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Single target-spin asymmetries in semi-inclusive pion electroproduction

on longitudinally polarized protons∗
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We evaluate the single target-spin sinφh and sin 2φh azimuthal asymmetries in the semi-
inclusive deep inelastic lepton scattering off longitudinally polarized proton target under HER-
MES kinematic conditions. A good agreement with the HERMES data can be achieved using
only the twist-2 distribution and fragmentation functions.

Significant single-spin asymmetries have been observed in experiments with transversely
polarized proton and anti-proton beams [1]. Recently new experimental results on az-
imuthal asymmetries became available. Specifically, the first measurements of single
target-spin azimuthal asymmetries of pion production in semi-inclusive deep inelastic
scattering (SIDIS) of leptons off a longitudinally polarized target at HERMES [2] and off
a transversely polarized target at SMC [3], and the observation of the azimuthal correla-
tions for particles produced from opposite jets in Z decay at DELPHI [4].

In this note we present estimates of the single spin azimuthal asymmetry in the SIDIS on
a longitudinally polarized nucleon target for the HERMES kinematic conditions. Our ap-
proach is based on the parton model description of polarized SIDIS [5]. The cross-section
contains the (1/Q)0-order terms coming from leading dynamical twist-two distribution
and fragmentation functions (DF’s and FF’s) as well as (1/Q)-order kinematic twist-
three terms arising due to the intrinsic transverse momentum of the quark in the nucleon.
We will neglect the (1/Q)-order contributions of the higher twist DF’s and FF’s obtained
in [6]. Thus, our approach is similar to that of [7] in describing the cos φh asymmetry in
unpolarized SIDIS.

Let k1 (k2) be the initial (final) momentum of the incoming (outgoing) charged lepton,
Q2 = −q2, q = k1 − k2 – the momentum of the virtual photon, P and Ph (M and
Mh) – the target and final hadron momentum (mass), x = q2/2(Pq), y = (Pq)/(Pk1),
z = (PPh)/(Pq), PhT (k1T ) – the hadron (lepton) transverse with respect to virtual
photon momentum direction and φh – the azimuthal angle between PhT and k1T around
the virtual photon direction. Note that the azimuthal angle of the transverse (with respect
to the virtual photon) component of the target polarization, φS, is equal to 0 (π) for the
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target polarized parallel (antiparallel) to the beam (Fig. 1).
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Figure 1. The definition of the azimuthal angle φh and the target polarization components
in virtual photon frame.

We use the approach developed in [8] and consider the cross-section integrated with
different weights depending on the final hadron transverse momenta wi(PhT ) 4:

Σi =
Q2y

2πα2

∫
d2PhT wi(PhT ) dσ, (1)

with w1(PhT ) = 1, w2(PhT ) = |PhT | sin φh/Mh and w3(PhT ) = |PhT |2 sin 2φh/2MMh.
Considering only the twist-two contributions, we have:

Σ1 = (1 + (1− y)2) f1(x)D1(z), (2)

where f1(x) and D1(z) are the usual unpolarized DF’s and FF’s. Moreover

Σ2 = Σ2L + Σ2T , (3)

4More details can be found in [9].
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where

Σ2L = −8SL
M

Q
(2− y)

√
1− y zh

⊥(1)
1L (x)H

⊥(1)
1 (z) (4)

is the (1/Q)-order contribution from twist-two DF h
⊥(1)
1L (x) and FF H

⊥(1)
1 (z) arising due

to intrinsic transverse momentum and

Σ2T = 2ST x (1− y) zh1(x)H
⊥(1)
1 (z) (5)

is arising due to the small (∼ (1/Q)) transverse component of the target polarization
(ST x) [5,9]. Finally

Σ3 = 8SL(1− y) z2h
⊥(1)
1L (x)H

⊥(1)
1 (z). (6)

The weighted cross sections involve the p2
T (k2

T ) moment of the DF’s (FF’s), defined as

h
⊥(1)
1L (x) ≡

∫
d2pT

(
p2

T

2M2

)
h⊥

1L(x, p2
T ), (7)

H
⊥(1)
1 (z) ≡ z2

∫
d2kT

(
k2

T

2M2
h

)
H⊥

1 (z, z2k2
T ). (8)

We note that h⊥
1L(x) and h1(x) describe the quark transverse spin distribution in the

longitudinally and transversely polarized nucleon respectively, while H⊥
1 (z) describes the

analyzing power of transversely polarized quark fragmentation (Collins effect) [10].
The single target-spin asymmetries for SIDIS on a longitudinally polarized target are

defined as

〈 |PhT |
Mh

sin φh〉 ≡
∫

d2PhT
|PhT |
Mh

sin φh (dσ+ − dσ−)∫
d2PhT (dσ+ + dσ−)

, (9)

〈 |PhT |2
MMh

sin 2φh〉 ≡
∫

d2PhT
|PhT |2
MMh

sin 2φh (dσ+ − dσ−)∫
d2PhT (dσ+ + dσ−)

, (10)

where +(−) denotes positive (negative) longitudinal polarization of the target. Using
Σ1,2,3 one can see that for both polarized and unpolarized lepton these asymmetries are
given by

〈 |PhT |
Mh

sin φh〉(x, y, z) =
Σ2(x, y, z)

Σ1(x, y, z)
(11)

〈 |PhT |2
MMh

sin 2φh〉(x, y, z) =
Σ3(x, y, z)

Σ1(x, y, z)
. (12)

We use the non-relativistic approximation h1(x) = g1(x), the upper limit from Soffer’s

inequality [11] h1(x) = (f1(x) + g1(x))/2, and the relation between h
⊥(1)
1L (x) and h1(x)
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Figure 2. The Asinφh
UL (x) asymmetry of π± production. The continuous (π+) and dashed

(π−) curves correspond to MC = 0.7 GeV, h1 = g1; dotted (π+) and dot-dashed (π+) to
MC = 0.3 GeV, h1 = g1 and MC = 0.7GeV h1 = (f1 + g1)/2, respectively.

[6] obtained by neglecting the interaction dependent twist-three part of the DF and the
term proportional to the current quark’s mass:

h
⊥(1)
1L (x) = −x2

∫ 1

x
dy

h1(y)

y2
. (13)

We took the parameterisations of DF’s f1(x) and g1(x) from Ref. [12]. To calculate the

T-odd FF H
⊥(1)
1 (z) we adopt the Collins parameterisation [10] for the analyzing power of

transversely polarized quark fragmentation

AC(z, kT ) ≡ |kT |
Mh

H⊥
1 (z, k2

T )

D1(z, k2
T )

=
MC |kT |
M2

C + k2
T

(14)

and assume a Gaussian parameterisation of the unpolarized FF [8] with 〈z2k2
T 〉 = b2 (in the

numerical calculations we use b = 0.5 GeV [13]). For Dπ±
1 (z) we use the parameterisation

from Ref. [14].
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The Asinφh
UL (x) asymmetry for π± production on the proton target is obtained from the

defined asymmetry (Eq.(11)) by the relation Asinφh
UL ≈ 2Mh

〈PhT 〉〈
|PhT |
Mh

sin φh〉 and is presented

in Fig. 2 in comparison with preliminary HERMES data [2]. The data corresponds to
Q2 ≥ 1 GeV2, Eπ ≥ 4 GeV, and the ranges 0.2 ≤ z ≤ 0.7, 0.2 ≤ y ≤ 0.8. The
theoretical curves are calculated by integrating over the same ranges with 〈PhT 〉 = 0.52
GeV, 〈P 2

hT 〉 = 0.35 GeV2. These average values of PhT , P 2
hT are obtained in mentioned

kinematics assuming a Gaussian parameterisation of DF’s and FF’s with a = 0.7 GeV
(〈p2

T 〉 = a2) [13]. From Fig. 2 one can see that a good agreement with HERMES data [2]
can be achieved by varying h1(x) and MC . Note that the main effect comes from the Σ2L

term, the contribution of Σ2T is about 20÷ 25%.
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Figure 3. The ratio of the amplitudes of the sin 2φh and sin φh single target-spin asym-
metries for π+ production. The curves have the same notations as in the Fig. 2.

We calculate the sin2φh-weighted asymmetry in the same manner as well and show
that the amplitude of the sin2φh modulation is about a factor of 2-3 smaller than that
of the sinφh modulation (see Fig. 3) in the HERMES kinematics. Note that the ratio of
these asymmetries is almost independent of the choice of h1(x) and MC .

In conclusion, the sin φh and sin 2φh single target-spin asymmetries of SIDIS off longi-
tudinally polarized protons related to the time reversal odd FF was investigated. It was
shown that the main (1/Q)-order contribution to the spin asymmetry arises from intrinsic
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kT effects similar to the cosφh asymmetry in unpolarized SIDIS. A good agreement with
the HERMES data can be achieved using only the twist-2 DF’s and FF’s. The (1/Q)0-
order sin2φh asymmetry, in contrast to the naive expectations, is suppressed comparing
to the (1/Q)-order sinφh asymmetry at HERMES kinematics.
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