Single target-spin asymmetries in semi-inclusive pion electroproduction on longitudinally polarized protons ∗

A.M. Kotzinian^{a †‡}, K.A. Oganessyan^{b†}, H.R. Avakian^{b†}, E. De Sanctis^b

^aCERN, CH-1211, Geneva 23, Switzerland

b INFN-Laboratori Nazionali di Frascati, I-00040, Enrico Fermi 40, Frascati, Italy

We evaluate the single target-spin $\sin \phi_h$ and $\sin 2\phi_h$ azimuthal asymmetries in the semiinclusive deep inelastic lepton scattering off longitudinally polarized proton target under HER-MES kinematic conditions. A good agreement with the HERMES data can be achieved using only the twist-2 distribution and fragmentation functions .

Significant single-spin asymmetries have been observed in experiments with transversely polarized proton and anti-proton beams[[1](#page-5-0)]. Recently new experimental results on azimuthal asymmetries became available. Specifically, the first measurements of single target-spin azimuthal asymmetries of pion production in semi-inclusive deep inelastic scattering (SIDIS) of leptons off a longitudinally polarized target at HERMES [\[2](#page-5-0)] and off a transversely polarized target at SMC [\[3\]](#page-5-0), and the observation of the azimuthal correlationsfor particles produced from opposite jets in Z decay at DELPHI [[4\]](#page-5-0).

In this note we present estimates of the single spin azimuthal asymmetry in the SIDIS on a longitudinally polarized nucleon target for the HERMES kinematic conditions. Our approach is based on the parton model description of polarized SIDIS [\[5\]](#page-5-0). The cross-section contains the $(1/Q)^{0}$ -order terms coming from leading dynamical twist-two distribution and fragmentation functions (DF's and FF's) as well as $(1/Q)$ -order kinematic twistthree terms arising due to the intrinsic transverse momentum of the quark in the nucleon. We will neglect the $(1/Q)$ -order contributions of the higher twist DF's and FF's obtained in[[6\]](#page-5-0). Thus, our approach is similar to that of [\[7](#page-5-0)] in describing the $\cos \phi_h$ asymmetry in unpolarized SIDIS.

Let k_1 (k_2) be the initial (final) momentum of the incoming (outgoing) charged lepton, $Q^2 = -q^2$, $q = k_1 - k_2$ – the momentum of the virtual photon, P and P_h (M and M_h) – the target and final hadron momentum (mass), $x = \frac{q^2}{2(Pq)}$, $y = \frac{Pq}{Pk_1}$, $z = (PP_h)/(P_q)$, $P_{hT} (k_{1T})$ – the hadron (lepton) transverse with respect to virtual photon momentum direction and ϕ_h – the azimuthal angle between P_{hT} and k_{1T} around the virtual photon direction. Note that the azimuthal angle of the transverse (with respect to the virtual photon) component of the target polarization, ϕ_S , is equal to $0(\pi)$ for the

[∗] talk presented by K. Oganessyan at the Workshop on the structure ot the Nucleon (N99), Frascati, June 7-9, 1999.

[†]On leave of absence from Yerevan Physics Institute, Alikhanian Br.2, AM-375036 Yerevan, Armenia ‡JINR, RU-141980 Dubna, Russia

target polarized parallel (antiparallel) to the beam (Fig. 1).

Figure 1. The definition of the azimuthal angle ϕ_h and the target polarization components in virtual photon frame.

We use the approach developed in [\[8](#page-5-0)] and consider the cross-section integrated with different weights depending on the final hadron transverse momenta $w_i(P_{hT})$ ⁴:

$$
\Sigma_i = \frac{Q^2 y}{2\pi\alpha^2} \int d^2 P_{hT} w_i(P_{hT}) d\sigma,\tag{1}
$$

with $w_1(P_{hT}) = 1$, $w_2(P_{hT}) = |P_{hT}| \sin \phi_h / M_h$ and $w_3(P_{hT}) = |P_{hT}|^2 \sin 2\phi_h / 2MM_h$. Considering only the twist-two contributions, we have:

$$
\Sigma_1 = (1 + (1 - y)^2) f_1(x) D_1(z), \tag{2}
$$

where $f_1(x)$ and $D_1(z)$ are the usual unpolarized DF's and FF's. Moreover

$$
\Sigma_2 = \Sigma_{2L} + \Sigma_{2T},\tag{3}
$$

⁴More details can be found in [\[9](#page-5-0)].

where

$$
\Sigma_{2L} = -8S_L \frac{M}{Q} (2 - y) \sqrt{1 - y} z h_{1L}^{\perp(1)}(x) H_1^{\perp(1)}(z)
$$
\n(4)

is the $(1/Q)$ -order contribution from twist-two DF $h_{1L}^{\perp(1)}(x)$ and FF $H_1^{\perp(1)}$ $j_1^{\perp(1)}(z)$ arising due to intrinsic transverse momentum and

$$
\Sigma_{2T} = 2S_{Tx} \left(1 - y\right) z h_1(x) H_1^{\perp(1)}(z) \tag{5}
$$

is arising due to the small ($\sim (1/Q)$) transverse component of the target polarization (S_{Tx}) [[5,9\]](#page-5-0). Finally

$$
\Sigma_3 = 8S_L(1-y) z^2 h_{1L}^{\perp(1)}(x) H_1^{\perp(1)}(z). \tag{6}
$$

The weighted cross sections involve the p_T^2 (k_T^2) moment of the DF's (FF's), defined as

$$
h_{1L}^{\perp(1)}(x) \equiv \int d^2p_T \left(\frac{p_T^2}{2M^2}\right) h_{1L}^{\perp}(x, p_T^2),\tag{7}
$$

$$
H_1^{\perp(1)}(z) \equiv z^2 \int d^2k_T \left(\frac{k_T^2}{2M_h^2}\right) H_1^{\perp}(z, z^2 k_T^2). \tag{8}
$$

We note that $h_{1L}^{\perp}(x)$ and $h_1(x)$ describe the quark transverse spin distribution in the longitudinally and transversely polarized nucleon respectively, while $H_1^{\perp}(z)$ describes the analyzing power of transversely polarized quark fragmentation (Collins effect)[[10](#page-5-0)].

The single target-spin asymmetries for SIDIS on a longitudinally polarized target are defined as

$$
\langle \frac{|P_{hT}|}{M_h} \sin \phi_h \rangle \equiv \frac{\int d^2 P_{hT} \frac{|P_{hT}|}{M_h} \sin \phi_h \left(d\sigma^+ - d\sigma^- \right)}{\int d^2 P_{hT} \left(d\sigma^+ + d\sigma^- \right)},\tag{9}
$$

$$
\langle \frac{|P_{hT}|^2}{MM_h} \sin 2\phi_h \rangle \equiv \frac{\int d^2 P_{hT} \frac{|P_{hT}|^2}{MM_h} \sin 2\phi_h \left(d\sigma^+ - d\sigma^-\right)}{\int d^2 P_{hT} \left(d\sigma^+ + d\sigma^-\right)},\tag{10}
$$

where $+(-)$ denotes positive (negative) longitudinal polarization of the target. Using $\Sigma_{1,2,3}$ one can see that for both polarized and unpolarized lepton these asymmetries are given by

$$
\langle \frac{|P_{hT}|}{M_h} \sin \phi_h \rangle (x, y, z) = \frac{\Sigma_2(x, y, z)}{\Sigma_1(x, y, z)}
$$
(11)

$$
\langle \frac{|P_{hT}|^2}{MM_h} \sin 2\phi_h \rangle (x, y, z) = \frac{\Sigma_3(x, y, z)}{\Sigma_1(x, y, z)}.
$$
\n(12)

We use the non-relativistic approximation $h_1(x) = g_1(x)$, the upper limit from Soffer's inequality [\[11](#page-5-0)] $h_1(x) = (f_1(x) + g_1(x))/2$, and the relation between $h_{1L}^{\perp(1)}(x)$ and $h_1(x)$

Figure 2. The $A_{UL}^{\sin \phi_h}(x)$ asymmetry of π^{\pm} production. The continuous (π^+) and dashed (π^{-}) curves correspond to $M_C = 0.7$ GeV, $h_1 = g_1$; dotted (π^{+}) and dot-dashed (π^{+}) to $M_C = 0.3$ GeV, $h_1 = g_1$ and $M_C = 0.7$ GeV $h_1 = (f_1 + g_1)/2$, respectively.

[[6](#page-5-0)] obtained by neglecting the interaction dependent twist-three part of the DF and the term proportional to the current quark's mass:

$$
h_{1L}^{\perp(1)}(x) = -x^2 \int_x^1 dy \frac{h_1(y)}{y^2}.
$$
\n(13)

We took the parameterisations of DF's $f_1(x)$ and $g_1(x)$ from Ref. [\[12](#page-5-0)]. To calculate the T-odd FF $H_1^{\perp (1)}$ $1^{(1)}(z)$ we adopt the Collins parameterisation [[10](#page-5-0)] for the analyzing power of transversely polarized quark fragmentation

$$
A_C(z, k_T) \equiv \frac{|k_T|}{M_h} \frac{H_1^{\perp}(z, k_T^2)}{D_1(z, k_T^2)} = \frac{M_C |k_T|}{M_C^2 + k_T^2}
$$
(14)

and assume a Gaussian parameterisation of the unpolarized FF [\[8](#page-5-0)] with $\langle z^2 k_T^2 \rangle = b^2$ (in the numericalcalculations we use $b = 0.5$ GeV [[13](#page-5-0)]). For $D_1^{\pi^{\pm}}(z)$ we use the parameterisation from Ref.[[14](#page-5-0)].

The $A_{UL}^{\sin\phi_h}(x)$ asymmetry for π^{\pm} production on the proton target is obtained from the defined asymmetry (Eq.[\(11\)](#page-2-0)) by the relation $A_{UL}^{\sin \phi_h} \approx \frac{2M_h}{(P_{hT})}$ $\frac{2M_h}{\langle P_{hT} \rangle} \langle \frac{|P_{hT}|}{M_h}$ $\frac{P_{hT}}{M_h}$ sin ϕ_h and is presented in Fig. [2](#page-3-0) in comparison with preliminary HERMES data[[2\]](#page-5-0). The data corresponds to $Q^2 \geq 1$ GeV², $E_{\pi} \geq 4$ GeV, and the ranges $0.2 \leq z \leq 0.7, 0.2 \leq y \leq 0.8$. The theoretical curves are calculated by integrating over the same ranges with $\langle P_{hT} \rangle = 0.52$ GeV, $\langle P_{hT}^2 \rangle = 0.35 \text{ GeV}^2$. These average values of P_{hT} , P_{hT}^2 are obtained in mentioned kinematics assuming a Gaussian parameterisation of DF's and FF's with $a = 0.7$ GeV $(\langle p_T^2 \rangle = a^2)$ [\[13](#page-5-0)]. From Fig. [2](#page-3-0) one can see that a good agreement with HERMES data [\[2\]](#page-5-0) can be achieved by varying $h_1(x)$ and M_C . Note that the main effect comes from the Σ_{2L} term, the contribution of Σ_{2T} is about $20 \div 25\%$.

Figure 3. The ratio of the amplitudes of the $\sin 2\phi_h$ and $\sin \phi_h$ single target-spin asymmetries for π^+ production. The curves have the same notations as in the Fig. [2.](#page-3-0)

We calculate the $sin2\phi_h$ -weighted asymmetry in the same manner as well and show that the amplitude of the $sin2\phi_h$ modulation is about a factor of 2-3 smaller than that of the $sin\phi_h$ modulation (see Fig. 3) in the HERMES kinematics. Note that the ratio of these asymmetries is almost independent of the choice of $h_1(x)$ and M_C .

In conclusion, the $\sin \phi_h$ and $\sin 2\phi_h$ single target-spin asymmetries of SIDIS off longitudinally polarized protons related to the time reversal odd FF was investigated. It was shown that the main $(1/Q)$ -order contribution to the spin asymmetry arises from intrinsic k_T effects similar to the $\cos \phi_h$ asymmetry in unpolarized SIDIS. A good agreement with the HERMES data can be achieved using only the twist-2 DF's and FF's. The $(1/Q)^{0}$ order $sin2\phi_h$ asymmetry, in contrast to the naive expectations, is suppressed comparing to the $(1/Q)$ -order $sin\phi_h$ asymmetry at HERMES kinematics.

The authors would like to thank D. Boer, R. Jakob, and P. Mulders for useful discussions. The work of $(K.O)$ and $(H.A)$ was in part supported by the INTAS contributions (contract number 93-1827) from the European Union.

REFERENCES

- 1. D. Adams et al., Phys. Lett. B 264 (1991) 462; Phys. Rev. Lett. 77 (1996) 2626; B.E. Bonner et al., Phys. Rev. D 41 (1990) 13.
- 2. H.R. Avakian, Proceedings of workshop DIS'99, Zeuthen, 19-23 April 1999.
- 3. A. Bravar, Proceedings of workshop DIS'99, Zeuthen, 19-23 April 1999, Nucleon'99.
- 4. A.V. Efremov, O.G. Smirnova and L.G. Tkachev, [hep-ph/9812522;](http://arxiv.org/abs/hep-ph/9812522) A.V. Efremov, Proceedings of workshop DIS'99, Zeuthen, 19-23 April 1999.
- 5. A. Kotzinian, Nucl. Phys. B 441 (1995) 234.
- 6. P.J. Mulders, R.D. Tangerman, Nucl. Phys. B 461 (1996) 197.
- 7. R.N. Cahn Phys. Lett. B 78 (1978) 269; Phys. Rev. D 40 (1989) 3107.
- 8. A. Kotzinian, P.J. Mulders, Phys. Lett. B 406 (1997) 373; Phys. Rev. D 54 (1997) 1229.
- 9. K.A. Oganessyan, A.R. Avakian, N. Bianchi, A.M. Kotzinian, [hep-ph/9808368](http://arxiv.org/abs/hep-ph/9808368); Proceedings of workshop Baryons'98, Bonn, Sept. 22-26, 1998.
- 10. J. Collins, Nucl. Phys. B 396 (1993 161.
- 11. J. Soffer, Phys. Rev. Lett. 74 (1995 1292.
- 12. S. Brodsky, M. Burkardt, I. Schmidt, Nucl. Phys. B 441 (1995) 197.
- 13. E665 Collaboration, M.R. Adams et al., Phys. Rev. D 48 (1993) 5057.
- 14. E. Reya, Phys. Rep. 69 (1981) 195.