
hep-th/9909006
CERN-TH-99-145
RU-99-486
LPTHE-99-66
NYU-TH-99-8-29

QCD4 From A Five-Dimensional Point of View

Laurent Baulieu?†§ and Daniel Zwanziger‡

baulieu@lpthe.jussieu.fr, Daniel.Zwanziger@nyu.edu

?LPTHE, Universités P. & M. Curie (Paris VI) et D. Diderot (Paris VII), Paris, France,
† TH-Division, CERN, 1211 Genève 23, Switzerland
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We propose a 5-dimensional definition for the physical 4D-Yang–Mills theory. The fifth

dimension corresponds to the Monte–Carlo time of numerical simulations of QCD4. The

5-dimensional theory is a well-defined topological quantum field theory that can be renor-

malized at any given finite order of perturbation theory. The relation to non-perturbative

physics is obtained by expressing the theory on a lattice, a la Wilson. The new fields that

must be introduced in the context of a topological Yang–Mills theory have a simple lattice

expression. We present a 5-dimensional critical limit for physical correlation functions and

for dynamical auto-correlations, which allows new Monte–Carlo algorithm based on the

time-step in lattice units given by ε = g
−13/11
0 in pure gluodynamics. The gauge-fixing in

five dimensions is such that no Gribov ambiguity occurs. The weight is strictly positive,

because all ghost fields have parabolic propagators and yield trivial determinants. We

indicate how our 5-dimensional description of the Yang–Mills theory may be extended to

fermions.



1. Introduction

The 4-dimensional Yang–Mills theory seems to suffer from logical contradictions. In

the continuum formulation, one has a gauge-fixed BRST invariant path integral, but one

has the famous Gribov ambiguity for large gauge field configurations [1][2]. One often

discards this problem, since the idea of defining the theory as a path integral of a gauge field

can only be seriously advocated in perturbation theory or for semi-classical approximations.

In the lattice formulation, which is by construction valid non-pertubatively, one chooses as

variables the gauge group elements, but one has yet another contradiction. The way the

continuum theory is approached is unclear, and if one tries to do a local gauge-fixing, the

partition function vanishes [3]. This question is also often discarded, since for computing

gauge-invariant quantities, one can factorize the volume of the gauge group that is finite

on the lattice.

It is however frustrating not to have continuum and lattice formulations which would

separately define both gauge-invariant and gauge non-invariant sectors, with a BRST sym-

metry controlling the correspondence of the theory to a physical sector, and with a natural

limit from the lattice to the continuum formulation.

In this article, we will show that, in order to reconcile the continuum and lattice

approaches, it is useful to define the theory in a 5-dimensional space, such that the 4-

dimensional physical theory lives in a slice of this extended space. The theory that we

will consider passes the tests that are obviously needed: in the continuous formulation it

is perturbatively renormalizable by power counting without loosing its physical character,

(due to Ward identities), and the gauge-fixing is no longer subject to the Gribov ambiguity;

in the lattice formulation, all fields that one considers in the continuum formulation take

their place, and one now obtains a formulation with a consistent gauge fixing.

The fifth-dimension will be the stochastic time that Parisi and Wu proposed long

time ago for stochastically quantizing the Yang–Mills theory through a Langevin equation

[4][5]. For reviews of stochastic quantization, see [6][7]. The 5-dimensional theory will be

a supersymmetric theory of the topological type, that we can express as a path integral

over 5-dimensional gauge fields for the continuum perturbative formulation, or as a lattice

gauge theory which now depends on fields of a topological field theory. In one of the lattice

formulations that we will present, the stochastic time is discretized. In the 5-dimensional

critical limit controlled by g0 → 0, both the physical Euclidean correlation lengths and the

dynamical Monte Carlo auto-correlation times diverge simultaneously. This allows new

algorithms.
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The link between topological field theory and stochastic quantization was first ob-

served in [8]. The general idea is that the D + 1-dimensional supersymmetric formulation

of a D-dimensional quantum field theory that is obtained by expressing the field quanti-

zation by a Langevin equation, involves the fields of a topological field theory in D + 1

dimensions. Then, supersymmetric cancellations wash away the detail of the theory in the

bulk, while the relevant aspects of the physical theory are retained in some boundary of

the D + 1-dimensional space.

Moreover an extra gauge field component is needed to enforce the 5-dimensional gauge

symmetry in the stochastic framework [9]. The latter can be identified as a potential

for a drift force along the gauge orbits of the original D-dimensional gauge theory, as

independently observed in [10][9][11]. A gauge-fixing drift force for stochastic quantization

was actually introduced originally in [12], as a function of the 4-dimensional gauge fields Aµ.

But the point is that, by promoting the potential for this force to a 5th field component,

and by functionally integrating over all its possible values, [9], not only does one not alter

the physical physical sector of the theory, but one softens the gauge condition of the D-

dimensional quantum field theory. This actually gives the desired result that the Gribov

ambiguity losses is relevance as an obstacle for the gauge fixing of the theory.

By postulating that QCD4 should be considered from a 5-dimensional point of view,

we will emphasize its relationship to a topological field theory which establishes a pleasant

geometrical framework, both in the continuum and lattice descriptions.

Renormalizability of stochastically quantized scalar φ4 theory was demonstrated in

[13] using the BRST operator which encodes the supersymmetry of the stochastic process.

Renormalizability of the 5-dimensional formulation of gauge theory was demonstrated in

[14] using the BRST operator for gauge invariance supplemented by graphical arguments.

In the present article we demonstrate renormalizability using the complete BRST operator

that encodes both the supersymmetry of the stochastic process and the gauge symmetry

of the theory, consistent with parabolic propagation of all ghost fields.

The disappearance of the Gribov ambiguity comes as an immediate consequence of

being in five dimensions, in the context of renormalizable gauges (adapted to the power

counting of this dimension). We will check this result by the verification that the ghost

propagators cannot have zero modes. Alternatively, the mathematically oriented reader

will notice that the argument of Singer [2] for having a Gribov copy phenomenon just

disapears because the stochastic processes is defined on an infinite interval, even if we have

a compact 4-dimensional physical space.
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The consistency of our approach is ensured by the topological invariance, defined

modulo ordinary gauge symmetry. We will also indicate that instantons in four dimensions

are replaced by 5-dimensional solitons, but we leave open the question of anomalies, which

is presumably connected to interesting 5-dimensional topological questions.

To make contact to non-perturbative physics, we will formulate the fields and the

symmetry in a 5-dimensional lattice formulation. Not only this offers a new point of view

for the topological symmetries, but this allows us to obtain a discrete lattice formulation

with a BRST invariant gauge-fixing, offering thereby a new understanding of the continuous

limit. It also gives a concrete definition of non-perturbative physics.

In secs. 2-5 we present the continuum 5-dimensional topological formulation. In sec.

6 we describe the lattice stochastic formulation including the lattice Fokker-Planck and

Langevin equations, in which the 5th time t = x5 is identified with the number of Monte

Carlo sweeps. We describe a new Monte Carlo algorithm based on the 5-dimensional

critical limit g0 → 0 which controls both physical correlation lengths and dynamical auto-

correlation times, with time-step in lattice units given by ε ∼ g
−13/11
0 in gluodynamics.

We conjecture that the physical spectrum may be given by the eigenvalues of the Fokker-

Planck hamiltonian. In sec. 7 we present a 5-dimensional topological lattice formulation.

In sec. 8 we indicate how our approach extends to fermions, and we conclude with some

speculation on future developments. Readers who are primarily interested in Monte Carlo

calculations may read sec. 6 independently.

2. The 5-dimensional continuum action

2.1. The Langevin equation

The Langevin equation proposed by Parisi and Wu was [4]:

∂5Aµ = DλFλµ + ηµ, (2.1)

where ηµ is a Gaussian white noise. In the stochastic approach, the correlation functions

are functionals of Aµ(xµ, x5) that are the solutions of this equation. The 4-dimensional

Green functions are obtained in the limit where all arguments in the stochastic time are

equal, and x5 → ∞. Since we consider a stochastic process, we can as well take initial

conditions at x5 ∼ −∞, and define the Green functions at any given fixed time, for instance

x5 = 0. The convergence toward an equilibrium distribution relies on ergodicity theorems
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that accord with physical intuition for which the relaxation of a gas to the state of maximal

entropy is obvious, whatever of the initial distribution of its constituents.

A difficulty with this Langevin equation is that it provides no restoring force along

the gauge orbits, because the Euclidean action S(A) is gauge-invariant. Consequently

the probability escapes to infinity along the gauge orbits, and there is no normalizable

equilibrium probability distribution. This may be remedied by modifying (2.1) by the

introduction of a gauge-fixing term that is tangent to the gauge orbit [12] ,

∂5Aµ = DλFλµ + Dµv[A] + ηµ. (2.2)

The gauge-fixing term Dµv[A] has the form of an infinitesimal gauge transformation, and

consequently it has no effect on the expectation-value of any gauge-invariant observable.

The infinitesimal generator v[A](x, t) may, in principle, be completely arbitrary, and the

issue of a “correct” gauge fixing, without Gribov copies does not arise.

The last equation may be written in a way which respects gauge invariance in five

dimensions. The idea is to identify v[A] with an independent 5th field component

v = A5(x, t) (2.3)

which eventually be fixed in the functional integral by a gauge-fixing term in the action.

Then the gauge-fixed Langevin equation (2.2) may be written as:

F5µ −DλFλµ = ηµ (2.4)

where F5µ = ∂5Aµ −DµA5. The relation

A5 = a−1∂λAλ . (2.5)

will be imposed in the context of topological field theory by a 5-dimensional gauge condi-

tion.

We would like to obtain a functional integral representation for the Langevin equa-

tion (2.4). This is a non-trivial problem because there is a gauge invariance, and the

determinant of the map which connects the A’s and the noise η’s has longitudinal zero

modes. Instead of attempting to solve these questions by manipulations on the Langevin

equation, we will pass directly to a 5-dimensional topological quantum field theory. Later

with lattice regularization we shall verify the consistency of the 5-dimensional formulation,

including the absence of Gribov copies, and we shall shall show that after elimination of

auxiliary fields present in this theory, one recovers the Langevin equation and the equiva-

lent Fokker-Planck equation.
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2.2. The 5-dimensional BRST symmetry

The expression of the complete symmetry of the theory boils down to the knowledge of

a BRST operator which encodes at once the supersymmetry of the stochastic process and

the gauge symmetry of the theory. This operator is that of the topological symmetry of a

gauge field in five dimensions, defined modulo gauge transformations. There is not much

choice for exhibiting such a BRST operator, and the solution was given in [9]. It involves

a fifth dimensional component for the gauge field, that we denote as A5. Unavoidably,

the vector fermion that is needed to express the Jacobian of the constraint (2.1) must be

enlarged into a five dimensional vector (Ψµ, Ψ5). If we denote by c the ordinary Faddeev–

Popov ghost and Φ its ghost of ghost, the combined BRST operator for the stochastic

supersymmetry and the gauge symmetry follows therefore from the following geometrical

equation [9]:

(s + d)(A + c) +
1
2
[A + c, A + c] = F + Ψµdxµ + Ψ5dx5 + Φ

(s + d)(F + Ψµdxµ + Ψ5dx5 + Φ) = −[A + c, F + Ψµdxµ + Ψ5dx5 + Φ]
(2.6)

The second equation is the Bianchi identity of the first, thus one has s2 = 0 on all fields

which ensures the consistency of this symmetry which mixes the Yang–Mills symmetry

with the supersymmetry of the stochastic process. Here c, Ψµ and Ψ5 are fermi ghost

fields with ghost number Ng = 1 and Φ is a bose ghost field with ghost number Ng = 2.

This equation gives, after expansion in ghost number:

sAµ = Ψµ + Dµc

sA5 = Ψ5 + D5c

sΨµ = −DµΦ− [c, Ψµ]

sΨ5 = −D5Φ− [c, Ψ5]

sc = Φ− 1
2
[c, c]

sΦ = −[c, Φ] .

(2.7)

It is identical to the topological BRST symmetry for a Yang–Mills field in five dimensions.
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We need anti-ghosts and lagrange multipliers, and their s-transformations. They are:

sΨ̄µ = bµ − [c, Ψ̄µ]

sΨ̄5 = b5 − [c, Ψ̄5]

sbµ = −[c, bµ] + [Φ, Ψ̄µ]

sb5 = −[c, b5] + [Φ, Ψ̄5]

sΦ̄ = η̄ − [c, Φ̄]

sη̄ = −[c, η̄] + [Φ, Φ̄] .

(2.8)

All fields in (2.7) and (2.8) are valued in the same Lie algebra representation as A. In

the lattice formulation of this symmetry, it will be advantageous to redefine the anti-

ghost and lagrange multiplier fields to eliminate the dependance on c in (2.8), that is,

sΨ̄ = b′, sb′ = 0, sΨ̄ = b′, sb′ = 0, sΦ̄ = η̄′, and sη̄′ = 0.

There are five degrees of freedom for the choice of a dynamics, one for each component

of A, with Lagrange multipliers fields bµ and b5. One of them will serve to gauge-fix the

ordinary 5-dimensional gauge invariance, with the condition (2.5); the other four will

enforce the Langevin equation (2.4), following the now standard methods of TQFTs. The

gauge fixing of the longitudinal modes in Ψ will use η̄ as a Lagrange multiplier.

2.3. The action

The complete action must be s-invariant. We will gauge fix the 5-dimensional invari-

ant: ∫
dxµdx5 Tr(F5µDνFµν) (2.9)

This term is invariant under any local shift in Aµ and A5, since the Lagrangian can locally

be written as Tr∂µ(F ν
5 Fµ

ν )+ 1
2∂5(F ν

µ Fµ
ν ). Of course this means that we use special boundary

conditions for the variations, and eventually on the Ψ’s. The choice of this term may appear

as quite intuitive: it enforces the idea that the stochastic time is unobservable, since it is

independent of the metric component g55, and it is compatible with Yang–Mills invariance.

We will use an s−exact term for fixing all the invariances and introducing all relevant

drift forces of stochastic quantization. Remarkably, the topological BRST symmetry just

described is precisely what is needed to do so, that is, to represent a gauge theory in

stochastic quantization by a functional integral with a high degree of symmetry [9].
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To impose all relevant gauge conditions, we take the BRST-exact action:

I =
∫

dxµdx5 s Tr
(
Ψ̄µ(F5µ −DλFλµ −

1
2
bµ)

+ Φ̄(a′Ψ5 −DλΨλ +
β

2
[η̄, Φ])

+ Ψ̄5(aA5 − ∂λAλ)
)
.

(2.10)

The consistency of this choice of this gauge function will be further justified by showing that

it gives a perturbatively renormalizable theory. Here a, a′ and β are arbitrary parameters.

When β is non-zero, quartic interactions are introduced. Of course β = 0 gives simpler

expressions, but nothing forbids β 6= 0, (β = 0 might be a stable fixed point under

renormalization). [Alternatively one may make a linear gauge choice by setting β = 0

and taking ∂λΨλ instead of DλΨλ.] The first two terms are invariant under 5-dimensional

gauge transformations. The first term concentrates the path integral around the solutions

of (2.4), modulo ordinary gauge transformations, while the second term fixes in a gauge-

covariant way the internal gauge invariance of Ψµ that one detects in the BRST variation

sΨµ = DµΦ + .... The third term fixes the gauge invariance for Aµ, A5. As we will see

in section 3, all these terms are essentially determined by symmetry and power counting

requirements.

We may introduce a background Yang–Mills symmetry, which transform all fields, but

A, in the adjoint representation, while A transform as a gauge field. The shortest way to

represent such a symmetry, is to define it through a background BRST symmetry, with

generator σ and background ghost ω (which do not appear in the action). Since s and σ

must anticommute, and σ2 = 0, we easily find that we obtain both the action of s and σ

by extending (2.6) into:

(s + σ + d)(A + c + ω) +
1
2
[A + c + ω, A + c + ω] = F + Ψµdxµ + Ψ5dx5 + Φ

(s + σ + d)(F + Ψµdxµ + Ψ5dx5 + Φ) = −[A + c + ω, F + Ψµdxµ + Ψ5dx5 + Φ]
(2.11)

When one expands the latter equation one must assign a new ghost number to σ and ω,

which is independent of that carried by s and the propagating fields. This determines

all transformations of s and σ on all fields, with s2 = σ2 = sσ + σs = 0. One then

observes that the first two terms in (2.10) are not only s-invariant as s-exact terms, but

they are also σ-invariant, without being σ-exact. These terms involve gauge-covariant

gauge functions for A and Ψ in five dimensions. The aim of the renormalization proof,
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using power counting, will be to show that these terms, up to multiplicative rescalings, are

the only ones which satisfy both s and σ-invariances. The third term is not σ-invariant,

and it will be necessary to prove that when the parameter a changes, this does not affect

the sector of the theory defined by s and σ invariances.

To investigate the properties of our action, we must expand (2.10), which is a simple

exercise. One gets:

I =
∫

dxµdx5 Tr
(
− 1

2
bµbµ + bµ(F5µ −DλFλµ)

+ Φ̄(−a′D5Φ + DµDµΦ− [Ψµ, Ψµ])− 1
2
Φ[Ψ̄µ, Ψ̄µ] +

β

2
[Φ, Φ̄][Φ, Φ̄]

+ (b5 − [c, Ψ̄5])(aA5 − ∂µAµ)

− Ψ̄µ(D[5Ψµ] −DλD[λΨµ] − [Ψλ, Fλµ])

+ η̄(a′Ψ5 −DµΨµ +
β

2
[η̄, Φ])

− Ψ̄5(a(Ψ5 + D5c)− ∂µΨµ − ∂µDµc)
)
.

(2.12)

In order to see the dynamical content of this action, we identify and eliminate the

auxiliary fields. The equation of motion of b5 gives back the gauge-fixing condition that

we wish to impose:

aA5 = ∂λAλ. (2.13)

Moreover the equation of motion of bµ has the same form as the Langevin equation,

F5µ −DλFλµ = bµ. (2.14)

We also eliminate Ψ5 and η̄ and we get,

a′Ψ5 = DµΨµ −
β

2
[η̄, Φ] (2.15)

a′η̄ = aΨ̄5 + DµΨ̄µ. (2.16)

Thus A5 can be expressed as a function of Aµ, and Ψ5 can be expressed as a function of

Ψµ. This is the key of a gauge-fixing that does not suffer from the Gribov ambiguity, and

the gauge condition aA5 = ∂λAλ combines the virtues of axial and Laudau gauges. By

integrating over all values of A5, the Faddeev–Popov zero modes that one encounters in the

genuine 4-dimensional theory just disappear. It is tempting to compare the integration
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over A5 to the integration over moduli that also solves the problem of zero modes of

reparametrization ghosts in string theory.

We will give much more details about the elimination of Gribov copies in sec. 7,

although a Fourier transformation on the variable x5 could help understanding directly

how the multiple intersections of gauge orbit that occur in four dimensions could be split

on different orbits in five dimensions.

Finally, after integrating out bµ and b5, we get:

I +
∫

dxµdx5 Tr(F5µDλFλµ) ∼
∫

dxµdx5 Tr
(
− 1

2
F5µ

F 5µ − 1
2
DνF ν

µ DρF
ρµ

+ Φ̄(a′D5Φ + DµDµΦ)

+ Φ̄[Ψµ, Ψµ]) +
1
2
Φ[Ψ̄µ, Ψ̄µ] +

β

2
[Φ, Φ̄][Φ, Φ̄]

− Ψ̄µ(D5Ψµ + DνD[µΨν] + [Ψν , Fµν ])

+ a′−1DµΨ̄µ(DνΨν − β

2
[Ψ̄5, Φ])

− Ψ̄5(aD5c + ∂µDµc + [Aµ, Ψµ])
)

(2.17)

One has A5 = a−1∂λAλ in this action.

To derive Feynman rules, we examine the part of the resulting action that is quadratic

in the fields. It is given by

I0 = IA + IΨ + IΦ + Ic (2.18)

IA =
∫

dxµdx5Tr
(1
2
(∂5Aµ)2 +

1
2
(∂λ∂λAµ)2 +

1
2
(a−2 − 1)(∂µ∂λAλ)2

)
IΨ =

∫
dxµdx5Tr

(
Ψ̄µ(−∂5Ψµ + ∂λ∂λΨµ + (a′−1 − 1)∂µ∂λΨλ)

)
IΦ =

∫
dxµdx5Tr

(
Φ̄(−a′∂5Φ + ∂µ∂µΦ)

)
Ic =

∫
dxµdx5TrΨ̄5

(
− a∂5c + ∂µ∂µc

)
(2.19)

where we have dropped exact derivatives in IA.

An important observation is that all ghost-antighost pairs, (Ψµ, Ψ̄µ), (Φ, Φ̄) and

(c, Ψ̄5) have a free action which is parabolic: it is first order in ∂5, and the correspond-

ing matrix of spatial derivatives is a negative operator. Consequently all ghost propa-

gators are retarded, D(x, t) = 0 for t = x5 < 0. For example for a = 1, all ghost-

antighost pairs have the momentum-space propagator (iω + k2)−1, with fourier transform
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D(x, t) = θ(t)(4πt)−2 exp(−x2/4t), where θ(t) is the step function. Moreover ghost num-

ber is conserved, and an arrow which represents the flow of ghost charge may be assigned

to each ghost line: it points from the past to the future. On the other hand, the action of

the A-field is second order in ∂5, so A lines freely move forward and backward in time. (Its

momentum-space propagator is
(
ω2 + (k2)2

)−1

= (2k2)−1
(
(iω + k2)−1 + (−iω + k2)−1

)
.)

Ghost number is also conserved at every vertex. Consequently in a diagrammatic expan-

sion, every ghost line may be followed from the point where it enters a diagram from the

past, as it moves monotonically from the past to the future, until it exits into the future.

(The transformation of a Φ into two Ψ’s and back is allowed.) It follows that in a diagram

containing only external A-lines, there can be no closed ghost loops apart from tadples.

With dimensional regularization the tadpole diagrams vanish, and in this representation of

gauge theory, ghost diagrams provide accounting checks on the renormalization constants

that are expressed in Ward identities, as usual, but they do not appear in the expansion of

correlation functions the A-field. With lattice regularization, the tadpole diagrams yield

the famous Ito term.

Another way to see that the ghost determinants have no Gribov problems is to note

that the initial-value problem for a parabolic equation has a unique solution. In the

section devoted to lattice regularization, we will indeed integrate out the ghosts exactly,

and explicitly verify the absence of Gribov copies.

We now turn to the question of understanding the renormalization of this action.

3. Perturbative renormalization

The action (2.12) is renormalizable by power counting. Indeed, the form of the propa-

gators implies that the canonical dimension of all fields with an index 5 is equal to 2, while

other fields have dimensions 1. It follows that we start from an action where the coupling

constant has dimension 0, and we can apply the general result that it can be renormalized

order by order in perturbation theory by a finite number of counter-terms.

The main question is of course to investigate the structure of the counter-terms. We

will only sketch the demonstration that this action is actually stable under renormaliza-

tion, which means that the generating functional of Green functions can be defined, order

by order in perturbation theory, while satisfying the same Ward identities as the action

(2.10), corresponding to its invariance under s-symmetry, SO(4)-symmetry, ghost number
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conservation, and to the choice of a linear condition aA5−∂µAµ in the sector which violates

the σ-invariance.

The action (2.12) that determines perturbation theory can indeed be be split in two

parts:
I ∼Î(Aµ, A5, Ψµ, Ψ̄µ, bµ, Ψ5, Φ, Φ̄, η̄)

+
(
b5(aA5 − ∂µAµ)− Ψ̄5(a∂5c−Dµ∂µc + aΨ5 − ∂µΨµ)

)
.

(3.1)

The first term, where the fields A5 and Ψ5 must be understood as independent fields,

(before eliminating b5), is s- and σ-invariant, while the last part is only s-invariant. In

order to achieve the algebraic set-up which ensures perturbative renormalizability while

maintaining the form of the action (up to so-called multiplicative renormalization), it is

enough to remark that one can write the second term as:

b5(aA5 − ∂µAµ)− Ψ̄5(a∂5c−Dµ∂µc− aΨ5 − ∂µΨµ)

=b5(aA5 − ∂µAµ)− Ψ̄5(aD5 − ∂µDµ)c′
(3.2)

where c′ = c+(a∂5−Dµ∂µ)−1(aΨ5−∂µΨµ). The change of variable c → c′ is perturbatively

well defined, with a trivial Jacobian, because the operator a∂5 −Dµ∂µ is parabolic. (This

will be explained in detail in section 7, devoted to the lattice regularization.)

If we now introduce an ordinary BRST symmetry s′, with c′ as a Faddeev–Popov

ghost, we are almost in the ordinary situation of the renormalization, except that we

have more fields. We have that s′ acts on Aµ, A5, Ψµ, Ψ̄µ, bµ, Ψ5, Φ, Φ̄, η̄ as ordinary gauge

transformations with the parameter equal to c′, s′c′ = −c′c′, s′Ψ̄5 = b5 and s′b5 = 0. The

action (3.2) can be written as:

I ∼Î(Aµ, A5, Ψµ, Ψ̄µ, bµ, Ψ5, Φ, Φ̄, η̄)

+ s′
(
Ψ̄5(aA5 − ∂µAµ)

) (3.3)

The first term is s′-invariant as a consequence of its σ-invariance: it corresponds to the

cohomology with ghost number zero of s′, restricted to the terms with the correct power

counting (6 with our power assignmant), while the second term is s′-exact, and will remain

stable order by order in perturbation theory because of the linear gauge condition aA5 −
∂µAµ. Notice that Î depends on a′, but Aµ-dependent observables are independent of this

parameter, as will be shown in sec. 7.

The complete proof that the theory can be renormalized multiplicatively is just a slight

amplification of the standard proof of the renormalizability of the 4-dimensional theory in
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a linear gauge. It involves introducting sources for all s′ variations, as well as using the

equation of motion of the antighost Ψ̄5 as a Ward identity. When the Ward identity of the

s′-invariance is combined with that of the topological s-invariance, using locality, one can

prove from purely algebraic considerations that the counter-terms can be built order by

order in perturbation theory such that, when they are added to the starting action (2.10),

they provide an identical action, up to mere multiplicative renormalization constants for

the fields and parameters. Essential is in this proof is the use of a linear gauge function

aA5 − ∂µAµ.

A notable feature of the renormalization is that besides the multiplicative renormal-

ization of the fields and coupling constants there is also a renormalization of the stochastic

time

t = Zttr . (3.4)

4. Observables and gauge invariance

It is now clear how observables should be defined: they are the cohomology with ghost

number zero of s′; moreover, they must be computed at a same value of x5. Using the

translation invariance under x5, and provided that the stochastic process starts at x5 =

−∞, the physical theory can be defined in any given slice of the 5-dimensional manifold.

This points out the relevance of the boundary term (2.9), which is independent of the metric

component g55. Perturbatively, the equal-time gauge-invariant correlation functions are

guaranteed to agree with those calculated in 4-dimensional theory by the usual Faddeev-

Popov method. On the other hand, gauge non-invariant correlation functions are not

expected to agree within the framework of local renormalizable 5-dimensional gauges that

we consider in this paper 1.

There are also Green functions that can be computed with fields at different values

of x5, as well as the Green functions that involves the topological ghosts. We leave their

interpretation as an interesting open question, although they are not directly relevant to

physics.

Once the renormalization has been done properly, one can integrate out all the ghost

fields of the type Ψ, Φ and c, provided that one considers observables which depend on

1 To recover the local 4-dimensional Faddeev–Popov distribution, one needs a non-local 5-

dimensional gauge-fixing on A5 [15].
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Aµ only. This follows from the parabolic or retarded behavior of all ghost propagators

in the 5-dimensional theory. It will be demonstrated by explicit calculation with lattice

regularization in section 7 that, when the ghost fields are integrated out, only the tadpole

diagram survives so the ghost determinent is trivial and contributes only a local term to

the effective action which is in fact the famous Ito term. This result, which explains the

disappearance of the problem of Gribov copies, has an immediate application: mean values

of observables are independent of the parameter a′. It should be clear however that the

ghosts and ghosts of ghosts are nevertheless necessary to unveil the topological and gauge

properties of the theory and to control its Ward identities.

The other question is obviously that of the independence of physical expectation values

of the gauge parameter a which appears in the gauge function aA5− ∂µAµ. To prove this,

one observes that the observables are s′-invariant without being s′-exact, while the a-

dependence is through an s′-exact term, so the standard BRST method based on Ward

identities applies. One can also prove directly the non-renormalization of the s′-exact term

in (3.3).

We mention the possibility of introducing the interpolating gauges used in [16] for

defining the “physical” Coulomb gauge as the limit of a renormalizable gauge.

Finally, one must of course verify that no anomaly in the s- and σ-symmetries can

occur. The absence of s-anomalies is quite obvious if one examines the consistency condi-

tions for a topological symmetry; for the background Yang–Mills symmetry, no anomaly

is expected, since we are in the case of a pure Yang–Mills theory, without 4-dimensional

chiral fermion. The inclusion of spinors is a most interesting question, on which we will

comment in the last section.

5. Non-perturbative aspects

In the previous section, we have verified that perturbation theory is as well defined in

the 5-dimensional approach as it is in the 4-dimensional one.

5.1. Global properties of gauge-fixing

The gauge choice made here has the global property of a restoring force because it is

derivable from a “minimizing” functional. Consider the functional

F [A] = (2a)−1(A, A) = (2a)−1

∫
d4xA2, (5.1)
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which is proportional to the Hilbert square norm. Here a > 0 is a gauge parameter. (More

generally, one can take F [A] =
∫

d4xAλαλµAµ, where α is a strictly positive symmetric

matrix that characterizes a class of interpolating gauges [16].) The gauge condition used

here, aA5 = ∂µAµ, may be expressed as

A5(x) = −G(x)F , (5.2)

where

G(x) ≡ −Dµ
δ

δAµ(x)
(5.3)

is the generator of local gauge transformations. It satisfies the Lie algebra commutation

relations

[Ga(x), Gb(y)] = δ(x− y)fabcGc(x) . (5.4)

Indeed, one can verify that

G(x)F = −a−1∂µAµ(x). (5.5)

To see that the gauge-fixing force is globally restoring, consider the flow defined by

the gauge-fixing force alone

∂5Aµ = Dµv = −DµGF , (5.6)

in the Langevin equation (2.2). Under this flow the minimizing functional F decreases

monotonically, since

∂5F [A] = (
δF
δAµ

, ∂5Aµ) = −(
δF
δAµ

, DµGF)

= −(GF , GF) ≤ 0.

(5.7)

A consequence of our gauge choice is that the Langevin equation (2.4) is parabolic.

Indeed, let A5 = a−1∂µAµ be substituted into this equation, and consider the highest

derivatives on the right-hand side,

∂Aµ

∂t
= ∂λ∂λAµ + (a−1 − 1)∂µ∂λAλ + . . . , (5.8)

where the dots represent lower order derivatives. One sees that for a > 0, the operator

that appears on the right is negative, which assures convergence at large t.
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5.2. How the Gribov problem is solved

Let us now discuss the Gribov question in more detail, and explain how our use of the

gauge function aA5 − ∂µAµ escapes the ambiguity.

The origin of this ambiguity in the 4-dimensional formulation, as given by Singer [2],

was the compactness of the (Euclidian) space. It does not apply anymore, since the 5-

dimensional formulation is necessarily non-compact: the system requires an infinite amount

of time to relax to equilibrium. In our formulation the stochastic time runs from −∞ to

∞, and one evaluates the Green function at an arbitrary intermediate time, say x5 = 0.

Then, there is the explicit argument, which we already mentioned, of considering all

ghost propagators, whether they are the Ψ and Φ topological ghosts or the Faddeev–Popov

ghost: by taking the suitable boundary conditions at x5 = −∞, no zero modes can occur

since we have parabolic propagation. It is a convincing argument, and we will check it in

great detail in section 7, in the framework of the lattice regularization of our 5-dimensional

formulation. We will prove that the integration on all ghosts does not lead to zero modes

that would make ambiguous their elimination. In our opinion, this a concrete verification

of the assertion that the Gribov problem is solved.

To see intuitively where the gauge-fixing force concentrates the probability, observe

from (5.7) that the gauge fixing force is in equilibrium only where G(x)F = 0. This

equilibrium may be stable or unstable, but the gauge fixing force drives the system toward

stable equilibrium only, namely where the second variation of F [A] under infinitesimal

gauge transformation is a positive matrix. This is equivalent to the condition that the

Faddeev-Popov matrix

Mab(x, y) = Ga(x) Gb(y)F (5.9)

has positive eigenvalues. With GF = −a−1∂µAµ, the matrix M and the condition for

stable equilibrium are given by

M = −a−1∂µDµ ≥ 0. (5.10)

Thus the conditions for stable equilibrium are (a) transversality of the vector potential,

∂µAµ = 0 and (b) positivity of the Faddeev–Popov operator, −∂µDµ ≥ 0. These two

conditions define the Gribov region, a region which Gribov suggested (not quite correctly)

was free of copies. As long as the gauge-parameter a > 0 is finite, the gauge-fixing is

soft in the sense that the weight on each gauge orbit has a spread that is centered on the

Gribov region. As a approaches 0, the equilibrium probability gets concentrated close to
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the Gribov region. The gauge-fixing force drives the system by steepest descent along a

gauge orbit toward a relative or absolute minimum of the functional I[A][g] ≡ F [gA], so

Gribov copies that are unstable equilibria (saddle points of I[A][g]) are avoided in the limit

a → 0. However the relative minima are in fact Gribov copies of the absolute minimum, so

in the limit a → 0 this gauge-fixing distributes the probability in some way among these

relative minimum, possibly even entirely at the absolute minimum. However the validity

of the present approach in no way depends on taking the limit a → 0.

It is interesting to ask how instantons play a role in the 5-dimensional presentation, for

instance in a semi-classical approximation. Their interpretation is actually quite simple.

The bosonic part of our action is a sum of squares, namely |F5µ|2 + |DλFλµ|2. It obvi-

ously gives and an absolute minimum when it vanishes. This occurs for x5-independent

solutions, with A5 = ∂µAµ = 0 and satisfying DλFλµ = 0. This means that the classical

4-dimensional instanton solutions also minimize the 5-dimensional path integral: they are

the solitons of the 5-dimensional theory.

We are therefore in a situation where, from various points of view, the path integral

seems well defined. We can now seriously consider its evaluation for “large” field config-

urations, since the question of duplicating orbits does not occur. It is however clear that

the space of connections is not appropriate for defining a meaningful measure, and we will

shortly look at the lattice formulation of this extended version of the Yang–Mill theory,

keeping in mind that the use of the fifth time allows a more complete presentation of the

theory.

6. Stochastic lattice gauge theory and new Monte Carlo algorithm

6.1. Lattice gauge theory with discrete time

Numerical calculations in lattice gauge theory are effected by Monte Carlo methods

which rely on the simulation of a stochastic process. The stochastic process in question is

specified by a matrix T (Ut+1, Ut) > 0 of transition probabilities Ut → Ut+1, on configura-

tions of “horizontal” link variables, Ut = {Ux,t,µ} and Ut+1 = {Ux,t+1,µ}, where µ = 1, ...4.

Consider a transition probability of the form

T (Ut+1, Ut) = N exp{−β
∑
x,µ

ReTr
(
I − (U−1

x,t+1,µVx,t,µ)
)
} , (6.1)

where β is a positive parameter. Here Vx,t,µ = Vx,µ(Ut) is a group element that depends

on the horizontal configuration at time t that will be specified shortly. For appropriately

16



chosen normalization constant N , this expression satisfies the requirement that the sum

of transition probabilities out of any state is unity∫ ∏
x,µ

dUx,t+1,µT (Ut+1, Ut) = 1 . (6.2)

This follows from invariance of the Haar measure under translation on the group,

dUx,t+1,µ = dU ′
x,t+1,µ, where U ′

x,t+1,µ = V −1
x,t,µUx,t+1,µ.

We set

Vx,t,µ = U−1
x,t,5 exp(εfx,t,µ)Ux,t,µUx+µ̂,t,5, (6.3)

where ε is another positive parameter, and fx,t,µ is a lattice analog of the continuum drift

force (DλFλµ)cont that is specified below. This gives

T (Ut+1, Ut) = N exp{−β
∑
x,µ

ReTr
(
I − exp(εfx,t,µ)Ux,t,µUx+µ̂,t,5U

−1
x,t+1,µU−1

x,t,5

)
} .

(6.4)

where the product of 4 U ’s is the transporter around the plaquette in the (µ-5) plane,

starting and ending at the site (x, t). This expression is manifestly invariant under 5-

dimensional local gauge transformations provided that fx,t,µ transforms like a site variable

at x in the adjoint representation,

fx,t,µ → gfx,t,µ = (gx,t)−1fx,t,µ gx,t , (6.5)

which will be the case.

In the last expression for T , the variables Ux,t,5 associated to time-like links serve

merely to effect a gauge transformation gx,t = Ux,t,5 on the variables Ux,t+1,µ associated to

the space-like links. Consequently the Ux,t,5 may be assigned arbitrarily without affecting

expectation values of the observables which are the gauge-invariant functions of the space-

like link variables at a fixed time. We shall shortly gauge-fix Ux,t,5 by a lattice analog of

continuum gauge fixing implemented above, where by Ux,t,5 will be expressed in terms of

the Ux,t,µ so that eq. (6.2) is satisfied.

Recall that the 5-dimensional continuum theory contains no dimensionful constant,

apart from the cut-off, when engineering dimensions are assigned according to [t] = [x2].

Consequently the discretized action should depend on the lattice spacings only through

the ratio
ε ≡ at

a2
s

, (6.6)
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which defines the parameter ε. Here as and at are the lattice spacings in the space and

time directions respectively, with at being the “time” for a single sweep of the lattice in a

Monte Carlo updating. We write

Ux,t,µ ∼ exp(g0asA
cont
x,t,µ)

Ux,t,5 ∼ exp(g0atA
cont
x,t,5) ,

(6.7)

where g0 is the unrenormalized coupling constant, and “cont” designates continuum per-

turbative variables.

To verify this point, we estimate the quantities that appear in eqs. (6.1) and (6.3).

The lattice drift force, specified below, is of order

fx,t,µ ∼ g0a
3
s(DλFλµ)cont . (6.8)

This gives
exp(εfx,t,µ) ∼ exp

(
g0asat (DλFλµ)cont

)
Ux,t,µUx+µ̂,t,5U

−1
x,t+1,µU−1

x,t,5 ∼ exp
(
− g0asat (F5,µ)cont

)
,

(6.9)

and finally
ReTr

(
1− exp(εfx,t,µ) Ux,t,µUx+µ̂,t,5U

−1
x,t+1,µU−1

x,t,5

)
∼

(g0asat

2

)2(
(F a

5µ −DλF a
λµ)cont

)2

,
(6.10)

where a sum on µ and a is understood. We have∏
t

T (Ut+1, Ut) = exp(−βI) , (6.11)

where the five-dimensional discretized action is given by

I ≡
∑
x,t,µ

Re Tr
(
1− exp(εfx,t,µ)Ux,t,µUx+µ̂,t,5U

−1
x,t+1,µU−1

x,t,5

)
. (6.12)

We define

β ≡ 1
g2
0ε

=
a2

s

g2
0at

, (6.13)

and we obtain
βI ∼ 1

4
ata

4
s

∑
x,t,µ

(
(F a

5µ −DλF a
λµ)cont

)2

, (6.14)

which is the correct volume element, ata
4
s, and the correct normalization of the 5-

dimensional action.
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There remains to specify the lattice drift force fx,µ and the gauge-fixing of Ux,t,5. For

this purpose we shall establish a correspondence between lattice and continuum quantities.

Let S = S(U) be the gauge-invariant 4-dimensional Euclidean lattice action normalized to

S(U) ⇐⇒ g2
0S

cont =
g2
0

4

∫
d4x(F a cont

µν )2 , (6.15)

which depends only on the horizontal link variables U = {Ux,µ} at a fixed time. It may

be the Wilson plaquette action

SW = 2
∑

p

Re Tr(I − Up) (6.16)

for pure gluodynamics, where the sum extends over all plaquettes p, or the effective action

that results from integrating out the quark degrees of freedom,

S(U) = SW − g2
0Tr ln(γµDµ + m) , (6.17)

where γµDµ + m represents the lattice Dirac operator of choice. Let the lattice color-

“electric” field operator Ex,µ,a be defined by

Ex,µ,a ≡ (taUx,µ)αβ
∂

∂(Ux,µ)αβ
, (6.18)

where [ta, tb] = fabctc, and tr(tatb) = −(1/2)δab. It has 4 components, µ = 1, ...4, because

our perspective is 5-dimensional. With (Ux,µ)αβ ∼ δαβ + (ta)αβ g0asA
a cont
x,µ , we have the

correspondence between lattice and continuum quantities,

Ex,µ,aS(U) ⇐⇒ g0a
3
s

δScont

δAa cont
x,µ

= −g0a
3
s(DλFλµ)cont , (6.19)

and we take for the lattice drift force

fx,µ,a = −Ex,µ,aS(U) . (6.20)

The lattice color-electric field operator defined by the remarkably simple expression

(6.18) represents the color-electric flux carried by the link (x, µ). It satisfies the Lie algebra

commutation relations

[Ex,µ,a, Ey,ν,b] = −δx,yδµ,ν fabcEx,µ,c , (6.21)
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as well as
[Ex,µ,a, Uy,ν ] = δx,yδµ,ν taUy,ν

[Ex,µ,a, U−1
y,ν ] = −δx,yδµ,ν U−1

y,ν ta .
(6.22)

We may visualize the color-electric field operator Ex,µ,a acting on S(U) as inserting ta into

the plaquettes that contain the link (x, µ) on the left side of the matrix Ux,µ.

The color-electric field operator that operates by right multiplication of ta,

E′
x,µ,a ≡ (Ux,µta)αβ

∂

∂(Ux,µ)αβ
(6.23)

satisfies the Lie algebra commutation relations with opposite sign

[E′
x,µ,a, E′

y,ν,b] = δx,yδµ,ν fabcE′
x,µ,c . (6.24)

Since left and right multiplication commute, we have

[Ex,µ,a, E′
y,ν,b] = 0 . (6.25)

With

Ux,µta = (Ux,µtaU−1
x,µ) Ux,µ = Oba(Ux,µ) tbUx,µ , (6.26)

where the real orthogonal matrices Oba(Ux,µ) = Oab(U−1
x,µ) form the adjoint representation

of the group, the two are related by

E′
x,µ,a = Oba(Ux,µ)Ex,µ,b , (6.27)

and satisfy ∑
a

E′2
x,µ,a =

∑
a

E2
x,µ,a . (6.28)

The generator of infinitesimal gauge transformations Gx,a is easily expressed in terms

of these operators. A generic infinitesimal gauge transformation Ux,µ → g−1
x Ux,µgx+µ̂,

with gx = 1 + ωx, is given by

δUx,µ = −ωxUx,µ + Ux,µωx+µ̂

= (Dµω)xUx,m ,
(6.29)

where

(Dµω)x ≡ Ux,µωx+µ̂U−1
x,µ − ωx = ta(Dµω)x,a . (6.30)
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This defines the lattice gauge-covariant difference Dµ that corresponds to the continuum

gauge-covariant derivative. It has a simple geometric meaning, being the difference between

ω at x + µ̂ transported back to x, and ω at x. This infinitesimal gauge transformation

induces the following change in a generic function F(U):

δF = F(U + δU)− F(U)

=
∑
x,µ

(Dµω)x,a Ex,µ,aF

=
∑

x

ωx,a Gx,aF .

(6.31)

This defines the generator of local gauge transformations Gx,a. From

(Dµω)x,a = Oab(Ux,µ) ωx+µ̂,b − ωx,a (6.32)

we obtain
Ga

x ≡
∑

µ

D†µEµ =
∑

µ

(E′a
x−µ̂,µ − Ea

x,µ), (6.33)

which is the total flux of color-electric field leaving the site x. As in the continuum theory,

it is the left-hand side of Gauss’s law. One easily verifies the commutation relations

[Ga
x, Eb

y,µ] = δx,y fabcEc
y,µ

[Ga
x, E′b

y,µ] = δx−µ̂,y fabcE′c
y,µ

[Ga
x, Gb

y] = δx,y fabcGc
y .

(6.34)

Under local gauge transformation, Eb
x,µ transforms like a site variable at x in the adjoint

representation, as required for the gauge-invariance of the transition matrix T (Ut+1, Ut).

Moreover E′b
x,µ transforms like a site variable in the adjoint representation at x + µ̂.

We shall implement a lattice gauge fixing that corresponds to the continuum gauge

fixing described above. We introduce a minimizing function, F(Ut), and we impose the

gauge condition

Ux,t,5 = exp(Ax,t,5) = exp
(
− εGx,tF(Ut)

)
. (6.35)

With this definition, eq. (6.2) is satisfied, because both Ux,t,5 and the gauge-fixing force

fx,t,µ are expressed in terms of variables that live only on the hyperplane t. For the

minimizing function we take a lattice analog of a−1
∫

d4x(Acont)2, for example,

F(U) = 2a−1
∑
x,µ

ReTr(1− Ux,µ)

F(U) ∼ g2
0a

−1

∫
d4x(Acont)2 .

(6.36)
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where a > 0 is a gauge parameter (not to be confused with the lattice units as and at).

This gives the gauge condition

Ax,t,5 = −εGb
xF(U)

= −εa−1
∑

µ

Tr
(

tb (Ux,µ − U−1
x,µ − Ux−µ̂,µ + U−1

x−µ̂,µ)
)

.
(6.37)

6.2. Five-dimensional critical limit and new algorithm

The renormalizability of the 5-dimensional continuum theory demonstrated above

controls the critical limit of the 5-dimensional lattice theory just described. In particular

it fixes the dependence of the parameter ε = ε(g0) on g0, and thereby provides a new

accelerated Langevin algorithm, as we shall see.

The probability for transition from configuration Ut into the volume element∏
x,µ dUx,t+1,µ, where dUx,t+1,µ is Haar measure, is given by

∏
x,µ

dUx,t+1,µT (Ut+1, Ut) . (6.38)

From eq. (6.4), and invariance of Haar measure under translation on the group, it follows

that the probability for transition from the configuration Ut to the configuration

Ux,t+1,µ = U−1
x,t,5 exp(εfx,t,µ)Ux,t,µUx+µ̂,t,5Wx,t,µ (6.39)

depends only on the group element Wx,t,µ,

∏
x,µ

dUx,t+1,µT (Ut+1, Ut) = N
∏
x,µ

{dWx,t,µ exp
(
− βRe Tr(I −Wx,t,µ)

)
}. (6.40)

Thus to generate a new configuration it is sufficient to generate the last probability dis-

tribution independently for each group element Wx,t,µ, and also independently of the

configuration Ut, and then calculate Ux,t+1,µ from eq. (6.39). (If one is not interested in

gauge-fixing, one may set Ux,t,5 = 1. However the gauge-fixing defined above smooths out

configurations, which may help to accelerate the inversion of the Dirac operator.) One

recognizes the familiar Langevin algorithm for the SU(N) group [17] and [18], with Wx,t,µ

being white noise on the group. The new element is that we shall determine ε = ε(g0) from

the perturbative renormalization group.
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We noted in our discussion of the continuum theory that the time is renormalized

according to t = Zttr. The parameter ε = at/a2
s rescales in the same way as the time t,

ε = Ztεr , (6.41)

where εr is independent of the ultraviolet cut-off Λ = a−1
s . Consequently it satisfies the

renormalization-group equation

Λ
d ln ε

dΛ
= Λ

d lnZt

dΛ
≡ βt(g0)

= −bt,0g
2
0 + O(g4

0) ,

(6.42)

where βt(g0) is a β-function for the renormalization of the Monte Carlo time. The coeffi-

cient bt,0 has been calculated for a theory without quarks, [19]and [20], and is independent

of the gauge parameter a,

bt,0 = −13N

3
1

16π2
. (6.43)

It is convenient to change dependent variable from Λ to g0, using

Λ
d ln ε

dΛ
= β(g0)

d ln ε

dg0
(6.44)

where

β(g0) ≡ Λ
dg0

dΛ
(6.45)

is the usual β-function,

β(g0) = −b0g
3
0 − b1g

5
0 + O(g7

0) . (6.46)

It has been verified to one-loop level for the 5-dimensional theory without quarks that

β(g0) is the same as in the Faddeev-Popov theory, [19]and [20]. For the theory without

quarks we have

b0 =
11N

3
1

16π2
, (6.47)

which gives
d ln ε

dg0
=

βt(g0)
β(g0)

=
bt,0

b0
g−1
0 + O(g0) ,

(6.48)

so

ε = (b0g
2
0)

bt0/(2b0) exp
(
O(g2

0)
)

C , (6.49)
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where C is a constant of integration, and

bt,0

b0
= −13

11
(6.50)

for the theory without quarks. The higher loop corrections are negligible in the critical

limit g0 → 0. This allows us to take for the purposes of numerical simulation

ε = (b0g
2
0)

bt0/(2b0) C , (6.51)

and

β = (g2
0ε)

−1 =
(
(g2

0)
1+bt0/(2b0) b

bt0/(2b0)
0 C

)−1

. (6.52)

In a theory without quarks, this gives

ε = (b0g
2
0)
−13/22 C

β = (g2
0ε)

−1 =
(
(g2

0)
9/22 b

−13/22
0 C

)−1

.
(6.53)

We note that β diverges in the critical limit g0 → 0, but more slowly than 1/g2
0.

Moreover the time-step in lattice units diverges, ε = at/s2
s → ∞ because b0 and b0,t have

opposite sign in a gauge theory. This provides a highly accelerated algorithm. However

one may doubt whether this algorithm converges because high wave-number components,

k ∼ a−1
s will overshoot and thus may appear to fluctuate wildly. However they are not of

physical interest in the critical limit. On the other hand the modes that are of physical

interest k ∼ ΛQCD will not overshoot. Indeed the real problem is likely to be that they

evolve too slowly as usual, in which case the divergence of the step-size ε(g0) → ∞ as

g0 → 0 is a great asset. Obviously the algorithm must be studied in practice before

conclusions can be drawn. In order to apply the algorithm proposed here to a theory with

quarks, the coefficient bt,0 must also be calculated with quarks.

If one takes C →∞, one obtains a different, or non-existent, critical theory from the

continuum theory discussed above. If one takes C → 0, one obtains the continuous-time

stochastic theory discussed in the next section with a Euclidean spatial cut-off.

The 5-dimensional critical limit is approached in the limit g0 → 0. The value of g0

determines the physical correlation length as measured in Euclidean lattice units as in the

same way that it does in the Faddeev-Popov theory,

as = Λ−1
QCD(b0g

2
0)
−b1/(2b20) exp

(
− 1

2b0g2
0

)
, (6.54)
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where ΛQCD is the standard QCD mass scale, although this has been verified to one-loop

level in the theory without quarks [19] and [20]. This formula and the above expression

for ε(g0) fix the “time”, at, for a single Monte Carlo sweep in terms of ΛQCD,

at = εa2
s

at = Λ−2
QCDC(b0g

2
0)

(bt,0b0−2b1)/(2b20) exp
(
− 1

b0g2
0

)
.

(6.55)

In the asymptotic scaling region, auto-correlation times of physical observables are finite

and independent of g0 and C when measured in units of Λ−2
QCD. The criteria for choosing

the value of C are similar to those for g0. The auto-correlation time τ for a physical

observable should be large compared to one sweep-time, τ >> at, but small compared the

total running time T , τ << T , so that the statistical uncertainty, of order N−1/2, is small,

where N ≡ T/τ .

If it could be established that Monte Carlo auto-correlation times τ of physical ob-

servables are related to physical Euclidean correlation lengths L, by a universal relation

τ = KL2, where K is the same for all physical observables, then physical information such

mass ratios, could be extracted directly from Monte-Carlo auto-correlation times. In this

case the mass spectrum is given by the eigenvalues of the Fokker-Planck hamiltonian, as

explained in sec. 6.3.

We briefly mention some attractive features of the algorithm proposed here, which

are those of the Langevin algorithm with a time-step in lattice units that diverges in the

critical limit g0 → ∞. There is no accept/reject criterion. Every updating Wx,t,µ is

accepted, even when the (effective) action is non-local as occurs with dynamical quarks.

Only the derivative of the Euclidean action S appears in

fx,t,µ = −Ex,µS = −Ex,µSW + g2
0Tr

(
(γλDλ + m)−1Ex,µ(γνDν)

)
, (6.56)

so one does not have to calculate the determinent of the lattice Dirac operator, but only

its inverse. Moreover it is sufficient to calculate this inverse only once per sweep, because

a whole sweep of the Euclidean lattice, described by eqs. (6.39) and (6.40), corresponds

to a single hyperplane of the 5-dimensional lattice with action (6.12).

Of course other algorithms may be invented that are based on other discretizations in

which the 5-dimensional critical limit is also achived in the limit g0 → 0.
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6.3. Lattice Fokker–Planck and Langevin equations

One would be tempted to formulate a BRST version of the lattice gauge theory de-

scrobed in the previous section, which has discrete stochastic time t and group-valued

link variables Ux,t,5 asociated to the vertical (time-like) links. However Neuberger [21] has

shown that lattice BRST gauge-fixing fails if the gauge-fixing function is continuous on the

group manifold. Moreover Testa [22] has provided a counter-example which shows that if

one tries to get around Neuberger’s theorem by choosing a gauge-fixing function that is

not continuous on the group manifold, then inconsistencies in the BRST procedure appear

in the form of BRST-exact quantities sX with non-zero expectation-value < sX >6= 0.

Therefore in order to comply with Neuberger’s theorem we shall make t = x5 continuous

while keeping xµ discrete, so Ax,5 is in the Lie algebra whereas Ux,µ is in the Lie group,

where µ = 1, ...4. Gauge-fixing will be of the form Ax,5 = vx(U), so that a quantity in

the algebra is fixed instead of a quantity in the group. An alternative approach to BRST

gauge-fixing in lattice gauge theory has recently been provided by Baulieu and Schaden

[23].

Before developing the BRST formulation of this 5-dimensional lattice theory, we

first consider the stochastic process described by the lattice Fokker-Planck and Langevin

equations with random variable which is a 4-dimensional Euclidean lattice configuration

U = {Ux,µ}, where Ux,µ ∈ SU(N). Note that a Euclidean lattice configuration U is a

point on a finite product of Lie-group manifolds and that a continuous stochastic process

on Lie-group manifolds is the probabilistic analog of quantum mechanics on Lie-group

manifolds. Both allow a well-defined path-integral formulation.

The continuous-time stochastic process is described by the Fokker-Planck equation

∂P

∂t
= −HFPP , (6.57)

where P = P (U, t) is a probability distribution, and the Fokker-Planck hamiltonian is

given by
HFP = −

∑
x,µ

Ea
x,µ

(
Ea

x,µ − g−2
0 (DµA5)a

x + g−2
0 Ea

x,µS
)

H
†
FP = −

∑
x

[
(
Ea

x,µ − g−2
0 (Ea

x,µS)
)
Ea

x,µ − g−2
0 Aa

x,5G
a
x] ,

(6.58)

where

Ax,5 = −GxF(U) , (6.59)
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and Dµ is the lattice gauge-covariant difference, eq. (6.30). In Appendix A we show that

this equation describes the limit of the discrete-time stochastic process defined previous

paragraph in which the time-step approaches zero, ε = at/a2
s → 0.

In the previous paragraph it was conjectured that the auto-correlation times τ of phys-

ical observables might be related to Euclidean auto-correlation lengths L by the universal

relation τ = KL2, where K is the same for all observables. If this is true, then the mass

spectrum is given by the eigenvalue equation

HFPΨ = m2Ψ

H
†
FPΦ = m2Φ .

(6.60)

But for the gauge-fixing “force”, (DµA5)x in HFP, the equilibrium solution, satisfying

HFPPeq = 0 would be given by Peq = exp(−g−2
0 S). We cannot give the exact equilibrium

solution for non-zero gauge-fixing force because it is not conservative. However with lattice

regularization gauge-fixing may be dispensed with. Then a similarity transformation by

exp[−(g−2
0 /2)S] is sufficient to make the the Fokker-Planck hamiltonian hermitian

H ′
FP = −

∑
x,µ

[
(
Ea

x,µ − (g−2
0 /2)(Ea

x,µS)
) (

Ea
x,µ + (g−2

0 /2)Ea
x,µS

)
] , (6.61)

and H ′
FP = H ′†

FP. Moreover the physically relevant eigenfunctions are gauge-invariant,

GxΦ′ = 0. The eigenvalue equation

H ′
FPΨ′ = m2Ψ′, (6.62)

is interesting. It is both Euclidean- and gauge-invariant. Moreover the ground-state or

vacuum wave-function is known exactly, Ψ′
0 = exp[−(g−2

0 /2)S], so variational calculations

of excited-state eigenvalues are possible.

The corresponding Langevin equation is obtained from the ε → 0 limit of the stochastic

process defined in eqs. (6.39) and (6.40). It is given by

U̇x,µU−1
x,µ = g−2

0 (DµA5)x − g−2
0 Ex,µS + ηx,µ, (6.63)

where ηx,µ is Gaussian white noise with two-point correlator

< ηx,µ(s)ηy,ν(t) >= 2δx,yδµ,νδ(s− t). (6.64)
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The gauge choice Ax,5 = −GxF(U) has the global property that for the flow deter-

mined by the gauge-fixing force alone,

∂5Ux,µU−1
x,µ = g−2

0 (DµA5)x, (6.65)

the minimizing function F decreases monotonically

∂5F ≤ 0 , (6.66)

for we have

∂5F = g−2
0

∑
x,µ

Ex,µF DµA5 = g−2
0

∑
x

GxF Ax,5 = −g−2
0

∑
x

GxF GxF . (6.67)

For the minimizing function (6.36) , this drives all the Ux,µ toward unity.

7. Five-dimensional topological lattice gauge theory

7.1. Lattice BRST operator

We determine the lattice BRST operator s which corresponds to the continuum BRST

operator defined previously. It possesses the symmetries of the hypercubic lattice. In

order to exhibit these symmetries, we shall, in this subsection only, use a symmetric 5-

dimensional notation, whereby x = {xµ} for µ = 1, ...5 represents lattice sites (previously

denoted (x, t)), and we shall also denote link variables by Uxy ∈ SU(N), with Uyx =

(Uxy)−1, where (xy) is a pair of nearest neighbors.

Consider a generic infinitesimal transformation Uxy,

Uxy + δUxy = (1 + ωxy)Uxy = Uxy(1 + ω′xy) , (7.1)

where ωxy and ω′xy = (Uxy)−1ωxyUxy are elements of the Lie algebra, ωxy = taωa
xy. We

write δ = εs, ωxy = εΩxy and ω′xy = εΩ′
xy, where ε is an infinitesimal Grassmann variable,

and Ωxy and Ω′
xyare Lie algebra-valued Grassmann variables, with

Ω′
xy = (Uxy)−1ΩxyUxy . (7.2)

This determines the action of s on Uxy,

sUxy = ΩxyUxy = UxyΩ′
xy . (7.3)
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From the condition s2 = 0, we obtain

sΩxy = Ω2
xy

sΩ′
xy = −Ω′2

xy .
(7.4)

We will not write out explicitly further relations for Ω′
xy since they may be obtained for

those of Ωxy.

As in the continuum theory, we wish to distinguish the infinitesimal gauge transfor-

mations from among all possible transformations of Uxy. We pose ωx = εcx, where ε is an

infinitesimal Grassmann variable, and cx is a Lie algebra-valued Grassmann variable, so

the infinitesimal gauge transformation defined in the previous section reads

δgUxy = ε(−cxUxy + Uxycy)

= ε(−cx + UxycyUyx)Uxy ,
(7.5)

where we have written Uyx ≡ (Uxy)−1. We separate this infinitesimal gauge transformation

out of Ωx,µ, and write

Ωxy ≡ Ψxy − cx + UxycyUyx , (7.6)

which defines Ψxy . The action of s on Uxy now reads

sUxy = (Ψxy − cx)Uxy + Uxycy . (7.7)

We identify the lattice site variable cx with the corresponding continuum scalar ghost c(x),

and similarly for Φx, and assign to them the same transformation law as in the continuum

case namely
scx = Φx − c2

x

sΦx = −cxΦx + Φxcx .
(7.8)

The action of s on Ψxy is obtained from

sΨxy = sΩxy + scx − s(UxycyUyx) . (7.9)

This determines the action of s on all the lattice fields and ghosts.

We write it in the notation in which it will be used, namely with lattice sites designated

by (x, t), where x, is a 4-vector x = {xµ} for µ = 1, ...4, and t = x5. “Horizontal” links,
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corresponding to links in 4-dimensional Euclidean space-time, are designated by (x, t, µ),
and “vertical” links by (x, t, 5). In this notation s acts according to

sUx,t,µ = (Ψx,t,µ + (Dµc)x,t) Ux,t,µ

sUx,t,5 = (Ψx,t,5 + (Dµc)x,t) Ux,t,5

sΨx,t,µ = −(DµΦ)x,t − [cx,t, Ψx,t,µ] + (Ψx,t,µ)2

sΨx,t,5 = −(D5Φ)x,t − [cx,t, Ψx,t,5] + (Ψx,t,5)2

scx,t = Φx,t − (cx,t)2

sΦx,t = −[cx,t, Φx,t] ,

(7.10)

which satisfies s2 = 0, and where the lattice gauge-covariant difference operator Dµ is
defined in (6.30). Under gauge transformation Ψx,t,µ and Ψx,t,5 transform like site variables
located at (x, t).

We shall shortly take t = x5 to be a continuous variable, while x remains the discrete
label of a 4-dimensional lattice site. In this case, instead of the link variable Ux,t,5 in the
Lie group, we require a variable Ax,t,5 in the Lie algebra. The BRST operator acts on
Ax,t,5 and Ψx,t,5 as in the continuum theory,

sAx,t,5 = Ψx,t,5 + D5cx,t

sΨx,t,5 = −D5Φx,t − [cx,t, Ψx,t,5] ,
(7.11)

where D5 is the continuum covariant derivative and s acts on the remaining variables as
above.

In terms of the lattice color-electric field operator Ex,µ and generator of local gauge
transformations Gx obtained above, the explicit form of the lattice BRST operator acting
on functions f = f(U, Ψ, c, Φ) is given by sf = Qf , where Q is the differential operator

Q ≡
∑

x

(
Ψx,µEx,µ + cxGx + {−(DµΦ)x − [cx, Ψx,µ] + Ψ2

x,µ}
∂

∂Ψx,µ

+ (Φx − c2
x)

∂

∂cx
− [cx, Φx]

∂

∂Φx

)
.

(7.12)

The action of s on the anti-ghosts and Lagrange multipliers is defined simply by

sΨ̄x,t,µ = b′x,t,µ

sΨ̄x,t,5 = b′x,t,5

sb′x,t,µ = 0

sb′x,t,5 = 0

sΦ̄x,t = η̄′x,t

sη̄′x,t = 0 .

(7.13)
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This is the same as in the continuum theory after the change of variable

b′x,t,µ ≡ bx,t,µ − [cx,t, Ψ̄x,t,µ]

b′x,t,5 ≡ bx,t,5 − [cx,t, Ψ̄x,t,5]

η̄′x,t ≡ η̄x,t − [cx,t, Φ̄x,t] .

(7.14)

Note that Φx,t, Φ̄x,t, bx,t,µ and bx,t,5 are real variables.

It is remarkable that the lattice BRST transformation requires only minimal change

from the continuum BRST transformation, even though there is no local lattice curvature

and no lattice Bianchi identity, whereas our starting point for the continuum transforma-

tion was the curvature equation and the Bianchi identity (2.6).

7.2. Five-dimensional topological lattice action

The most powerful representation of the continuous stochastic process just defined is

by path integral. We start with the 5-dimensional topological lattice action which we write

by analogy with the 5-dimensional continuum action presented above,

I = g−2
0

∫
dt

∑
x

sTr{ Ψ̄x,µ

(
(D5U)x,µU−1

x,µ + Ex,µS(U) +
1
2
b′x,µ

)
+Ψ̄x,5(Ax,5 + GxF)

+Φ̄x(Ψx,5 + Ψy,µ Ey,µGxF ′) } ,

(7.15)

where a sum on y and µ is understood. Here F(U) is the minimizing function introduced

above, and F ′(U) is the same or another minimizing function.

We expand the above action and obtain

I = I1 + IA5 + IΨ5 + IΨµ
+ Ic + IΦ , (7.16)

I1 = g−2
0

∫
dt

∑
x

Tr{ b̄′x,µ

(
(D5U)x,µU−1

x,µ + Ex,µS(U) +
1
2
b′x,µ

)
}

IA5 = g−2
0

∫
dt

∑
x

Tr
(

b̄′x,5 (Ax,5 + GxF)
)

IΨ5 = g−2
0

∫
dt

∑
x

Tr
(
η̄′x (Ψx,5 + Ψy,µ Ey,µGxF ′)

) (7.17)

IΨµ
= −g−2

0

∫
dt

∑
x

Tr
(
Ψ̄x,µ { D5

(
Ψx,µ + (Dµc)x

)
−Dµ

(
Ψx,5 + (D5c)x

)
+

(
Ψx,µ + (Dµc)x , ∂5Ux,µU−1

x,µ − (DµA5)x

)
+

(
Ψy,ν + (Dνc)y

)
Ey,νEx,µS(U) }

) (7.18)
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Ic = −g−2
0

∫
dt

∑
x

Tr
(
Ψ̄x,5 { (D5c)x + Ψx,5 +

(
(Dµc)y + Ψy,µ

)
Ey,µGxF }

)
(7.19)

IΦ = g−2
0

∫
dt

∑
x

Tr
(

Φ̄x { − (D5Φ)x − [cx, Ψx,5]

+
(
− (DµΦ)y − [cy, Ψy,µ] + Ψ2

y,µ

)
Ey,µGxF ′ }

)
.

(7.20)

The terms IA5 and IΨ5 serve to gauge fix A5 and Ψ5. Indeed upon integration with respect

to b̄′5 and η̄′ they impose the constraints,

Aa
x,5 = −Ga

xF

Ψa
x,5 = −Ψb

y,µ Eb
y,µGa

xF ′ .
(7.21)

7.3. Proof of gauge invariance and absence of Gribov copies.

We must show that the expectation-values of physical observables, namely the Wil-

son loops, are independent of the gauge-fixing functions F and F ′. For this purpose we

integrate out η̄′ and Ψ̄5, which results in Ψ5 being assigned its gauge-fixed value. We next

integrate out the bose ghosts Φ̄ and Φ, which appear only in

ZΦ ≡
∫

dΦdΦ̄ exp(−IΦ) . (7.22)

The integral on Φ̄ yields

ZΦ =
∫ ∏

t,x

dΦt,x

∏
t,x

δ
(
− ∂5Φx + (LΦ)x + fx

)
, (7.23)

where fx is independent of Φ, and the finite matrix L is defined by

(LΦ)a
x ≡ −[Ax,5, Φx]a −

∑
y

Gb
yGa

xF ′ Φb
y , (7.24)

and we have used
∑

µ(D†µE)y,µ = Gy. To evaluate ZΦ, we observe that the stochastic

process starts at some initial time t = t0, which may be taken to be t0 = −∞. At the

initial time, Φx(t0), and the other fields U, Ψ, c, are assigned some definite initial value

that is not integrated over, for example Φx(t0) = 0. With this initial value, the differential

equation

∂5φx − (Lφ)x = fx (7.25)
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is equivalent to the integral equation

φb
x(t) =

∫ t

t0

du
(
f b

x(u) + Lb,c
x,y(u)φc

x(u)
)
. (7.26)

This equation possesses a unique solution φx(t). Thus unlike gauge-fixing on the group, or

in a 4-dimensional covariant gauge, there are no Gribov copies.

We shift Φ by φ which cancels fx in the path integral for ZΦ. We also multiply as

usual by the formally infinite normalization constant det ∂5. This gives

ZΦ =
∫ ∏

t,x

dΦx(t)
∏
t,x

δ
(
Φx(t)− (LΦ)x(t)

)
, (7.27)

where L = ∂−1
5 L is the integral operator

(LΦ)a
x(t) =

∫ ∞

t0

du Lab
x,y(t, u)Φb

y(u), (7.28)

with kernel

La,b
x,y(t, u) = θ(t− u)La,b

x,y(u) . (7.29)

This gives

ZΦ = det−1(1− L) = exp
(
− Tr ln(1− L)

)
= exp

(
TrL+ ...

)
, (7.30)

Because Lx,y(t, u) is retarded, L(t, u) = 0 for u > t, only the tadpole term

TrL =
∫ ∞

t0

dt
∑
x,a

La,a
x,x(t, t)

= θ(0)
∫ ∞

t0

dt
∑
x,a

Laa
x,x(t)

(7.31)

survives in the last expansion. It is natural to assign the ambiguous expression θ(0) its

mean value 1/2, which is consistent with other determinations (see Appendix B), and we

obtain
ZΦ = exp

(1
2

∫ ∞

t0

dt
∑
x,a

La,a
x,x(t)

)
, (7.32)

and so, by eq. (7.24),

ZΦ = exp
(
− 1

2

∫ ∞

t0

dt
∑
x,a

Ga
xGa

xF ′
)

. (7.33)
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We emphasize that we have made an exact evaluation of the ghost determinant, and

obtained a purely local contribution to the effective action.

In the same way we integrate out the Fermi ghosts Ψµ and Ψ̄µ, after setting Ψ5 to its

gauge-fixed value. They only appear in the factor

ZΨµ
≡

∫
dΨµdΨ̄µ exp(−IΨµ

) . (7.34)

As before only the tadpole term survives and gives

ZΨµ
= exp

(1
2

∫ ∞

t0

dt
∑
x,a

(
∑

µ

Ea
x,µEa

x,µS + Ga
xGa

xF ′)
)

. (7.35)

The dependence on F ′ cancels in the product

ZΨµ
ZΦ = exp(−I2) , (7.36)

where

I2 ≡ −1
2

∫ ∞

t0

dt
∑
x,µ,a

Ea
x,µEa

x,µS . (7.37)

Thus physical observables are independent of the gauge-fixing function F ′, as asserted.

We next show that they are also independent of F . The integration on bµ
′ is effected,

which causes I1 to be changed to I1
′, given below. The variable of integration c may be

translated, just as Φ was translated above, to cancel the inhomogeneous term in Ic, which

changes Ic to Ic
′ given below. Putting these factors together we obtain

Z =
∫ ∏

t,x

(
dUx,µ(t)dAx,5(t)dcx(t)dΨ̄x,5(t)dbx,5(t)

)
exp(−I ′) , (7.38)

where
I ′ = I1

′ + I2 + IA5 + Ic
′

I1
′ = −1

2
g−2
0

∫
dt

∑
x

Tr
(
(D5U)x,µU−1

x,µ + Ex,µS(U)
)2

Ic
′ = −g−2

0

∫
dt

∑
x

Tr{ Ψ̄x,5

(
(D5c)x + (Dµc)yEy,µGxF

)
},

(7.39)

and I2 and IA5 are defined above.

We next use standard BRST arguments to show that the expectation-value of any

gauge-invariant observable is independent of the gauge-fixing function F . Observe first
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that I1
′ and I2 are gauge invariant. They are therefore invariant under a “little” BRST

operator s′ that acts according to

s′Ux,µ = (Dµc)xUx,µ s′Ax,5 = (D5c)x

s′cx = −c2
x

s′Ψ̄x,5 = bx,5 s′bx,5 = 0 ,

(7.40)

which satisfies s′2 = 0. Indeed, s′ is the usual BRST operator with c̄x → Ψ̄x,5 and

bx → bx,5, and it acts on Ux,µ and Ax,5 like an infinitesimal gauge transformation. Because

I1
′ and I2 are gauge-invariant they are also invariant under s′,

s′I1
′ = 0; s′I2 = 0 . (7.41)

Moreover we may express the total action I ′ as

I ′ = I1
′ + I2 + s′J , (7.42)

where
J ≡ g−2

0

∫
dt

∑
x

Tr
(
Ψ̄x,5 ( Ax,5 + GxF )

)
. (7.43)

Thus I ′ is s′-invariant, s′I ′ = 0, and moreover the gauge-fixing function F appears only in

the term s′J that is s′-exact. By standard arguments it follows that the expectation-value

of any gauge-invariant observable is independent of F , as asserted, which completes the

proof.

We next integrate out the remaining auxiliary variables b5, A5, Ψ̄ and c to obtain a

path-integral in terms of the actual random variables Ux,µ(t) only. In eq. (7.38) , we

integrate out bx,5(t) and Ax,5(t), which fixes Ax,5 = −GxF(U). The integral on the Fermi

ghosts cx(t) and Ψ̄x,5(t) namely

Zc ≡
∫ ∏

t,x

[dcx(t)dΨ̄x,5(t)] exp(−Ic
′) , (7.44)

may be effected just like the integral on the bose ghosts Φx(t) and Φ̄x(t) that was done

explicitly above. Again only the tadpole term survives and gives

Zc = exp(−I3)

I3 = −1
2

∫ ∞

t0

dt
∑
x,a

Ga
xGa

xF .
(7.45)
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This yields the desired partition function of the stochastic process in terms of the random

variables Ux,µ(t) only,

Z =
∫ ∏

t,x

dUx,µ(t) exp(−I ′′) , (7.46)

where

I ′′ = I1
′ + I2 + I3 (7.47)

is a local action given by

I ′′ = −1
2

∫ ∞

t0

dt
∑

x

{ g−2
0 Tr

(
(D5U)x,µU−1

x,µ + Ex,µS(U)
)2

+Ea
x,µEa

x,µS + Ga
xGa

xF } .

(7.48)

The last two terms are the famous Ito terms that are discussed in Appendix B, and we

see that they are produced automatically by the 5-dimensional topological action when all

auxiliary and ghost fields are integrated out. Thus the ghost determinant is well-defined,

and moreover its explicit evaluation gives a local Ito term to the effective action which

comes from the tadpole diagrams only. The Ito terms, which involve the second derivative

of the action S and of the minimizing function F with an over-all minus sign, favor minima

of S and F over maxima and saddle points. This is physically natural and transparent, so

it is somewhat surprising that the tadpole diagrams, which give the Ito terms with lattice

regularization, vanish with dimensional regularization [14].

8. Conclusion and Perspectives

We have seen that the description of the 4-dimensional Yang–Mills theory in the 5-

dimensional framework allows one to obtain a field theory description that does not suffers

from the contradictions of the four dimensional description. From a physical point of

view, we have introduced in a gauge-invariant way the additional time of the Monte Carlo

description of the quantum theory and unified it with the Euclidean space-time coordinates.

It is of course quite remarkable that this approach permits one to get a fully consistent

lattice formulation of the theory with a natural limit toward a continuum formulation,

while the Gribov ambiguity is just absent. Our work shows that this ambiguity is merely

an artifact of a purely 4-dimensional description. It is only in five dimensions that one has

a globally correct gauge fixing which is purely local. It thus appears that we can consider

the 4-dimensional physical space as a slice in a 5-dimensional manifold, in which one can
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express the Yang–Mills theory under the form of a particular topological field theory. A

way to this this schematically is to observe that the 4-dimensional action can always be

rewritten as the integral of a topological term in five dimensions:∫
d4xL(φ) =

∫
d4xdt

δL(φ)
δφ

dφ

dt
(8.1)

Thus, the definition of a quantum field theory amounts to the BRST invariant gauge-fixing

of the action, a task that we have explained in detail above and which leads to the solutions

of several problems of the purely 4-dimensional formalism.

We briefly indicate how our method extends to fermions. To obtain the 5-dimensionsal

fermionic action of a 4-dimensional Dirac spinor q, which automatically extends to a 5-

dimensional spinor, it is now quite natural to introduce a topological BRST operator, and

to enforce the relevant Langevin equation by a BRST-exact action. Call Ψq and Ψ̄q the

commuting topological ghost and anti-ghost of the anti-commuting spinor q, and bq the

anti-commuting Lagrange multiplier field. Then one has sq = Ψq − cq, sΨq = −cΨq + Φq,

and one may take sΨ̄q = bq, sbq = 0 or sΨ̄q = bq−cΨ̄q, sbq = −cbq+ΦΨ̄q . In the Euclidean

formulation the anti-commuting anti-quark spinor field q† is an independent field, and it

has corresponding commuting topological ghost and anti-ghost Ψ†q and Ψ̄†q , and Lagrange

multiplier field b
†
q , with sq† = Ψ†q − q†c, sΨ†q = Ψ†qc − q†Φ. For the anti-ghost one has

again sΨ̄†q = b
†
q , sb

†
q = 0 or sΨ̄†q = b

†
q + Ψ̄†q c, sb

†
q = −b

†
qc − Ψ̄†qΦ. All these fields are

functions of x and t. We take the topological action,

Iq =
∫

d4xdt s
(
Ψ̄†

q{D5q −K[(γµDµ + m)q + abq] }
)

=
∫

d4xdt
(
b†q{D5q −K[(γµDµ + m)q + abq] }

+ Ψ̄†
q[D5Ψq −K(γµDµ + m)Ψq ] + . . .

)
,

(8.2)

which must be added to the 5-dimensional action that we have introduced in the pure Yang–

Mills case. Here (γµDµ + m)q = 0 is the Dirac equation of motion of the 4-dimensional

theory and K is a kernel [24]. One can formally prove, by mere Gaussian integrations,

that the equilibrium distribution is independent of the choice of the kernel K [5]. Since we

are in the context of a renormalizable theory, it is in fact necessary to introduce a kernel

with canonical dimensional equal to 1, that is K = −γµDµ +M . This is remarkable, since

this coincides with the necessity of having a well-defined Langevin process for spinors, as

discussed for instance in [5]. Quite interestingly, power counting would allows a term of
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the type ΓµνFµν that is not proportional to the kernel: such term would contradict the

stochastic interpretation of the 5-dimensional theory and could be the signal of an anomaly.

For vector theories, such term should not be generated perturbatively.

Beyond solving the ambiguities which occur in a purely 4-dimensional approach, our

work might offer new perspectives. We have already mentioned in sec. 6 the existence of

a new algorithm and the conjecture that the mass spectrum is given by the eigenvalues of

the Fokker-Planck hamiltonian.

One speculation is the question of understanding chiral fermions in a lattice formu-

lation. The topological fermionic action (8.2) is interesting from this point of view. One

may consider introducing a t-dependent mass term µ(t) in (8.2). This might lead to an

action of the type used by Kaplan and Neuberger to solve the chiral fermion problem for

the lattice [25][26][27]. In their picture, one introduces a tower of additional fermions,

which can be combined by Fourier transform into a 5-dimensional fermion. One notices

that the equation of motion of (8.2) reproduces their 5-dimensional Dirac equation when

µ(t) is a step function. Moreover, if one gauges the fermion conservation number in the

fifth dimension, which gives an additional U(1) gauge field Aabel(x, t), then µ(t) could be

understood as a special value for the gauge field component A5abel(x, t), similar to a kink

that cannot be set globally to zero by local gauge-fixing. Therefore the choice of µ(t)

could be determined by topological considerations. This issue of seeing whether one can

understand the 4-dimensional space in which the stochastic process stops as a domain wall

in which everything that remains from the fields of the topological multiplet of q is a chiral

fermion seems to us to be great interest.

The second perspective is that of a dual formulation which would now involve 2-form

gauge fields. It is worth indicating the idea here. In the 5-dimensional framework, the

dual of a one-form is a 2-form, since the sum of the degrees of the curvatures of A and its

dual must equal 5.

If one restricts to the abelian part, one has various possibilities for expressing the the-

ory by using arguments as in [28]. The dual action, up to gauge-fixing and supersymmetric

terms, should take the form of a very simple 5-dimensional topological term:∫
5

B2 ∧ dB2. (8.3)

Such a Chern–Simons type action is interesting, since it can be gauge-fixed in the frame-

work of the self-duality for 2-form gauge fields [29]. Thus, the question also arises whether

38



a reliable link can be established between the TQFT generated by (8.3) and the physical

Yang–Mills theory!

Let us finally mention the following observation. Suppose we start from an action

with two abelian two-forms in six dimensions,
∫
6
dB2 ∧ dB̄2. The field content that one

obtains by dimensional reduction in four dimensions will be made of 2 two-forms, 4 one-

forms and 2 zero-forms. But the 2 two-forms are equivalent by duality to 2 zero-form in

four dimensions. So, we obtain a field content equivalent to 4 one-forms and 4 zero-forms.

It is striking that this is the bosonic content of the Weinberg-Salam model, with its four

gauge fields and four scalars, which are the components of a complex SU(2) doublet.
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Appendix A. Derivation of lattice Fokker-Planck equation

We shall demonstrate that the discrete Markov process defined in sec. 6 is described

by the Fokker-Plack equation of sec. 6 in the limit ε → 0. We shall derive the lattice

Fokker-Planck hamiltonian HFP from the transition matrix T (Ut+1, Ut), eq. (6.1) , in

the same way that the Kogut-Susskind hamiltonian is derived from the transfer matrix of

lattice gauge theory. We follow here the discussion of Creutz [30]. We introduce a basis of

states labelled by group elements |U >, where U = {Ux,µ}, with operators

Ûx,µ|U >= Ux,µ|U > . (A.1)

We must find an operator T with the property

< U ′|T |U >= T (U ′, U). (A.2)

To order ε it will have the form T = 1− εHFP , which will allow us to identify HFP .
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From eqs. (6.1), (6.3), (6.20) and (6.37), we have

T (U ′, U) = N exp
(
− (εg2

0)
−1

∑
x,µ

Re Tr(I − U ′−1
x,µHx,µUx,µ)

)
, (A.3)

Here Hx,µ ∈ SU(N) is given by

Hx,µ ≡ exp(−εvx) exp(εfx,µ) exp(ε Ux,µfx+µ̂,µU−1
x,µ) , (A.4)

and the gauge-fixed value of Ax,5 appears, namely Ax,5 = εvx where

vx ≡ −GxF . (A.5)

We write

Hx,µ = exp(εkx,µ) , (A.6)

where kx,µ may be interpreted as the total drift force. To order ε, it is given by

kx,µ = fx,µ + (Dµv)x , (A.7)

where Dµ is the lattice gauger covariant difference, eq. (6.30). It is the sum of the drift

force fx,µ = −Ex,µS and a “gauge-fixing force” (Dµv).

Let T0 be the operator whose matrix elements give the transition probability with

total drift force kx,µ = 0,

< U ′|T0|U >= N exp
(
− (εg2

0)
−1

∑
x,µ

Re Tr(I − U ′−1
x,µUx,µ)

)
. (A.8)

We have

< U ′|T |U >=< U ′|T0| exp(εk)U >, (A.9)

where exp(εk)U ≡ {exp(εkx,µ)Ux,µ}. We insert a complete set of states,

< U ′|T |U >=
∫

dU ′′ < U ′|T0|U ′′ >< U ′′| exp(εk)U > . (A.10)

To order ε we have

< U ′′| exp(εk)U > = δ(U ′′, exp(εk)U) = δ(exp(−εk)U ′′, U)

=
(
1− ε

∑
x,µ

E′′
x,µkx,µ(U)

)
δ(U ′′, U), (A.11)
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where E′′
x,µ is the color-electric field derivative operator defined in sec. 6, that acts on

the variable U ′′. Let Êx,µ be the corresponding quantum mechanical color-electric field

operator. In terms of operators we have shown that to order ε

T = T0

(
1− ε

∑
x,µ

Êa
x,µka

x,µ(Û)
)

. (A.12)

The evaluation of T0 may be found in [30], with the result

T = 1 + ε
∑
x,m

{Êa
x,µ

(
g2
0Ê

a
x,µ − ka

x,µ(Û)
)
} . (A.13)

Thus with T = 1 − εHFP and kx,µ = fx,µ + (Dµv)x, and fx,µ = −Ex,µS, we obtain the

Fokker-Planck hamiltonian

HFP = −
∑
x,m

Ea
x,µ

(
g2
0E

a
x,µ − (Dµv)x + Ex,µS

)
, (A.14)

where vx = −GxF .

Appendix B. Equivalence of topological lattice action and lattice Fokker-Planck

equation

We wish to show that the 5-dimensional partition function Z, eqs. (7.46) and (7.48),

that was obtained from the topological lattice action by integrating out all the auxiliary

fields, is a path integral representation of the solution to the Fokker-Plank equation, ∂5P =

−HFP P , with Fokker-Planck hamiltonian HFP given in eq. (A.14).

For this purpose consider the integral defined for arbitrary O(U ′) by

Ō(U) ≡
∫

dU ′O(U ′)K(U ′, U)

≡
∫

dU ′ O(U ′) N exp
(
− (4ε)−1

∑
x,µ

(Bx,µ − εkx,µ)2
)

,
(B.1)

where kx,µ = kx,µ(U) is defined in eq. (A.7), and Bx,µ is defined by exp(taBa
x,µ) =

U ′
x,µU−1

x,µ. It will be sufficient to show that in the limit ε → 0 this expression corresponds

on the one hand to a discretization of the lattice action (7.48), and on the other hand

yields

Ō(U) = (1− εH
†
FP)O(U) . (B.2)
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We change variable of integration by translation on the group U ′ = V U , with dU ′ = dV .

With Vx,µ parametrized by Vx,µ = exp(taBa
x,µ), we have

Ō(U) = N
∫

dBρ(B) O
(

exp(B)U
)

exp
(
− (4ε)−1

∑
x,µ

(Bx,µ − εkx,µ)2
)

, (B.3)

where ρ(B) is Haar measure. We again change variable of integration by Bx,µ = ε
1
2 Cx,µ +

εkx,µ, and obtain

Ō(U) =
∫

dC ρ(ε
1
2 C + εk) O(exp(ε

1
2 C + εk)U) N exp

(
− 1

4

∑
x,µ

C2
x,µ

)
. (B.4)

We now expand to order ε,

ρx,µ(ε
1
2 C + εk) = 1 + const × εC2

x,µ

O
(

exp(ε
1
2 C + εk)U

)
=

(
1 + (ε

1
2 Ca

x,µ + εka
x,µ)Ea

x,µ +
1
2
εCa

x,µCb
y,νEa

x,µEb
y,ν

)
O(U),

(B.5)

where a sum over repeated indices is understood. When this is substituted into (B.4), the

contribution from the expansion of ρ is cancelled by the normalization constant N , and

one obtains eq. (B.2) , with

H
†
FP = −

∑
x,µ

(
Ex,µ + kx,µ(U)

)
Ex,µ , (B.6)

as desired.

We next show that the kernel in (B.1) corresponds to a discretization of the path inte-

gral with action (7.48). In the preceding calculation the drift force k = k(U) depends on U

but not on U ′, whereas the path integral (7.46) and (7.48) implicitly uses the symmetrized

drift force

ks ≡
1
2

(
k(U) + k(U ′)

)
. (B.7)

So to compare with the path integral, we express the integral (B.1) in terms of ks plus a

correction which will turn out to be the well-known Ito term. We have

k(U) = ks +
1
2

(
k(U)− k(U ′)

)
, (B.8)

so, with U ′ = exp(B)U , we may write to the order of interest

k(U) = ks −
1
2

∑
y,ν

Ba
y,νEa

y,νk , (B.9)
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because the last term gives a contribution of order ε as we shall show. This gives, to the

order of interest,

exp{−(4ε)−1
∑
x,µ

(
Bx,µ − εkx,µ(U)

)2

} =
(
1− 1

4

∑
x,µ,y,ν

Bb
x,µBa

y,νEa
y,νkb

x,µ

)
× exp

(
− (4ε)−1

∑
x,µ

(Bx,µ − εks,x,µ)2
)

.
(B.10)

Upon substituting this expression into (B.1), one obtains a Gaussian integral and Gaussian

expectation value

< Bb
x,µBa

y,ν >= 2εδx,yδµ,νδa,b , (B.11)

which is indeed of order ε, as asserted. Consequently in the exponent we may replace

Bb
x,µBa

y,ν by its expectation value, and to the order of interest we have

exp{−(4ε)−1
∑
x,µ

(
Bx,µ − εkx,µ(U)

)2

} → exp{−
∑
x,µ

(
(4ε)−1(Bx,µ − εks,x,µ)2

+
1
2
εEa

x,µka
x,µ

)
} ,

(B.12)

the last term being the Ito term. Observe that with U ′ → Ut+1 and U → Ut, and

U ′
x,µU−1

x,µ = exp(Bx,µ), we have Bx,µ ∼ εU̇x,µU−1
x,µ, so the last expression may be written

formally as

exp{−ε
∑
x,µ

(1
4
(U̇x,µU−1

x,µ − εks,x,µ)2 +
1
2
Ea

x,µka
x,µ

)
} . (B.13)

We have

Ea
x,µka

x,µ = −Ea
x,µEa

x,µS −Ga
xGa

xF , (B.14)

and the last expression corresponds to the action (7.48), as asserted.
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