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1. ACCELERATION BY TIME VARYING FIELDS
1.1 Time varying magnetic field: the betatron concept

The betatron accelerator isthe only circular machine which uses a time varying magnetic
field to accelerate the particle. It is typically an induction accelerator. Notice that induction
linear accelerators are also used.

The betatron, as shown on Fig. 1, is avery smple machine which consists of a magnet
fed by an adternating current at a frequency usually between 50 to 200 Hz. The magnet poles
which surround the vacuum chamber where particles circulate are truncated cones. In this
machine the magnetic field is used for guiding the particles on acircular trgjectory aswell as for
acceleration.
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Fig. 1 The betatron scheme
The variable magnetic field produces an dectric field component according to Maxwell's
equations:
E=-grad/ - Ua)
ot
B=uH = curlA

In the present case where there is no scalar potential, and according to the field symmetry,
one has:

V=0

A=A=0 A=ArzY
__9

EQ—_

showing that the electric field is tangent to the circular orbit defined by
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BbR=-pl/e
where eisthe agebraic particle charge.

Moreover, from the single component Ag one gets the magnetic field components:

10 A
==—(rA)= A'+—
5 rdr( ) r

Theflux of B linking any circler = cteisthen:

r r

_ —omfl? .
CD—‘([BZan dr —271'([)'r dr(rA)r dr =2mA .

Denoting by B, the average field value inside the circle, the flux will be also:

O =m?B,
which shows that: .
A= Erﬁz :
Then one gets:
18508

Putting r = R the voltage over oneturnis:
2TRE, = - R? dB, = _do
dt dt
which isawell known law in electronics that atime variation of the flux induces a voltage. The
induction accelerator is often considered as a transformer in which the primary current is the
alternating current and the secondary current is the circulating electron beam.

The acceleration is given by the Newton-L orentz equation:

@ = —id_m = —leRE
dt 2nR dt 2 d

If one wants to keep the particle on the same trgjectory the following relation must also be
fulfilled:

P gD

dt dt
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and hence
By = 1 B, +cte
2
which is the betatron relation.
1.2 Time varying electric field: the cyclotron case
The cyclotron isan example of a circular accelerator using a radio frequency accelerating
field. A magnet (Fig. 2a) produces a constant B field in the useful area for the particle

trgjectories. The box inwhich the particles circulate is divided into two pieces, separated by a
gap (Fig. 2b) fed with an RF signal which produces an aternating electric field.

Fig. 2a Cyclotron magnet Fig. 2b Shape of electrodes

Each time the particle crosses the gap it experiences an ac&lerating force provided the

phase of the RF has the right polarity. After each crossing the particle, with velocity v, follows
acircular tragjectory with radiusr, due to the vertica magnetic field perpendicular to the particle
velocity:

_mv

eB

r

Having described half acircle the particle comes back through the gap and is accelerated
once more provided the field polarity has reversed. Since the magnetic field is constant the
particle trgjectory will spiral as shownin Fig. 3.

V = Vsin (DRFt 0
o\
)

Fig. 3 Cyclotron orbit

A synchronism condition for the accelerator is obtained by proper choice of the RF
frequency:
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W = W _eB
RF r m

where ¢} is the angular revolution frequency and m the mass. However, since standard

cyclotrons have a fixed RF frequency, this relation can only be satisfied for constant mass,
which implies non-relativistic particles:

m=m .

Thiswould be the case for instance, for heavy particles (protons and ions) for whichthe kinetic
energy remains small compared to the rest energy.

Within the previous assumptions the cyclotronwould remain a rather low energy

machine. So let us consider the case of higher energies where particles become relativistic. At
each trangit in the gap the energy gainiis.

AE = eV sin Q
where @is the phase of the particle with respect to the RF phase:
§0 = wRFt - 9
6 being the azimutha angle of the trgjectory. Differentiating with respect to time gives:
¢ = Wgr — Gy
or (p = Wpe — 6C° B
RF E

It is seen that with e and B constant, it is not possible to have a synchronous particle
with ¢ = cte (¢ =0). The formula shows that ¢ starts decreasing, reaches a minimum value
(@=0) and then increases. Notice that the maximum tolerable ¢ range of variation during
accelerationisrt

Since phase and energy are related let usnow consider their evolution during the
acceleration cycle. A smooth approximation consists of assuming that the acceleration is made
continuously, hence:

- Ap _ o
=— T ="1TA

¢ Te/2 1 ¢

where Ag is the relative phase change at each half revolution, T, being the revolution period.

Hence one obtains:

Uoge _ 0

_ T
TG P

wreE .0
— RF™= _
Ap=1_oz 1

Differentiating the phase with respect to the energy, within the smooth approximation,
leadsto:
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dp _Ap_ & DwRFE_lm
9. 2P T ¢
dE AE eVsngUec’B U

E
or d(cos ¢) = —5 S(ZEZFB —1ng

Integrating both sides gives the energy-phase equation of the cyclotron:
_ THWRE (=2 _ 2 W
COSQP= COS@ ——~ 15— |E“ - -(E-
¢ % eV @eczB( EO) ( EO)E

whereindex O refersto theinitial conditions:

Eo = rest energy
¢ = injection phase

It is interesting to represent on a graph the phase-energy evolution. Using the kinetic
energy W= E - Eg as the new variable one gets:

cos @ = cos¢o+—q§ wRF%N T Ore 2
eV 2eVEO Wro

where wro = ec? B/Eyis the starting revolution frequency.

Figure 4 shows the variation of cos @ as a function of W for different initid conditions

@o. Plots which, during acceleration remain within the range -1 < cos @ < 1, only ae
meaningful from the stability point of view.

q)o =TC/4

Fig. 4 Energy-phase diagram

Selected particles, according to ther initid phase ¢ can reach high energies, ;but the
cyclotron is nevertheless limited in energy as seen in the figure. The machine parameters must

be chosen to obtain the largest useful gyrange. Thisimpliesfor instance wrr < wo but it aso
depends very much on the particle species.
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In the attempt to reach higher energies the concept of the synchrocyclotron has been quite
important. Here the RF frequency is varied to keep thesynchronous condition during
acceleration. A new limitation however occurs due to the size of themagnet. A more efficient
synchronous machine is the so-called synchrotron, which will be treated in more detail in the
next sections.

1.3 Time varying electric field: the synchrotron case

A synchrotron is a circular accelerator where the nomina particle trgectory is kept a a
constant physical radius by means of amagnetic field variation, as well as an RF frequency
variation, to follow the energy variation.

Let's assume now that an RF cavity with an eectric field component parallel to the
particle trgectory is located at some azimutha position of such a circular accelerator. In the
cavity gap the eectric fied is supposed to have a sinusoida time variation with angular

frequency wkr. Then one can write:
E(z,9 = E(2)E,(1)

where E1(2) is shown on Fig. 5 as aperiodic function of period L = 271R, while Ex(t) is of the
form:
Ot 0

E;(t) = Ey sin Q[wRFd“' (pog

4‘E1

]
. ) -l
N T R
2 2 2 2

Fig. 5 RF field envelope aong the circumference

The particle position is given by:
t
z=17y+ [vdt
d
and the RF frequency is chosen to be an integer multiple of the revolution frequency:

(L)RF = hwr = hZTnV

where v is considered here as the average particle velocity over one turn.

The periodic function E1(2) can be expanded in a Fourier series:
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AO*Z”“ CO% L O
with AO:_

rmg

A, ——sm

Theintegral of the force over many revolutions shows that al the trigonometric terms in
the expansion will give no effective contribution to the energy gain, apart from a single term
which correspondsto n = h. Then the average energy gain per turn can be written:

+9/2 Lt 0
W=e IEl(z)Ez(t)dz =eEygsin @]’wRth + (POQ
-g/2 0
with
27h
Yo =W _—LZO

+L/2 271h
W=eg [ Ahcosz—sm Wo [dz
12

eEOAhL _ekL . 7hg
———sinyg = h sin 1 sin Yy

sin @

W =eEyg nhgly_ sin Yo Uekgsin g, forg small enough

L

The energy gain per turn can also be expressed as.

+g/2 |:|I |:|
W=e [ E(2)E,(t)dz=eEgsin %[ Wredt + @]
-9/2 . O

and since the gap center isat z= 0 one has:
W =eEygsin ¢ =Vsin Yo
showing that Yo represents the RF phase seen by the particle when crossing the gap.

From aboveit is seen that the force acting on the particle can be considered as an average
force, continuously acting on the particle dl over the circumference, provided the initial phase
of the particle entering the gap is maintained constant. In other words the effect is equivalent to
aforce given by atravelling wave propagating at the same velocity as the particle velocity.

Since only one harmonic of the Fourier expansion is acting effectively, one can write the
equivalent field as:
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E= EOAhcosZ—mzsin (Ia)Rth + (Po)

o, . 2nhzQ
D+smE|’ouRth+qoo+ C DE

E—EA,]@"'] %prdt+ % -

where the first term in the bracket represents a travelling wave with wavelength A = L/h and
phase velocity equal to the particle velocity, while the second term in the bracket gives no effect
on atime average.

2. DISPERSION EFFECTS DUE TO THE GUIDE FIELD IN A
SYNCHROTRON

2.1 Momentum compaction

By definition the momentum compaction a is the constant parameter which relates the
variation of the orbit length of a particle, in a circular accelerator, to the momentum deviation
(note that the nominal closed orbit has been defined for the nominal energy E).

g=P de pdR
Ldp Rdp

where p, L and R are respectively the particle momentum, the nomina circumference and the
physical radius (2R =L).

One has:
-1/2
E = ymyc? = (1—,82) MyC?
2

p=my= yﬁ%cz =,B(1—ﬁ2)_”2%

_ bc
B
and by logarithmic differentiation one gets.
dE_dp_dB
E p B
dp_dB, 12pdg _dB0 , B2 O -1
dp_dB Blz B E_B(l_ﬁz)
p B "21- B 1- B
dE _ dp 2dp 2 dp
— =" 1—/3 _zﬁ_
E p( )p p
which leadsto:
EdR_a
RAE p?

The average magnetic field along the nominal closed orbit is given by:
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and by differentiating

or

Exercise: calculation of a

Consider an isomagnetic guide field where adl thebending magnets have the same

curvature 1/p and are separated by straight sections(1/p = 0) which can include quadrupole
magnets. To first-order approximation only the curved part of the orbit in thebendings
contributes to a change of the length of the trgjectory with momentum.

In abending magnet one has:

P.dPB _ ____ s A
/’ //‘-‘—" ~ /I d = d9
Ny~ N
' "Ill / ds= (p + X)d@
S' \\\ ’r';', /l ds- ds) :% :1 _ dxc.o.
NoOAA dy dgy P P
\\ e .//
‘tf The radia change in closed orbit with
momentum is given by:
dx
_ D — .0.
Bp - Pre < apip

where Dy isthe dispersion function (or local momentum compaction factor). A summation of
all these small changesin the orbit length will give the change in the circumference.

J'dﬁ =dL=2mR

1 1
dR:— df:— d =
27 2np£x = X

where the subscript m means that the integral has to be calculated in the magnets only where
1/p # 0. Finally one gets:
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a:B_R El <Dx>m
Rdp R dp R

It can be shown that in smooth machines

a 01/Q2
where Qy is the radia wavenumber. In most cases however <Dy>, has to be numericaly

computed from |attice programmes.
2.2 Revolution frequency versus momentum

If fr is the nominal revolution frequency corresponding to the nomina energy E (or
momentum p), the parameter n will be defined as follows:

_ pdi
1 fo dp
Since
_ Bc
"o
one gets
%:%—d_R:(]_—BZ)dp—ad_p
ff B R p p
df, _01 —ade
£ B2 "Hp
and hence
ﬂ:i—a
yz

For an electron machinen U -a

2.3 Transition energy

The transition energy W isthe energy which correspondston =0

=a

§I\)||_\

Ve =1/ 0Qy

For small machines Qy is of the order of afew units, while for very large machines it can
approach 100. Hence, yr will be in the range of 1 to 100 which is of interest only for proton
machines because for electron machinesy >> y; .

Indeed it is possible in eectron storage rings to make a very small by using specia
focussing to make the transverse emittance very small as required for instance by synchrotron
radiation users. In that case it is necessary to look to higher order in dp/p to get correct
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dispersion relations. There are specific problemsin proton synchrotrons related to the crossing
of the transition energy which can be found in another lecture.

3. SYNCHROTRON OSCILLATION IN ADIABATIC LIMIT

One will consider the acceleration of particleswith a radio frequency (RF) eectric fied
which has a resonant condition with the nominal revolutionfrequency, or a least
approximately.
3.1 Synchronous particle

The accelerating voltage across the gap of the RF cavity can be expressed as.

t
V=V sinJ’wRth':V sin ¢(t)
0

where V and wrr are slowly varying functions of t, but can also be constant as for instance in
storage rings.

The RF frequency frg is set up to be an integer multiple of the nominal revolution
frequency f;

fre = hf;
where h is called the harmonic number. In these conditions a particle which has the nomina

energy and circulates on the nominal trgjectory will always experience the same RF phase when
passing the RF gap:

o(t) =
It is called the synchronous phase and it is related to the synchronous particle.

During the acceleration in a synchrotron the energy of the synchronous particle varies and
so does the revolution frequency (unless particles are ultrarelativistic). Clearly, if one wants to
keep the accel erated particle on the same trgjectory (R = cte) the magnetic field must vary with
time:

o(BR=p= mocBy = mycB(L-p7)
d
d—p = eR eF<B>

The energy gain per turn for the synchronous particleis:

(8p)yn = eRB)T;

where T, isthe revolution period:
T =

1 _2mR
f Bc

Hence:
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(a) _2neR2<B>:2nepRB

turn — BC BC
Since:
A(Ez) = A( p2c2)
one gets:
AE = BcAp
and _
(AE),m = 27pRB

where the energy gain per turn is obtained from the RF cavity:

(AE), . =eV sin g,

turn
Exercise

Assume a 10 GeV proton synchrotron where the magnetic field reaches 1.5 Tedain one
second, following alinear variation. For a 10 GeV proton kinetic energy one has:

12
pc=(E?-myc?) =109 GeV
[=0996; y=117

hence
Bo=P/e=36.4 T.m
and
p=24 m (ROL5p=36 m)
Asaresult:

V =814 kVolts (e\7 sin @ << mocz)

Notice that in an eectron synchrotron the particle radiates some energy per turn, and the
amount of energy gain per turn must be greater than this loss in order to get an acceleration
process.

3.2 Non-synchronous particle

In the following the parameters of the synchronous particle will be defined by subscript s.
Any other particle will then be defined by its deviation from the synchronous one:

revolution frequency: f, = fis+ Afy (or w =W+ Aw)

RF phase: o= @+ Ap
momentum: p=ps+ 4p
energy: E=E+ AE
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azimuthal angle: 0= 65+ A0

The azimuthal angleisrelated to the azimuthal position by ds= Rdf. Over one revolution
this angle varies by 2rrwhile the RF phase varies by the quantity 2rh. Hence, one has:

Ap=-hAB
The - sign comes from the fact that a particle behind the synchronous particle (A6 < 0) arrives
later in the gap (At > 0 and A@> 0). Moreover, since 8 = [ wdt, one has:

d

= a(AQ) =— 1£(A(p) = _1dg

Aw —
h dt h dt

and from the definition of n

Ps

Ap=-——"5 g
P= e ?

This can aso be expressed in terms of energy:

AE=3—EAp:VAp: wRAp

BE__ PR,
w hnw

On each revolution the particle gains the energy:

(AE), =eVsing

turn

which corresponds to the momentum increment:

N

eV .
(Ap)tum = R sing

Dividing by the revolution period one gets the rate per second:

(8P)urn - eV
21 21mR

pP=w sing

or
2R p=eV sing

and for the synchronous particle:
27R.ps = eV sin ¢
By subtracting the two last expressions one gets:
2m\(Rp) = eV(sin @- sin )
Expanding the |eft hand side to first order inAR and Ap gives:
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A(RP) = Rp— Ryps = (R + AR)(ps + A) ~ Ryps
0 pAR+ RAD
Tiuffyo] 00+ RAD
- __d _ d DAED
DRSAP*'RsAp—a(RsAp)—aEw—SE

The motion of any arbitrary particle in terms of deviations fromthe synchronous particle
is then expressed by the following set of first order differential equations:

dw _ ~/ . .
e =eV(sin p—sin ¢)

d_(p = —LMW
dt 21 PR

where the new variable W = 21TRs Ap = 27T AE/ ws has been introduced.

It is worthwhile mentioning that the two variables ¢, W are canonical since the equations
of motion can be derived from a HamiltonianH(¢@ W, t):

dep oH
dt aw
dwW _  oH
dat - dg
with:
H(oW,1) = e\7[cosrp- cosps + (- @)sin qos] - %T%Wz
S

From the set of first-order equations of motion one can also derive a second-order
differential equation for each variable. For instance the phase motion is given by:

d ORp, dp0 eV,
— — [+ ——|Sin@-sing)=0
dt Fhne, thrl-Zn(l @-sin )

3.3 Small amplitude oscillations — phase stability
Let's consider the case where the parameters Rg, ps, 17, ws and V are congtant or at least
change very dlowly with time as compared to the variableA@= ¢- ¢@. Hence one can write:
2

o+ Qs (sing-sing,) =0
coSp;

where: A
02 = eVhnw,cosp,
2=— {'s- s
ZnRSpS
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Within the approximation Ag<<1 the equation of motion for small amplitudes becomes:

P+Q2Ap=0
where Qg now represents the synchrotron angular frequency. This quantity must be red in

order to get a stable motion which meansthat n cos ¢ has to be positive. Stable synchrotron
phase motion needs the following conditions to be satisfied:

V<V, n>0 0<¢S<g sings>0

y>y, n<O0 g<gos<n sing;>0

having eliminated the cases where sin ¢ < 0 which correspond to a deceleration.

At transition energy n vanishes, Qg goes to zero and there is no more phase stability, a
least within the first order approximation. During acceleration through transition energy, in a

proton synchrotron, the RF phase must be switched rapidly from ¢ to 7 - ¢ in order to
maintain stability above transition.

In the case of electron machines, either synchrotrons or storage rings, where the particle
velocity is practically constant and equal to ¢, one has the following ssmplifications:

ws=c/R p=E/c nO-a
~ 12

o =£%_ha cosrpsﬂgj

> Rpg 2m EKq

The synchrotron tune which is the number of synchrotron oscillations per turn is
represented by the bracket:

— QS
Note In an electron machine the RF frequency does not change and thisis also true for R

and s,
3.4 Large amplitude oscillations — RF acceptance
Considering again the equation of motion:
. 2
P+ 25 (sing-sing,) =0

cosp;

multiplying by (p and integrating lead to the invariant of the motion:

; 2
% - %;os(cosgﬁ gsin ¢) = cte

It is already known that around the stable synchronous phase ¢ the small amplitude motions
are pure harmonic oscillations which correspond to circles in the frame (@/Qs,¢). For larger

44



amplitudes the circles will be distorted by the non-linearity of the motion but the curves will ill
close on themselves (Fig. 6). The extreme elongations of the oscillation correspond to ¢= 0
and the constant of the motion can be expressed in terms of these values.

When @ reaches the value 11 - ¢ the factor (sin ¢ - sin ¢) in the equation of motion
becomes zero and for higher values of ¢ the force is no more attractive so that the motion
becomes unstable. Hence - ¢4 is an extreme elongation corresponding to a stable motion.
The corresponding curvein the (@/Qs @) space or in the (W,¢) spaceis called the separatrix and
the area delimited by this curve is called the RF bucket. The equation of the separatrix is:

o2
B [0l

e

e

)
)]

N

3R 66180), 20 ©0 wd) ‘”
1 \\¥\5 <
|
S

Fig. 6 Stable phase space trgjectories

¢ _ 9
2

RY
cosn sz/’s [cos( - @) + (11— @g)sin gos]

(cosp+ @ sing)=-

The second value @y, for which (p =0, issuch that:
COSp, + Gy Sin @5 = cog 1T- @) + (11— ¢s) sin g

From the equation of motion it isalso seen that qo reaches an extremum when qo =0

corresponding to @ = ¢s. Introducing this value in the equation of the separatrix gives the
maximum stable values of ¢ and W

Gora = 295[2 (- 2(ps)tg¢s]
W2, = 2€V[2 cosp, - (7-[ 2% sin C"s] ”psRs

or
2
WED

E—me —,357 (%)B

Thislast expression is called the RF acceptance. The functionG(¢) is given by:
G(gs) = [2 cosps — (1 2¢) sin cps]

and variesfrom + 2 to O when sin ¢ variesfrom O to 1.
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The RF acceptance plays an important role when designing a machine, since it determines
the capture efficiency at injection and the lifetime of stored beams. Outside the stable region
plots of the trajectories (Fig. 7) show that particles get out of synchronism, their phase diding
along. Moreover the energy is continuously changing which means that the particles may get
lost.

e —— T —— e ——
L T — T T T T

an an PN N
NS A7) NN \—

Fig. 7 Phase spacetrgjectories for different ¢

For any invariant of the motion there exists arelation between the maximumenergy and
the maximum phase deviations. However it isin genera difficult to deriveitanayticaly unless
specid assumptions are made. For instance in the case of smal amplitude oscillations the

invariant becomes smply: '
v + Q2 —A(pz =cte

2
which leads to:

hngEs CAED

AQrax =
" RO OB,
since (,bmax isdirectly related to AEyax.

In the case of ultrardativistic electrons this reduces to:

_ahOAEO

A@nax = as Eganax

3.5 Potential energy function

The synchrotron motion is produced by a force field which can be derived from a scalar
potentia:
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a2 F(o)
Fo)=-%

Q .
U(g) = —IF((p)d(p: - cossrp (cosp+ ¢ sing)
S

The sum of the potential energy and the kinetic energy is a constant (the total energy):
g +U(¢p) =U,

The RF voltage as well as the corresponding potential energy function are shown on
Fig. 8. The shape of the latter corresponds to the sum of alinear function and a sinusoidal
one. An oscillation can only take place if the particle is trapped in the potential well which
means that the total energy cannot exceed a certain value (dotted line) otherwisethe particle will
dide aong the curve. Hence the maxima of the curve correspond to unstable equilibrium for
the synchrotron motion.

__________

Fig. 8 Accelerating voltage and potential energy function
4. ADIABATIC DAMPING OF SYNCHROTRON OSCILLATIONS

So far one has assumed that the parametersRs, ps, s and V did not change appreciably
a least over a time scae of one synchrotron period. However in a synchrotron these
parameters will vary over alarge range, even slowly, during an acceleration cycle. Then one
needs to study the long term evolution of the motion under adiabatic changes of these
parameters. Thisis possible with the help of the Boltzman-Ehrenfest adiabatic theoremwhich
states that, if p and q are canonically conjugate variables of an oscillatory system with slowly
changing parameters, then the action integral is constant:

I =j>'pdq=cte

the integral being taken over one period of oscillation. It has been aready mentioned that the

variables W and ¢, describing the synchrotron motion, were canonicaly conjugate. Hence
applying the theorem leads to:
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I :de(p: cte

Consider the corresponding Hamiltonian of the motion and let's expand it to second order
approximation to take care of small amplitude oscillations only

i hnws W2

eV
H(W,¢,t) l-—co -
(W.g.t) 0-="cospag® - A,
leading to harmonic solutions for the motions:

W=wW co)t
Ap= Aqu SinQt

Since

one getsthe action integral :

de
| =W ——dt
|
| =—iMfW2dt
211 Ryps
lhn%ﬁz—cte
2 RSpS QS

where W is the amplitude of the energy oscillation rdated to the amplitude of the phase
displacement through:

W = 27RsPs o
hnws

SO one gets:

~ 0O n dM

Y a s I
EsREV cosp, [

Keeping all parameters constant except the energy which is ramping, the formula shows
that the phase excursion Ag is reduced as the one-fourth power of the energy.

It appears also that the product VAV.A(Ap Isinvariant which means that the phase space area
isinvariant and Liouville's theorem still holdsin adiabatic conditions. The phase space area is
not damped, only the shape of the ellipse is modified.

From the previous treatment one also gets:

48



. ERA n
AE [ oo SRS Y_COs o
n 0
. g DV cosrpsdj
ARD—GO =0
sDEsRsr/ 0

the last formula representing the orbit excursion due to the momentum deviationduring the
ramping.

The adiabatic damping can aso be treated without the Hamiltonian formulation.

Remembering the genera equation for synchrotron oscillationslimited to smal phase
deviations:

dU E deU eV eV cosgs
Ap=0 (forthecasef=1
dt %aw dt E+ 2m =0 ( F=1)

one can writeit in the form:

2
Eszd £p+ ES de chosqosAqo 0
haw? dt®> haw? dt 21

or

d
dtgp Essd(p Q2A§0:O

where the second term represents a damping term. From the definition of Qg one has:

E__,Q
Qs

To integrate this equation the procedure consists of choosing a solution similar tothe one
obtained without the additional damping term:

.o o .
Ap=Ag sin Q’Qs(r)dr + cteéz Ag(t) siny(t)

and assuming Ac}) and Qs are small first-order quantities (adiabatic limit). Putting this solution
into the differential equation and neglecting all second-order terms gives.

%A(}JQS - A(AOQSE CO&,U(t) =0

Aqu_
A(pQ

and integrating leads to:
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ApOQY?

result which is similar to the one obtained previoudly.

5. TRAPPING, MATCHING, ACCUMULATING AND ACCELERATING
PROCESSES

Whether the circular accelerator is used as a synchrotron or a storage ring, the operation
of the RF will be quite different.

5.1 Acceleration into a synchrotron

In that case, as mentioned before, the accelerating cycle isfast. Only a single injected
pulse is accelerated. This injected pulse must be trapped in the RF bucketswith a maximum
efficiency which means that the RF acceptance hence the RF voltage has to belarge enough,
compatible with the energy spread of the transferred pulse. The RF frequency at injection must
be such that it will fit with the bending field and the injectionorbit. The synchronous phase is

then set automatically at ¢ = 0 or rrwhich means no average acceleration.

Matching means that the RF frequency and the RF voltage are adjusted such that the
phase-space trajectories are homothetic to the contour of the injected bunch. If thiswas not the
case the shape of the bunch would change during the synchrotron period and, for instance, the
bunch length could become short giving rise to instabilities. Matching also requires careful
adjustment of the injector to make it compatible with the possibilities of the synchrotron.

To dart the acceleration it is necessary to move the synchronous phase so that the
synchronous particle gets energy at each revolution from the RF cavities. Thiscan be done by
offsetting the magnetic field followed by a change of the RF frequency.

The synchronous particle is the one for which the revolution frequency satisfies

— Wrr

Wq h

and it follows a closed orbit for which the physical radius satisfies

w(B,R) = ws

As mentioned previoudly the rate of change of momentum for the synchronous particleis:
dpg :
—==eR(B
i ~eR(B)

Hence the RF frequency must follow:

h ﬁ 21
fre(t) _ 1 e¢ p
o anE @R

Since
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2
E2 = (moc?)’ + pie?
the RF frequency must follow the magnetic field variation with the following law:

. 2
fre( ¢ B(t)z O
h 2R gmoc2 /ecp) + B(t)zg

This asymptotically tends towards f; = ¢/2nRs when B is getting large compared to
mec2/ecp correspondingtov - ¢ (pc >> myc?).

In practice the magnetic field can either follow an approximately linear law or a sinusoidal
one

B(Y) =§(1-coswt) =B s 2t

In the case of an electron synchrotron it is not necessary to vary the RF frequency
because the particle velocity isvery closeto ¢ and does not change with energy. However the
electron loses energy in each revolution due to synchrotron radiation. Hencethe synchronous

particleis the one which arrives at the right phase ¢ to compensate for both this energy lost and
the field variation.

5.2 Accumulation into a storage ring

A storagering is roughly a synchrotron operating &t fixed energy. In some cases a very
slow ramping can be done if the operating fixed energy differs from the injection one.

5.2.1 Electron storage rings

Asfor the electron synchrotron the energy lost has to be compensated. If the energy lost
per turn is OE, then the synchronous phase is such that:

SE=eV sin (X
which means that ¢ will depend on the peak RF voltage V. Moreover the energy lost per turn
isastrong function of the operating energy:

4
GeV|
OEpyen] = gg4 1oV
Al

If the storage ring operates between two energies, the maximum voltage will be
determined by the upper energy and for the reason of beam lifetime due to particle diffusion
through the separatrix, sin ¢s< 0.7. If one keeps at injection the same voltage as required at the
highest energy then sin ¢ at injection can be very small leading to alarge bucket acceptance.

Since the particle motion is damped around the synchronous particle the bunch length and
energy spread become quite small leaving most of the bucket empty for a new injected pulse
which will damp also and so on. Thisisthe simple way of accumulating particlesin an electron
storage ring where Liouville's theorem does not hold any more due to non-conservative forces.
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However accumulation of very high circulating currents in an electron storage ring may
lead to typical instabilities related to coherent motion in the transverse phasespace. Hence it is
often desirable to keep Q constant when ramping the energy even slowly. Of course this will
lower quite alot the peak voltage required at injection and make the bucket smaller. Then the
injector and the transport system to the storagering have to be matched to the injection
conditions.

5.2.2 Proton storage rings

Here the accumulation processiis often called "stacking”. It consists of trapping particles
into buckets on a special orbit, called the injection orbit, close to the injection septum. Then the
buckets are accel erated towards an inner orbit in the vacuum chamber. Such an acceleration is
done with constant bending field, just by changing the RF frequency. Finally the RFvoltage is
switched off so that the particles will debunch. Hence, the RF isswitched on again a the
injection RF frequency to take care of new injected particles and the new buckets are accelerated
to another stacking orbit close to the previous one. In doing so the previous injected particles

will be dightly disturbed. The energy difference AEs between RF switch off of successive

pulsesis normally chosen to be approximately the bunch area divided by 2rtwhich corresponds
to the energy width of an idedly debunched pulse. In this processthe stacking efficiency
suffers from the non-linearity of the motion in the neighbourhood of the separatrix.
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