65° | 660
K1 399m | 1.6m | 17.3 m | 414° | 432°
K2 576 m | 39.5m | 4.3 m | 479% | 498°

Table 1. Ion optical parameters at pick-up and kicker locations

sensitivity as a function of position are planned, in order to allow for quantitative comparisons
with theory.

Electronic and 1f components are ready. A total 1f power of 2 kW is available. The power
amplifiers are of the CERN band I type [2].

2. ELEMENTS OF THEORY

2.1. Microscopic Description

The clearest way to describe the dynamics of the cooling process is to use Hamiltonian time
dependent perturbation theory. The non-perturbed Hamiltonian is expressed by the action and
angle variables for a coasting beam [3]. The vector potential seen by the beam at the kickers is
treated as a perturbation. The complete Hamiltonian reads
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Betatron motion is characterized by the action variables Jzy and the angle variables 4, ,. Lon-
gitudinal motion is described by the action variable J, = Rp/p, where R is the effective radius
of the design orbit and p, denotes the corresponding momentum. 6 can be interpreted as an
azimuthal angle. A, is the longitudinal component of the vector potential at the kickers. The
transformation equations for the coordinates z, y, and t are

2 = D(s)2(1) + 24(s) explivi) + 2 (5) exp(~i¥), (2)
¥y = y+(s)exp(ivy) + y—(s) exp(—ivy,), (3)
¢ = ;(3—)[0R+50(J,)]+t+(s)eXp(w:)+t_(s>exp(_i¢,). (4)

The familiar betatron amplitudes are described by the coefficients

z4(s) = %,/szﬂ,(s). (5)

An analogous relation holds for the y components. The equation for the particle arrival time ¢
at s contains the well-known momentum dependent term 6C = ép/p, [ D/pds as well as a less
familiar expression which is caused by oscillations of the arrival time due to betatron motion:

_ V27 | D(s) Bz(s) o
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This expression is only non-zero at locations with finite dispersion. It has a considerable impact
on Hamilton’s equation of motion for the horizontal action variable which reads

dJ.  9H _ Qe (8A, 8z  BA, ot )
ds Oy, p, \ 0z Oy, 0t 8¢,/

The first term in the brackets is equivalent to the Panofsky-Wenzel theorem [4],[5].

The second term describes the change of horizontal emittance by longitudinal kicks at locations
of finite dispersion [6]. In the Hamiltonian formalism, this effect is mediated by the oscillatory
behaviour of the arrival times due to betatron motion.

Writing (7) as an integral equation with the unperturbed solution in the integrand yields the
first order solution of (7):
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s unperturbed solution

The integral over vector potentials is replaced by discrete sums over kicks during subsequent
revolutions. A single interaction at one kicker can be represented as the convolution of the
voltage V. at the input port of the kicker k with a sensitivity function S:

/ds A,(z,5,1(8)) = Sz, 4(sx)) * Ve(t(sk)). (9)

The calculation of S at a given geometry is a considerable task [7].
As the coordinate z at the nth revolution at the kicker k depends on the betatron phase angle,
it is necessary to expand the sensitivity function [8]:
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For small betatron amplitudes, the coefficients Sfc are approximately

(2T:B=(s:))/? 8'Si(z,1)

l ~
Sk(‘]a’Jmt)N (21)11‘ 5!

(11)
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In ordinary geometries, the dominating terms are those with ! = 0.
Because of (7) we introduce functions K, describing the coupling of the applied f field to
horizontal betatron phase space at the kicker k,
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the sum being over positive and negative signs. The K*] terms are the dominant ones. Similarly,
there is a coupling function to longitudinal phase space:

R&SL(T,, e\ t)

K (T, e t) =
J,k( 3 ) at

(13)

Using these coefficients it is possible to derive simple, general expressions describing the cooling
process.

2.2. Cooling drift

After 'sampling’ over many revolutions it turns out that the change of the action variables is due
to kicks only at the harmonics m and betatron sidebands ! of the particle revolution frequency:

Wi =(m—1Q.)w (14)
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With the usual assumptions about reciprocity ([8], [4]), the pick~up response can be described
by the coupling of the electric field with the beam current. We therefore introduce the pick-up

sensitivity E, = —85,/8t. Now the drift of the horizontal action can be written
AJ, 4 N - .
F:r: = < T > - (QSjr(:])J Z Z Ezlr(Jn Jza wm,l)G ,k(wm,I)Ki;k(Jn Jw’ wm,l)eXp(z¢)' (15)
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The first sum extends over all pick-ups and kickers, the second sum over all integers m and
l.Z is the pick-up impedance, and the tilde ~ denotes the Fourier transform. G, is the
voltage amplification between pick—up and kicker, without consideration of electrical delays. If
we assume the electrical length of the amplification chain to be adjusted to the time of flight of
the particle with momentum p, plus some variable delay Tg’k, the phase ¢ in (15) becomes

¢ =1(pr — ptp) + Wy (—ip,k’flp,k;—p T TS”‘) . (16)
Here, py — g, is the betatron phase advance between pick-up and kicker, tp.k is the time of flight
of the design particle, and 7 is the local time of flight dispersion between p and k.

The advantage of the formalism presented above is due to the fact that for getting the average
change of the longitudinal action J,, one simply has to change the f(z;k terms in (15) into Iz',;k
terms, everything else remaining unchanged.

2.3. Schottky power and diffusion

The Schottky power densities and the voltage correlation at two pick-ups are delta correlated
[9], ie. < Vp(Q)V,(Q') >= 27C, o1 ()6(22 + '), with
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where ¥ = 82N/8J, 0J, is the particle distribution function, normalized to the number of
particles. J, is chosen such that the Schottky frequency w,,; is equal to . In the case of
Schottky overlap, there is more than one choice of m and /. ¢ is a phase similar to (16). Using
the appropriate gain factors, the expression C} ps for the power at the kickers is easily calculated.
The components of the diffusion tensor are proportional to Cy ' and the appropriate coupling
functions K. For example, the off-diagonal term is

AT, AJ, ew\? . . *
Do = (S5 = (Z22) 00 5 KLl Tay i) o) (Rl T o) (19)
T 27p, m,l k&'

The other diffusion matrix elements are gained simply by exchanging K, and K, coupling
functions.

2.4. Scaling Laws for Heavy Ions

In the following we shall assume that the thermal noise can be neglected in comparison with the
Schottky noise. This is always true for heavy ion beams with intensities that are appreciated as
useful by the experimental physicists. Furthermore we suppose to be power-limited, i.e. cooling
is above the diffusion limit or the ¥ function is far from equilibrinm. Then it makes sense to
look at the scaling of the drift and diffusion coefficients under constant power conditions, which
means that G « v/P/Q. Then the drift coefficients (and the initial cooling rates) scale according
to F; &« @/A and the diffusion due to Schottky noise scales according to D;; o« @?/A%. Hence
the cooling rates and equilibrium beam temperatures are roughly independent of the heavy ion
species provided they are fully stripped.
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Hor. Drift {7 mm mrad/sec]

Figure 1. Horizontal drift in model calculation

3. PRELIMINARY MODEL CALCULATION

The model is calculated for a 238U%2+ beam with 107 particles. The initial distribution extends
up to the limits at which the system is intended to cool, decreasing smoothly and ending closely
beyond these limits. The mean power at the K1 and K2 kickers is set to about 100 W. The
power due to thermal noise is of the order of a few (1-2) per cent of the total power. At the
horizontal kicker K2, the power due to both betatron sidebands is about 40 W compared to
40 W from the longitudinal bands. If the signal from P1 was not used at K2 for compensating
for the large longitudinal component of the P2 signal, G2z would have to be lowered by 7 dB,
leading to a reduction of the horizontal cooling rate by about a factor of 2.2. This indicates
that a proper bias between the G, and G; amplifications may be crucial for getting optimum
cooling rates. The component of the horizontal diffusion D, which is due to horizontal kicks
is larger than the one due to longitudinal kicks by about a factor of ten. Correlations between
both lead to negligible corrections.

The enhancement of the cooling rate due to the variable delays Ty, is verified by the calculations.
As an example, fig. 1 shows the horizontal drift F; as a function of 6p/p, and ’emittance’ 2J;.
The valleys along the off~-momentum lines at about £0.2% are due to delays of £150 ps in the
P2-K2 line. Cooling times are in the order of seconds.

Detailed numerical solutions of the 2D Fokker-Planck equation are in preparation.
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