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For a class of analytical parametrizations of the freeze-
out state of relativistic heavy ion collisions, we perform a
simultaneous analysis of the single-particle m⊥-spectra and
two-particle Bose-Einstein correlations measured in central
Pb+Pb collisions at the CERN SPS. The analysis includes a
full model parameter scan with χ2 confidence levels. A com-
parison of different transverse density profiles for the particle
emission region allows for a quantitative discussion of possible
model dependencies of the results. Our fit results suggest a
low thermal freeze-out temperature T ≈ 95 ± 15MeV and a
large average transverse flow velocity v̄⊥ ≈ 0.55±0.07. More-
over, the fit favours a box-shaped transverse density profile
over a Gaussian one. We discuss the origins and the conse-
quences of these results in detail. In order to reproduce the
measured pion multiplicity our model requires a positive pion
chemical potential. A study of the pion phase-space density
indicates µπ ≈ 60 MeV for T = 100 MeV.

I. INTRODUCTION

The space-time analysis of hadronic one- and two-
particle spectra measured in relativistic heavy ion col-
lisions has attracted much attention in recent years. Via
the reconstruction of the hadronic phase-space distribu-
tion at freeze-out, this method can provide detailed geo-
metrical and dynamical information about the last stage
of the collision. The ultimate goal of the experimental
relativistic heavy ion program is to produce and test the
dense early stage of the collision in which quarks and
gluons are the relevant degrees of freedom and a quark-
gluon-plasma is expected (for an up-to-date overview see
[1,2]). However, only the hadronized remnants of this
state are experimentally accessible. Characterizing their
spatial and dynamical distribution, a particle interferom-
etry based space-time analysis can provide estimates of
the phase-space density attained in the collision and it
can establish an experimentally determined endpoint for
microscopic simulations of the complicated multiparticle
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dynamics. This makes it a valuable tool in the search for
the quark-gluon-plasma.

One of the main motivations for space-time analyses in
recent years is the discovery that HBT (Hanbury Brown
and Twiss) particle interferometry allows to disentangle
between random and directed dynamical components in
the collision [3-8]. Specifically, in the context of hydrody-
namic parametrizations which provide a very convenient
characterization of the freeze-out region, the one-particle
spectra are determined by an effective blue-shifted tem-
perature from which temperature and flow effects can-
not be separated unambiguously [9]. On the other hand,
the M⊥-dependence of the transverse correlation radii in-
creases with transverse flow but decreases with stronger
thermal smearing [10]. By combining both observables
the ambiguity between temperature and flow can be re-
moved.

Knowledge of the magnitude of the transverse flow is
crucial for a dynamical picture of the transverse expan-
sion of the collision system and for a dynamical back-
extrapolation into the hot and dense early stage of the
collision. With this motivation, there have been several
recent discussions about disentangling temperature and
flow effects. Except for the recent analysis in [11] most
of these discussions are published in conference proceed-
ings and reviews [7,8,12-14], and they are mainly based
on preliminary data. None of them provides a full model
parameter scan with χ2 confidence levels for the two-
particle spectra, and none of them makes quantitative
statements about the model-dependence of the conclu-
sions reached. However, both these points are very im-
portant, since one may wonder, e.g., to what extent the
main conclusions, a relatively low temperature and high
transverse flow velocity, are subject to model-dependent
details of the parametrization. The present work ad-
dresses this gap in the literature with an extensive model
study.

Three collaborations measured and published data on
Bose-Einstein correlations for 158 AGeV/c Pb+Pb colli-
sions at the CERN SPS: WA98 [15], NA44 [16] and NA49
[11]. Due to their small acceptance, NA44 can only deter-
mine particle correlations in two transverse momentum
bins which moreover correspond to slightly different ra-
pidities. Such data are not well suited for a detailed ana-
lysis where the M⊥-dependence of the correlation radii
plays a crucial role. The situation is somewhat better for
the recently presented WA98 data [15] but these were not
yet available at the time of the present analysis. Most
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suited for our analysis tool is a large acceptance exper-
iment like NA49 which covers almost the whole forward
rapidity region. Their published data are, however, given
only in the YKP parametrization [11]. Although in many
situations its parameters have the most straightforward
physical interpretation [17], this parametrization can be
ill-defined in some kinematic regions [18,19], and a cross-
check with Cartesian (Pratt-Bertsch) correlation radii is
hence necessary. The NA49 experiment has the unique
capability of cross-checking experimental results from dif-
ferent detector components with overlapping acceptance.
At the moment, the remaining differences between the
different detectors are still larger than the published er-
ror bars [20]. We address these subtleties in Section II
where we discuss in detail the data used in our analysis.

The class of fireball models used for our analysis was
described in detail elsewhere (for recent reviews see e.g.
[12,13]). To get an idea of the degree of model depen-
dence of our final conclusions we here investigate two dif-
ferent transverse density distributions, a box-shaped and
a Gaussian profile. The relevant model parameters are
shortly introduced in Section III. Up to now our analysis
is restricted to the transverse momentum dependence in
the particular rapidity bin (3.9 < Y < 4.4) for which a
complete set of HBT parameters was published in [11].
A realistic description of the rapidity dependence of the
transverse one-particle spectra would require a refined
model [5,21,22]. The results of the fit, as well as related
technical details, are given in Section IV.

As an application of these results we discuss in Sec-
tion V the average pion phase-space density at freeze-out.
Bertsch [23] pointed out that knowledge of the single-
particle spectrum and Bose-Einstein correlations allows
for a model-independent extraction of this quantity. The
reason is that absolutely normalized single-particle spec-
tra carry information about the particle density in mo-
mentum space while the width of the distribution in con-
figuration space can be extracted from correlation stud-
ies. We extract this model-independent quantity from
the data and compare it with the prediction of our model;
in this way we determine the value of the pion chem-
ical potential needed to reproduce the measured pion
yields. This is an interesting quantity since a large value
of µπ would indicate an “overpopulation” of phase-space
and could indicate the onset of multiparticle effects (e.g.
stimulated emission or a pion laser).

Section VI contains our conclusions. Technical details
are deferred to three Appendices.

II. THE DATA

Data on the Bose-Einstein correlation radii as func-
tions of K⊥ from the 5% most central Pb+Pb collisions
at 158 A GeV/c were published by the NA49 collabo-
ration [11] for the rapidity window Y ∈ (3.9, 4.4) (i.e.
1 ≤ YCM ≤ 1.5). Our analysis will focus on these data.

The single-particle p⊥-distributions of negatively char-
ged hadrons (h−) are taken from [24]. At the time of our
analysis, spectra of identified pions were not yet available
for the above rapidity window. The differences between
h− and identified pion spectra (from negative kaons and
a few antiprotons) are, however, small since most nega-
tively charged hadrons are pions. This is good since these
differences will have to be modelled and thus introduce
(small) systematic uncertainties. The rapidity binning
of the h− data in [24] is slightly different from that of
the correlation analysis of [11]. For h− we use the bin
4.15 < y < 4.65 which has the largest overlap with that
of the correlation data. This is an excellent approxima-
tion since the p⊥-spectra vary only weakly with rapidity
in this region [24].

For wide bins the question arises where exactly the
data points should be placed when comparing them to
model predictions. Usually one puts them in the middle
of the bins. This may, however, lead to systematic errors
[25] if the measured distribution is not flat. Our proce-
dure “where to stick the data point” is state of the art
[25]: if the measured distribution is well parameterized
by a function g(x), then the appropriate position of the
data point corresponding to a bin of width ∆x between
x1 and x2 is obtained as

xbin = g−1

(
1

∆x

∫ x2

x1

g(x) dx

)
, (2.1)

where g−1 is the inverse function of g. The position of
the data points of the single-particle spectrum in rapidity
is calculated from this equation using for g(x) the distri-
bution (A1) with ∆y = 1.4 [26,27]; to get the appropri-
ate positions in transverse momentum, the parametriza-
tion (A4) with Tinv = 185 MeV (inferred from the mea-
sured average transverse momentum and the fact that
the observed p⊥-spectrum is very well parameterized by
an exponential with inverse slope Tinv) is used for g(x).
Note that the width of the p⊥ bins in the used data was
100 MeV/c, with the first bin starting at 50 MeV/c. For
these data we have explicitly checked that taking the data
points in the centres of the bins or according to the above
described procedure does not lead to an observable dif-
ference in the fit results.

The HBT two-particle correlation radii published in
[11] for the rapidity window 1 ≤ YCM ≤ 1.5 have sev-
eral shortcomings which can only be resolved in future
experimental analyses: First, the correlation radii are
only given for the YKP parametrization. Their statis-
tical uncertainties are systematically larger than for the
Cartesian parametrization [28,29], and the data shown
in [11] do not allow for the important cross-check [17-19]
with the Cartesian parameterization. This is an impor-
tant issue since the YKP fit was recently found to be
problematic [18,19]. Second, Ref. [11] contains only data
taken in the Main Time Projection Chamber (MTPC),
in spite of the observed systematic differences between
radii extracted from the MTPC [28] and the VTPC data
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[29] (of the order of 0.5 fm [20]). The error bars in [11]
do not include this systematic uncertainty which is only
roughly estimated to be about 15%.

To address these difficulties we based our analysis on
the three accessible, but so far unpublished complete data
sets from the NA49 experiment: h+h+ and h−h− corre-
lations from the VTPC [29] and h−h− correlations from
the MTPC [28]. The reported errors are the output of the
MINUIT fitting routine which is known to underestimate
errors [30]. For our analysis we considered these three
data sets as independent measurements and took their
average, with correspondingly increased error bars which
now also include the systematic deviations between these
measurement. Since both in theory and experiment the
squared correlation radii and the YK velocity are the di-
rectly determined fit parameters [17,31], we average over
and fit to those.

The obtained fit parameters for the Cartesian and
YKP parametrizations are summarized in Tables C 2 and
C 2, respectively. They are also displayed in Figs. 1 and
2. The minor difference between the rapidity bins of the
VTPC analysis [29] (3.9 < Y < 4.4) and the MTPC
analysis [28] (4 < Y < 4.5) is irrelevant and has been
neglected. The binning in transverse momentum differs
slightly, too. Only four of the total number of five K⊥
bins could be taken into account in the averaging proce-
dure, and for the fourth bin a slight size difference be-
tween [28] and [29] (see Table C 2) had to be neglected.
To position the data points in the bins we assumed here
that their distribution g(x) inside the bin can be lin-
earized. Then their position in the bin [x1, x2] can be
calculated from [25]

xbin =

∫ x2

x1
x g(x) dx∫ x2

x1
g(x) dx

. (2.2)

Inserting for the function g(x) the distribution %Y
2 (Y )

from equation (A3) with ∆y = 1.4 into (2.2), the position
of the data points in the pair rapidity Y is obtained:
Y bin

CM
= 1.22. The values of Kbin

⊥ for the different K⊥-
bins are calculated using for g(x) the function %⊥2 (K⊥)
from equation (A9), again with Tinv = 185 MeV. The
resulting values are displayed in Tables C2 and C 2. We
observed [19] that slightly different (worse) model fits are
obtained if the data points are placed at the bin centres
rather than at the positions calculated from (2.2).

It remains to check the compatibility of the Cartesian
and YKP correlation parameters in order to ascertain the
validity of the YKP data. To this end the Cartesian radii
were calculated from the YKP parameters and vice versa
via cross-check relations published in [17,18]. The result-
ing calculated radius parameters are shown in Figs. 1 and
2 by gray dashed symbols. The errors were propagated
to the calculated radii via

σi =

√√√√∑
j

(
∂R2

i

∂R′2
j

)2

σ′2j , (2.3)

where σi is the calculated error of the Cartesian (YKP)
correlation parameter R2

i and σ′j the “measured” error
of the YKP (Cartesian) parameter R′2

j . (Here the notion
‘YKP correlation parameter’ includes radius parameters
as well as the YK velocity vYK .) Note that the non-
diagonal terms of the error matrix are not known and
had to be neglected. In most cases the calculated pa-
rameters show larger errors than the directly measured
ones. This might improve if non-diagonal error matrix
elements could be taken into account in Eq. (2.3).

Figs. 1 and 2 show that the YKP and Cartesian data
are “on average” consistent [32]. In view of the known
fragility of YKP fits this is an important and non-trivial
result. However, it was recently argued [18,19] that the
YKP parametrization is quite subtle and can become ill-
defined for certain (even realistic) sources. The only way
to test this possibility in experiment is to calculate the
YKP parameters from the Cartesian ones and check that
the resulting values are real. Since experimental Carte-
sian radius parameters have a finite measurement error, it
is not sufficient to perform this consistency check only for
their average values; rather, all parameter values within
the error interval should be checked. When doing so we
found problems with the definition of the YKP param-
eters inside the error intervals for the third and fourth
K⊥ bins. These may be related to our further observation
[19] that no good model fit was possible starting from the
YKP parameters, and that the fits tended to drift into
strange parameter regions. This emphasizes the future
need for an explicit cross-check between Cartesian and
YKP parameter fits directly on the experimental level,
including error propagation with the complete error ma-
trix. Due to our problems with the measured YKP pa-
rameters, the model fits presented here are based on an
analysis of the Cartesian correlation radii.

III. THE MODEL

A. The emission function

Our model analysis is based on the widely used emis-
sion function [3,4,31,33-35]

S(x, K) d4x =
M⊥ cosh(Y − η)

(2π)3
exp

(
−K · u(x)

T
+

µ

T

)
×G(r) exp

(
− (η − η0)2

2(∆η)2

)
dη r dr dϕ

× τ dτ√
2π(∆τ)2

exp
(
− (τ − τ0)2

2(∆τ)2

)
. (3.1)

Here, the pair momentum K is parameterized in terms
of the transverse mass M⊥ =

√
K2
⊥ + m2, longitudinal

rapidity Y , and the transverse momentum K⊥

K = (M⊥ coshY, K⊥, 0, M⊥ sinh Y ) . (3.2)
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We use here the usual coordinate system with x-axis di-
rected parallel to K⊥. In configuration space, we use the
polar coordinates r and ϕ for the transverse directions,
a longitudinal proper time τ =

√
t2 − z2 and space-time

rapidity η = 1
2 ln t+z

t−z .
The η-profile in the model is chosen to be a Gaus-

sian peaked at η0 with width ∆η. In this way η0 de-
termines the centre of mass (CMS) rapidity. Since we
focus on a single rapidity bin and work in the LCMS,
we set η0 = −1.22 (see previous Section) and ∆η = 1.3.
The latter value is obtained from a comparison with the
single-particle rapidity distribution.

Freeze-out proper times are distributed according to
a Gaussian of width ∆τ centred at τ0. This allows for
freeze-out of particles during an extended time period
given by ∆τ .

The transverse geometry is specified by the distribu-
tion G(r) in (3.1). As only azimuthally symmetric fire-
balls are considered, this function does not depend on ϕ.
In our analysis two particular profiles will be assumed: a
Gaussian one

G(r) = exp
(
− r2

2R2
G

)
, (3.3)

and a box-shaped one

G(r) = θ(RB − r) . (3.4)

The fireball at freeze-out is assumed to be in local ther-
mal equilibrium at temperature T . This is modelled by
the Boltzmann factor in (3.1). The chemical potential µ
in its argument has no effect on the correlation radii and
only affects the normalization of the single particle spec-
trum. The argument K·u(x) allows for longitudinal and
transverse expansion of the fireball through the collective
four-velocity field u(x):

u(x) = (cosh ηt cosh η, cosϕ sinh ηt, sinϕ sinh ηt,

cosh ηt sinh η) . (3.5)

The longitudinal expansion rapidity ηl(x) has here been
identified with the space-time rapidity η. This leads to
a longitudinal expansion velocity vlong(z, t) = tanh η =
z/t, corresponding to Bjorken-type boost-invariant ex-
pansion [36]. The transverse expansion is parameterized
by the transverse flow rapidity ηt(x). It is assumed to in-
crease linearly with the distance from the collision axis,

ηt(x) = ηf
r

rrms
. (3.6)

The scaling factor ηf specifies the value of the transverse
flow rapidity at the transverse rms radius, given by

rrms =
√

2RG (3.7)

for the Gaussian transverse distribution and by

rrms =
RB√

2
(3.8)

for the box-shaped one. From these relations we expect
the two fit parameters in (3.3) and (3.4) to satisfy ap-
proximately RB ≈ 2 RG.

In the literature the transverse flow is often quoted in
terms of the average transverse expansion velocity v̄⊥

v̄⊥ =

∫∞
0

r dr tanh ηt(r)G(r)∫∞
0

r dr G(r)
. (3.9)

Its value is roughly given by the radial velocity at
the transverse rms radius, v⊥(rrms) ' tanh ηf ; look-
ing more closely, it is slightly smaller: for ηf=0.6 one
finds v⊥(rrms)≈0.54 and v̄⊥=0.50 (0.46) for the box-like
(Gaussian) transverse density profile.

Our calculation of the single-particle spectra from
(3.1) includes contributions from resonance decays as de-
scribed in [9,37]. This is crucial for a correct description
of the yield and shape of the spectra. We include all de-
cays with branching ratios above 1% from mesons with
masses up to 1020 MeV/c2 and from baryons with masses
up to 1400 MeV/c2. For decay chains, the product of the
branching ratios is required to be larger than 1%. For
baryons the chemical potential µB(T ) was parameterized
according to (B1). Strange particles acquire a chemi-
cal potential µS(T ) determined by the condition (B2) of
strangeness neutrality. Finally, contributions from nega-
tive kaons and antiprotons were included in the calcula-
tion of the h− spectrum.

The role of resonance decay contributions to the HBT
radius parameters is known to be much less important
[37]. Our calculation of the correlation radii will thus
only include direct pions. This is an essential techni-
cal simplification: the additional integrals from the res-
onance decay phase space would have increased the nu-
merical task from calculating a 2-dimensional integral to
calculating a 5-dimensional (for two-particle decays) or
6-dimensional one (for three-particle decays). This very
time consuming calculation was performed in model stud-
ies [37] where the correlator was evaluated for only a
few characteristic sets of model parameters. However,
in a simultaneous multi-parameter fit, in which the fit
routine calls the two-particle correlator approximately
50-100 times for thousands of different model parameter
combinations, it cannot be done.

We finally remark that the model (3.1) is customarily
used with a Boltzmann distribution rather than a Bose-
Einstein one, since this greatly simplifies the analytical
and numerical analysis. The resulting differences are usu-
ally small. If the pions develop a positive chemical poten-
tial, however, this visibly affects the shape of the single
particle spectra; for this reason we use, in fact, a Bose-
Einstein distribution to calculate the pion multiplicities
and the single-particle spectra of direct pions (see Ap-
pendix B and C). For the heavier resonances the Boltz-
mann approximation is excellent. For technical reasons
we also use the Boltzmann approximation in the calcula-
tion of the correlation radii, in line with the much larger
systematic error of the corresponding available data.
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B. Basic relations

We shortly recall how the emission function S(x, K)
is related with the observables to be calculated. More
details can be found e.g. in [12].

The single-particle spectrum is obtained from

Ep
dN

d3p
= P1(p) =

∫
d4xS(x, p) . (3.10)

For the two-particle correlations, we used the Cartesian
parametrization:

C(q, K)− 1 = exp
[−q2

oR2
o(K)− q2

sR2
s(K)

−q2
l R2

l (K)− 2qoqlR
2
ol(K)

]
, (3.11)

where the qi are the components of the momentum differ-
ence in the out-side-long coordinate system and K stands
for the average pair momentum. The correlation radii are
obtained from the emission function via

R2
s = 〈ỹ2〉 , (3.12a)

R2
o = 〈(x̃− β⊥t̃)2〉 , (3.12b)

R2
l = 〈(z̃ − βl t̃)2〉 , (3.12c)

R2
ol = 〈(x̃− β⊥t̃)(z̃ − βlt̃)〉 . (3.12d)

Here

x̃µ = xµ − x̄µ , x̄µ(K) = 〈xµ〉 , (3.13)

and

〈f(x)〉(K) =
∫

d4x f(x)S(x, K)∫
d4x S(x, K)

. (3.14)

In our calculations all integrations were performed nu-
merically. This distinguishes our work from Ref. [14]
where analytic approximations were used instead. For
sources with strong transverse flow (as will be the case
here) the analytical approximations for the correlation
radii may become problematic [33,34,38]. Also, it is not
easy to capture the intricate effects of resonance decay
kinematics on the single-particle spectra with simple ana-
lytical expressions as those used in [14].

IV. THE FIT

A. Single-particle p⊥-spectrum

The first step is to fit the h− single-particle p⊥-
spectrum with the model (3.1). Resonance decay con-
tributions are treated as described in Sec. III A. The
geometrical model parameters ∆η, RB (RG), τ0, ∆τ are
known to only affect the absolute normalization of the
single-particle spectrum, but not its shape [9,12]. For
fixed transverse density and flow profiles, the spectral

shape is completely determined by the temperature T
and the transverse flow strength ηf .

The fit to the spectrum was performed with the CERN
package MINUIT [39], using for the calculation of (3.10)
(see Appendix B) a routine described in [37]. The
data were compared with the y-integrated m⊥-spectrum
rather than with the spectrum at a fixed value of y. Since
the y-integration can be done analytically and removes
the dependence on the longitudinal kinematic limits for
resonance decays, the former requires much less computa-
tion time. The differences are very small since the m⊥-
spectra obtained from (3.1) are almost y-independent,
except for very forward/backward rapidities.

The resulting χ2 contour plots in T and ηf are shown
in Figs. 3 (box-shaped transverse geometric profile) and
4 (Gaussian profile). For comparison the average trans-
verse expansion velocity v̄⊥ is given on the right ordi-
nates of these Figures. For their calculation the routine
was driven through the whole T -ηf domain covered by
the Figures, and in each point the normalization of the
spectrum was fitted as a third parameter. One finds a
clear χ2 “valley” pointing from the upper left to the lower
right corner, reflecting the anticorrelation between T and
ηf in the m⊥-slope. The indicated confidence levels re-
sult from a χ2-distribution with 16 degrees of freedom
(19 data points minus 3 fit parameters) [40].

The two panels of Fig. 3 show the effects of including
the K− and p̄ contributions in the negative hadron spec-
tra – the upper panel includes only negative pions (in-
cluding all resonance decays). At low temperature the
fit results are nearly identical because the K− and p̄
contributions are strongly suppressed by their masses
and by the large baryon chemical potential (at T=80
MeV we have µB ≈ 430MeV), but at higher tempera-
tures their inclusion reduces appreciably the amount of
transverse flow needed to fit the measured slope. Our
results differ in two points from those published in [7]:
(i) We include nonzero baryon and strangeness chemical
potentials. This increases the decay contributions from
baryon resonances, making the spectra steeper and thus
requiring more transverse flow to reproduce the measured
slope. Compared to the case of vanishing chemical po-
tentials this shifts the “χ2 valley” in Fig. 3a upwards by
≈ 0.05 c (somewhat less at low T and more for higher
T ). (ii) We include contributions from K− and p̄. This
flattens the h−-spectrum further because these heavier
particles are more strongly affected by transverse flow.
To fit a given spectral slope, lower values of ηf are thus
needed at given T . The two effects (i) and (ii) are seen
to partially cancel each other.

A comparison of Figs. 3 and 4 gives a feeling for the
model-dependence of the fit resulting from two different
choices for the transverse density profile. Since at fixed
ηf they lead to different average transverse flow veloci-
ties v̄⊥ (the quantity which determines the blueshift of
the spectral slope), one should use the labelling on the
r.h.s. of these Figures for comparison. One sees that for
a Gaussian density profile slightly smaller values for v̄⊥
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are needed to account for the measured slope. The rea-
son is that superimposing a Gaussian distribution G(r)
with a monotonically increasing transverse flow profile,
a significant part of the high-p⊥ part of the spectrum is
obtained from contributions at large transverse distances
r > RG in the Gaussian tails. A box profile does not
allow for emission from distances r > RB and thus re-
quires slightly larger values for v̄⊥ to account for the same
spectra.

Some access to the shape of the transverse density
profile is possible through two-particle correlations (see
Sec. IVB), but limited statistics and other uncertainties
leave some room for interpretation. The differences be-
tween Figs. 3 and 4 should thus be mainly taken as an
estimate for the systematic model uncertainties in the fi-
nally extracted values for T and v̄⊥. That they are small
for the single-particle fits is certainly gratifying.

B. Two-particle correlations

The correlation radii summarized in Table C 2 were fit-
ted with the CERN package MINUIT [39], using for the
model calculation a routine which computes the correla-
tion radii from (3.12). We scanned the whole T -ηf do-
main as before, performing in each point a 3-parameter fit
to find the best values of RB (RG), τ0, and ∆τ . ∆η = 1.3
was always kept fixed, see Sec. III.

The results of these fits, superimposed on the fit of the
single-particle spectra, are shown in Figs. 5 (box-profile)
and 6 (Gaussian profile). The contours correspond to a
χ2-distribution of 11 degrees of freedom (16 data points
minus 5 model parameters). These results will be fur-
ther discussed in Sec. IVD. Here we only observe that
the HBT radii indeed allow to disentangle the ambiguity
between temperature and transverse flow (although the
uncertainties are still significant). The box-shaped trans-
verse geometric profile seems to be favoured by the fit,
although limited statistics does not allow to rule out a
Gaussian shape. Independent of the choice of the trans-
verse density profile we can, however, safely conclude that
the data require strong transverse flow with v̄⊥ > 0.3.
The best fits favour low freeze-out temperatures between
80 and 110 MeV and large average transverse expansion
velocities between 0.47 c to 0.62 c (for the box model).

On the other hand, the “χ2 valley” defined by the cor-
relation radii is clearly seen to deviate from the simple
dependence on ηf and T which one obtains in analytical
approximation for Gaussian transverse density profiles
[35,41]:

R2
s(M⊥) ≈ R2

G

(
1 +

η2
f

2T
M⊥

)−1

. (4.1)

Analyses employing this relation (e.g. [14,11]) should
therefore be taken with some caution.

C. Total yield

Our fit determines for each combination (T, ηf ) of tem-
perature and transverse flow the remaining model para-
meters. This allows for the calculation of the total pion
multiplicity by integrating the model emission function
over the whole phase-space. The corresponding formu-
lae are derived in Appendix C. We recall that for this
calculation we use a Bose-Einstein distribution for the
direct pions and that resonance decay contributions are
included.

The resulting π− multiplicities (including pions from
resonance decays) are shown in Fig. 7 for both box-like
and Gaussian transverse density profiles. At very low
temperatures (up to 100 MeV) the total pion multiplicity
is dominated by directly produced pions. With increasing
temperature the fraction of pions from resonance decays
grows rapidly. For the model with a box-shaped density
profile the multiplicity grows faster with temperature; for
ηf = 0 this model produces (in Boltzmann approxima-
tion) twice as many pions as a Gaussian model whith
the same transverse rms radius (i.e. with RG = RB/2).
This is due to the larger covariant volume occupied by
the box-shaped model.

The experimentally measured negative hadron mul-
tiplicity 715 ± 30 [26,27] is indicated by thick contour
lines. Clearly, these “bands” lie far outside the regions of
(T, ηf ) favoured by the fit to the spectrum and correla-
tion radii (cf. Figs. 5 and 6). They tend to favour much
higher temperatures. Again, the model with a box-like
density profile is favored since it minimizes this discre-
pancy. Nevertheless, a non-zero pion chemical potential
must be introduced in both models for a correct repro-
duction of the measured multiplicity. This question is
studied in more detail in Sec. V.

D. Results and discussion

In order to obtain a more direct picture of the quality
of the above fits, we selected three sets of fit parame-
ters for each of the two models (Gaussian (g1, g2, g3)
and box-shaped (b1, b2, b3)), indicated in Figs. 5 and 6.
The corresponding complete parameter sets are given in
Table III which also shows the predicted total π− multi-
plicities (including resonance decays) in each case.

The quality of the fits b1 and g1 to the measured single-
particle m⊥-spectrum [24] is seen in Fig. 8. Similarly,
Figs. 9 (box) and 10 (Gauss) show the quality of the
fits to the Cartesian correlation radii. The box-shaped
density profile accommodates the M⊥-dependence of Ro

and Rs better than the Gaussian one. It reproduces the
rapid initial increase of Ro, its rather steep decrease at
larger M⊥, and the slope of Rs all reasonably well. With
the (T, ηf ) values allowed by the single-particle spectrum,
the Gaussian model has difficulties in reproducing the
strong M⊥-dependence in Rs and Ro.
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The different fit qualities achieved by these two models
reflect their different behaviour in the presence of trans-
verse flow. This is illustrated in Figure 11, where trans-
verse cuts through the effective emission region for parti-
cles with K⊥=500 MeV/c (in x-direction) are shown. For
the Gaussian source the effective emission region moves
parallel to K⊥ outward into the tail of the density pro-
file; its “outward” homogeneity length is larger than its
“sideward” one. For the box-shaped distribution, which
forbids particle emission from r > RB, the opposite is
found: the effective emission region gets squeezed to-
wards the edge of the box, and the “outward” homo-
geneity length is now smaller than the “sideward” one.
This causes a more rapid decrease of Ro with rising K⊥
in this case, and it is this feature of the model which is
preferred by the data.

Recent studies of deuteron production via coalescence
appear to support our conclusion. They also favour box-
shaped transverse density distributions, although for a
different reason [42,43]: the box-profile gives more weight
to regions of large transverse flow velocities, and only in
this way can one understand the observed flattening of
the deuteron m⊥-spectra compared to the proton ones
[42,43]. In contrast, what matters here for the correlation
radii is the increasingly negative contribution from 〈x̃2−
ỹ2〉 to R2

o−R2
s at large M⊥. This property was originally

attributed in [44] to opacity effects in the source, i.e. to
the suppression of particle emission from the interior of
the source in favor of surface emission. In this sense, a
radially expanding source with a box-like density profile
looks at large K⊥ like an “opaque source” (see Fig. 11).

This ambiguity illustrates that particle interferomet-
ric measurements can make statements about the rms
widths of the homogeneity regions, but that it is a model-
dependent task to interpret how these homogeneity re-
gions and their K-dependences are generated. That
transverse density profiles with a sharper edge than the
Gaussian one can naturally explain both the “opacity
effects” in the correlation radii at large K⊥ and the
stronger flow experienced by the deuterons may be taken
as an indication, but not as proof that they form indeed
the preferred parametrization of the source at freeze-out.

Before turning to a discussion of the remaining two ra-
dius parameters, Rl and R2

ol, let us stress another very
important feature of the source: its strong transverse
growth before freeze-out. Both the box-like and Gaus-
sian transverse density profiles give at freeze-out trans-
verse rms radii rrms = RG

√
2 = RB/

√
2 of ≈ 9 fm. This

is about twice the transverse rms radius of the original
overlapping Pb-nuclei of ≈ 4.5 fm. In view of the re-
sults obtained in [37] for a Gaussian density profile it
seems unlikely that the neglected resonance decay contri-
butions can account for a significant fraction of this large
difference, although we did not check this possibility ex-
plicitly again for the box-like distribution. Dynamical
consistency requires that such a strong geometric growth
is accompanied by strong radial flow, as indeed seen in
our analysis.

The longitudinal radius Rl is fitted very well by all
selected parameter sets. This supports the validity of the
assumed Bjorken scenario of boost-invariant longitudinal
expansion of the reaction zone at thermal freeze-out. The
measurement of the time parameters of the model (τ0

and ∆τ) is, however, affected by rather large errors, and
it is model-dependent. The model-dependence of ∆τ was
extensively discussed in [18] to which we refer for details.
Here we concentrate on a discussion of the parameter τ0.

For a system undergoing boost-invariant longitudinal
expansion, the size of Rl is dominated by the longitudinal
flow velocity gradient [35] whose inverse grows linearly
with the longitudinal proper time τ . Under these condi-
tions it is suggestive to interpret τ0 (as extracted from
Rl) as the total time from impact to freeze-out [10]. For
the sets of fit parameters listed in Table III this interpre-
tation runs, however, into trouble: taking the measured
final average transverse flow velocity of v̄⊥ ≈ 0.5 c and
assuming constant acceleration one would expect [45] the
mean (rms) radius of the matter to expand roughly ac-
cording to rrms(τ) = rrms(0) + 1

2 v̄⊥(τ)τ . (This slightly
exaggerates the point to be made since the higher pres-
sure will lead initially to stronger acceleration.) This ex-
pression should be evaluated at the average emission time
which for the source (3.1) is given by 〈τ〉 = τ0 + (∆τ)2

τ0
.

For the two preferred parameter sets b1 and g1 in Ta-
ble III we get 〈τ〉 ≈ 8.4 fm/c. With rrms(0) ≈ 4.5 fm one
thus finds rrms(〈τ〉) ≈ 6.6 fm; this falls clearly short of
the measured rms radius of 8.5− 9 fm.

For realistic expansion scenarios the time necessary to
expand to such large radii thus exceeds both τ0 and 〈τ〉.
(Only if the mean transverse flow velocity of v̄⊥=0.5 c had
been established directly after impact, the matter could
have expanded transversely from 4.5 fm to about 9 fm
during the time 〈τ〉 = 8.4 fm/c.) The important impli-
cation is that, although the reaction zone appears to be
expanding boost-invariantly at freeze-out, it cannot have
expanded so rapidly throughout its history. The fireball
must have undergone longitudinal acceleration. Again,
this should not surprise anybody: the measured trans-
verse flow must have been created by transverse pressure
gradients, and since pressure is locally isotropic, it must
have also pushed longitudinally. The longitudinal veloc-
ity gradient measured by Rl is thus only a snap-shot at
freeze-out, and it is very likely that some fraction of the
longitudinal flow, like the transverse one, has developed
gradually by work done by the pressure. As sketched in
Fig. 12 this automatically leads to a longer real fireball
lifetime, τreal > τ0, between impact and freeze-out.

V. THE PHASE-SPACE DENSITY

From the measured single-particle momentum spec-
trum and two-particle correlation function one can in-
fer the phase-space density, spatially averaged over the
homogeneity volume, of the particles immediately after

7



freeze-out [23]. Hence, this measurement is not only sen-
sitive to the absolute multiplicity of the particles, but
gives also hints about the possible appearence of “over-
population” in some parts of phase-space. Such an over-
population might give rise to “pion laser” phenomena
etc. [46]. Since we have seen that the pionic phase-
space seems to be populated more densely than expected
in chemical equilibrium, an analysis of the phase-space
density appears to be of interest.

In this section we first elaborate on the formalism de-
veloped in [23] and then apply it to the data. A very
qualitative study [47] of a wide set of different measure-
ments did not indicate a large overpopulation of the pio-
nic phase-space, but showed signatures of the transverse
expansion in form of a “flattening” of the m⊥-dependence
of the (position-) averaged phase-space density. Here we
want to perform, for the specific set of data analyzed in
this paper, a more quantitative study of both these phe-
nomena. Unfortunately, the data quality does not yet
allow for high precision investigations; we have to keep
this in mind and will stay on a rather superficial level.

A. Formalism

Combining the expression for the two-particle correla-
tion function

C(p1, p2) = 1 +

∣∣∫ d4x eiq·x S(x, K)
∣∣2∫

d4xS(x, p1)
∫

d4y S(y, p2)
, (5.1)

(q = p1 − p2, K = (p1 + p2)/2) with that of the one-
particle spectrum (3.10), we obtain

P1(p1)P1(p2) [C(p1, p2)− 1] =
∣∣∣∣∫ d4x eiq·x S(x, K)

∣∣∣∣2 .

(5.2)

Let us introduce the time integrated emission function

Σ(x, K) =
∫ ∞

−∞
dt S(t, x + vt, K) , (5.3)

where v = K/K0. This quantity allows us to rewrite
the integral of (5.2) over on-shell momenta q satisfying
q ·K = 0,∫

d4q δ(q ·K)
[
P1(K + q

2 )P1(K − q
2 ) (C(q, K)− 1)

]
≈ (2π)2

EK

∫
d3xΣ2(x, K) . (5.4)

Here, the on-shell approximation (which is valid for
q2 � 4E2

K) has allowed the replacement K0 → EK =√
m2 + K2. We also find

P1(p) =
∫

d3xΣ(x, p) . (5.5)

Σ(x, p) is not the phase-space density. In the following
we establish how it is connected to the latter. The phase-
space density f(t, x, p) is obtained by summing over all
particles of a given momentum emitted up to time t along
a given trajectory:

f(t, x, p) =
(2π)3

Ep

∫ t

−∞
dt′ S(t′, x + v(t′ − t), p) . (5.6)

The factor in front of the integral assures the correct
normalization of f to the number of particles for t > tf ,
where tf is the last instant of the freeze-out process.

One easily can show [19] that

En
p

(2π)3n

∫
d3x fn(t > tf , x, p) =

∫
d3xΣn(x, p) . (5.7)

From (5.4) and (5.5) then follows∫
d4q δ(q ·K)

[
P 2

1 (K)(C(q, K)− 1)
]

≈ EK

(2π)3

∫
d3x f2(t > tf , x, K) , (5.8)

P1(K) =
EK

(2π)3

∫
d3x f(t > tf , x, K) . (5.9)

In (5.8) we have performed the smoothness approxima-
tion P1(K+ q

2 ) ≈ P1(K− q
2 ) ≈ P1(K). Dividing these two

equations (and changing the notation K→p) we obtain

〈f〉(p) =
∫

d3x f2(t > tf , x, p)∫
d3x f(t > tf , x, p)

, (5.10)

≈ P1(p)
∫

d4q δ(q · p) [C(q, p)− 1] . (5.11)

This allows to determine the phase-space density of free-
streaming particles averaged over positions at constant
global time, since all quantities on the r.h.s. can be mea-
sured. Due to Liouville’s theorem, the phase-space den-
sity of free-streaming particles does not change, and
hence (5.11) gives the phase-space density averaged along
the freeze-out hypersurface.

Indeed, for a hypersurface σf on which the freeze-out
process is just completed and a global time coordinate is
tf (x) one can show [19] that

Ep

∫
σt

d3x fn(t > tf , x, p)

=
∫

σf

pµd3σµ(x) fn(tf (x), x, p) , (5.12)

where σt is the hypersurface given by t = const.> tf and
d3σµ is the infinitesimal normal vector to σf . The factor
p · d3σ is known from the formalism of Cooper and Frye
[48] and stands for the flux of the particles across σf .
This relation allows us to rewrite (5.10) as

〈f〉(p) =

∫
σf

p · d3σ(x) f2(tf (x), x, p)∫
σf

p · d3σ(x) f(tf (x), x, p)
. (5.13)
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This is the phase-space density averaged over the hy-
persurface along which the freeze-out is just completed.
Eq. (5.13) establishes what can be learnt about the phase-
space density in a model-independent way. A back-
extrapolation across the freeze-out boundary is only pos-
sible if additional assumptions about the mechanism of
particle production are made.

If the correlation function is parametrized as in (3.11),
the integration over q in (5.11) is simple and leads to

〈f〉(p) =
1

Ep

1
p⊥

d3N

dp⊥ dy dφ

× π
3
2

Rs(p)
√

R2
o(p)R2

l (p)− (R2
ol(p))2

. (5.14)

However, in this form all pions count towards (5.14) irre-
spective of their origin. We want to eliminate the pions
from longlived resonances since they do not contribute
to the phase-space density at freeze-out. (We keep pions
from short-lived resonances because these decay essen-
tially in the same spatial region where the direct pions
are set free.) The standard procedure for separating off
long-lived resonances is based on the observation that
they lower the intercept λdir of the correlator at q = 0
[4,37]. Assuming that there is no coherent contribution
to pion emission which would lower the intercept even
further [49], we obtain the phase-space density of “di-
rect” pions by multiplying the r.h.s. of (5.14) with

√
λdir

[50,47]. We further simplify (5.14) by introducing the fol-
lowing parametrization for the single-particle spectrum:

1
p⊥

d3N

dp⊥ dy dφ
=

1
2π

dN

dy

1
T 2

inv(y)
exp

(
− p⊥

Tinv

)
. (5.15)

The final formula used in the following data analysis
then reads

〈f〉(p) =
√

π

2

√
λdir

Ep T 2
inv(y)

exp
(
− p⊥

Tinv

)
dN

dy

× 1
Rs(p)

√
R2

o(p)R2
l (p)− (R2

ol(p))2
. (5.16)

B. Application

1. Data choice

The rapidity distribution dN/dy is estimated from re-
sults given in [26,27] to be 139± 22. An estimate for the
inverse slope is obtained from the measured 〈p⊥〉 [24] as
Tinv = 185 ± 10 MeV. The correlation radii are taken
from Table C 2. Since for the investigated rapidity bin
no intercept parameter was given for the MTPC anal-
ysis [28] we estimated it by averaging only the VTPC
data for negative and positive hadrons [29]. As seen in
Table IV they are fairly K⊥-independent; moreover they
agree well with the intercept parameters extracted in [28]
for 4<Y <5.

2. Phase-space densities from statistical distributions and
realistic emission functions

We first study the simple question to what extent
the data support the simple assumption that the ob-
served phase-space density follows a purely quantum-
statistical distribution. Rough agreement of the data
with a Bose-Einstein distribution was observed in [47].
Since our model reproduces both the measured one- and
two-particle spectra, it allows us to refine these observa-
tions. To this aim, we compare in a first step in Fig. 13
the data with simple expectations from statistical distri-
butions.

Since in LCMS the energy coincides with the transverse
mass E = m⊥, the phase-space occupancy following from
a Boltzmann distribution is simply

〈fB〉(p) = exp
(
−m⊥

T

)
, (5.17)

while the expectation based on the Bose-Einstein distri-
bution reads

〈fBE〉(p) =
1

e
m⊥

T − 1
. (5.18)

The temperatures for the corresponding curves in Fig. 13
are taken from the parameter sets indicated in the up-
per right corner. One sees that unless the temperature
reaches 160 MeV (which is disfavoured by the fits) the
slope of the calculated distributions is steeper than that
of the data.

The results of Sec. IV identify as the main source
of this discrepancy the strong transverse flow at freeze-
out. That transverse flow has a strong effect on 〈f〉(p)
can be seen already from a minimal modification of
(5.17), (5.18), in which the statistical distributions are
“boosted” to the rest frame of the point of maximum
emissivity for a given flow field, umax:

〈fB′〉(p) = exp
(
−p · umax

T

)
, (5.19)

〈fBE′〉(p) =
1

exp
(

p·umax
T

)− 1
. (5.20)

We note that the shape of the expectations 〈fB′〉(p)
and 〈fBE′〉(p) (e.g. “the bump”) shown in Fig. 13 depend
on the determination of umax which is model-dependent.
For instance, the bump vanishes if a Gaussian transverse
density profile is taken, while the slope shows a qual-
itatively similar behaviour [19]. In any case, as seen
in Fig. 13, the statistical distributions (5.19) and (5.20)
overpredict the phase-space density significantly for large
transverse momenta. A more refined model is needed to
account for the data.

This was done, using the model described in Sec. III to
calculate the HBT radius parameters and the one-particle
spectra which enters the numerator of Eq. (5.14). As
mentioned above, the data are multiplied with

√
λdir(p)
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and measure the phase-space occupancy of direct pi-
ons only. Furthermore, without chemical potentials, our
model leads to smaller multiplicities than measured. This
allows us to determine the chemical potential needed in
order to reproduce the observed phase-space density. If a
non-zero chemical potential is considered, the difference
between the Bose-Einstein distribution and its Boltz-
mann approximation increases. Therefore, for the calcu-
lation of the single-particle spectrum the Bose-Einstein
distribution was implemented in an analogous way as de-
scribed in Appendix C 2.

As seen in Fig. 13, the transverse momentum depen-
dence of the phase-space density is well described with
our model whose geometrical and dynamical input was
extracted from a space-time analysis of hadronic spec-
tra. The chemical potentials needed to account for the
absolute particle yields are listed for the three different
parameter sets in Table V. In contrast to the box-shaped
density profile, the multiplicities obtained from a Gaus-
sian one require chemical potentials above 135 MeV. This
may be taken as yet another hint that a box-shaped den-
sity profile is favoured by the data. Also, at such high
values of µ the effects due to the finite fireball volume
may become relevant and the treatment gets more com-
plicated [51].

3. Discussion

The determination of the pionic chemical potential as
a measure of the “overpopulation” of phase-space is of
interest for the discussion of generic quantum-mechanical
effects (e.g. stimulated emission [52]), for the study of the
fireball’s chemistry [53], as well as for certain signals of
in-medium changes of hadron masses [54-56]. Here we
discuss the implications of Fig. 13 in this context.

As noted above, the model curves in Fig. 13 reproduce
the transverse momentum dependence better than simple
statistical distributions. However, they account for the
absolute particle yields only with the help of a relatively
large chemical potential while the statistical distributions
rather overestimate the absolute yields without invoking
a chemical potential. The latter effect can be understood
by recalling that the distributions (5.17) and (5.18) were
evaluated with energy distributions at the point of max-
imum emissivity. They thus overestimate the data by
construction. To understand the rather large chemical
potentials required for our model, we recall that in the
present study the value of this chemical potential is sub-
ject to other model-dependent features:

1. The η-dependence of the emission function (3.1)
introduces the factor exp[−(η−η0)2/(2(∆η)2)]. For
the rapdity bin 3.9<y<4.4, this effectively amounts
to a negative chemical potential of −0.46 T . For
the temperatures from sets b1 and b2 this gives
≈ −50MeV which must be compensated by the

“usual” chemical potential. Note that this com-
pensation would not be required if a box-shaped
density profile were also used for the η-distribution
of the source; such a distribution seems also to be
consistent with the recent study of the phase-space
density in Pb+Pb collisions [47].

2. The fitted chemical potential in Table V also ac-
counts implicitly for the inclusion of pions from
short-lived resonances. For high temperatures (∼
150 MeV) this is an important effect, since then
the contribution by these resonances is compara-
ble with direct pion production. The exact fraction
of particles from resonance decays depends on the
chemical potentials for the resonances and requires
a more detailed picture of the fireball chemistry. It
decreases with decreasing temperature [57]. For a
simple estimate one may count the number of pions
from short-lived resonances as calculated from our
model. The pion chemical potential needed to com-
pensate the lack of these resonance contributions
in our emission function by an additional amount
of direct pions is µ ≈ 20 MeV for the set b1 and
µ ≈ 34 MeV for the set b2. The higher value of µ
in the latter case reflects the larger resonance frac-
tion at the higher temperature.

Subtracting these two effects from the values given in
Table V we are led to a “real pion chemical potential” µπ

which is significantly smaller: we find µπ ≈ 60 MeV for
T = 100MeV (set b1) and µπ ≈ 25 MeV for T = 120MeV
(set b2). These parameters still indicate a slight overpop-
ulation of the pion phase-space at freeze-out. Clearly, our
discussion could be refined by a proper study of the ra-
pidity dependence of the particle spectra and yields and
by a more quantitative inclusion of contributions from
short-lived resonances. This, however, lies outside the
scope of the present work.

VI. CONCLUSIONS

In the context of simple analytical parametrizations
of the freeze-out emission function, we have presented
a space-time analysis of hadronic one- and two-particle
spectra measured for slightly forward rapidity by the
NA49 Collaboration at the CERN SPS. Our work quotes
for the first time full χ2 confidence levels for the tempera-
ture and the transverse flow. It allows for a quantitative
discussion of possible model-dependencies via the com-
parison of different transverse density profiles. Thus, our
results corroborate quantitatively the picture of a colli-
sion system with strong transverse collective flow which
drives an expansion to twice the initial transverse size
before freeze-out. During the evolution to this freeze-out
stage the system seems to cool down significantly.

Most importantly, this general picture does not depend
on details of the model emission function with which
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the analysis is done. The χ2 values of the fit are, how-
ever, sensitive to details of the model. With the used
transverse flow profile they favour a box-shaped over a
Gaussian transverse density profile. This gives support
to a similar conclusion reached recently in the study of
deuteron coalescence models, and it indicates a possible
different origin for negative 〈x̃2 − ỹ2〉 contributions pre-
viously attributed to opacity effects.

The strong M⊥-dependence of the HBT side and out
radius parameters requires a large transverse flow and
thus favours a low kinetic freeze-out temperature in the
range 80 MeV < T < 110 MeV. Other earlier analy-
ses which had obtained higher freeze-out temperatures
therefore require some discussion:

• In [58] a temperature T = 120 MeV combined with
v̄⊥ = 0.43 was found from a simultaneous fit to
single-particle m⊥-spectra of different species. This
value does not contradict our findings since it lies
only slightly below the 90% confidence level of our
fit to correlation radii. (The combination of trans-
verse velocity and density profile used in [58] dif-
fers from ours. This can lead to slightly different
fit results). While a simultaneous analysis of only
the single-particle spectra of many different particle
species thus also permits the separation of T and
v̄⊥, it must make the additional assumption that
all these hadron species decouple simultaneously.
That one obtains in this way similar results as by
combining spectra and correlations of a single par-
ticle species (pions) suggests that this assumption
is in fact reasonably well justified.

• By studying the curvature of the very accurately
measured π0 spectrum in m⊥ up to 4 GeV/c the
WA98 collaboration extracted an apparently highly
accurate value of the freeze-out temperature of
about 185 MeV [59]. This analysis was criticized
[60] on the basis that the curvature in the high p⊥
region results from the Cronin effect and that an
agreement with a thermal model is likely to be an
artefact and is subject to severe systematic uncer-
tainties in the model parametrization.

• The NA49 collaboration has analyzed their data
on the basis of simplified analytical expressions de-
rived in [41], such as e.g. Eq. (4.1). In this way they
arrived at T ≈ 120 MeV and v̄⊥ ≈ 0.55 [11]. The
discrepancy with our fit parameters can be traced
back to the limited validity of these analytical ex-
pressions, especially for the description of the h−
spectrum. If one compares their corresponding χ2

valley with ours (Figs. 3 and 4) one sees that it
bends over at low T and large v̄⊥ whereas ours
doesn’t. This is the main difference and accounts
for their intersection to occur at somewhat larger
values of T and v̄⊥.

• An analysis in the spirit of ours was reported in [14].

Again, higher temperatures (134–145 MeV depend-
ing on the analyzed set of data) were quoted. In
this case we suspect that the high temperature val-
ues are driven by requiring a fit to the normalized
single-particle spectra with vanishing pion chemical
potential. The high temperature is thus a conse-
quence of the observed multiplicity. Moreover, the
correlation radii were calculated from analytical ap-
proximations [4] which again introduce additional
uncertainties.

Our analysis of the observed phase-space density (5.16)
has shown conclusively that the main deviation of the ex-
perimental data from a purely quantum-statistical phase-
space distribution is due to the collective dynamical ex-
pansion of the system. Also, we have inferred from
our analysis a pion chemical potential µπ ≈ 60 MeV at
T = 100 MeV. This indicates an overpopulation of the
pion phase-space by about a factor 2 at thermal freeze-
out, consistent [53] with analyses of the particle ratios
indicating a much earlier decoupling of the hadron yields
(chemical freeze-out), namely at Tchem ≈ 170 MeV in
Pb+Pb collisions at the SPS. Nevertheless, this pion ex-
cess is too small to necessitate the study of stimulated
pion emission [52] or higher order correlations [62].
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APPENDIX A: DISTRIBUTION OF THE PAIR
MOMENTUM

In this Appendix we derive distributions of the pair
rapidity Y and of the pair transverse momentum K⊥.

The observed h− single-particle rapidity spectrum can
be very accurately approximated by a Gaussian distribu-
tion of width ∆y = 1.4 [26,27]:

%y
1(y) =

1√
2π(∆y)2

exp
(
− (y − y0)2

2(∆y)2

)
. (A1)

Here y0 stands for midrapidity, and the distribution is
normalized to unity (rather than to the total number of
particles). The distribution of the pair rapidity

Y =
y1 + y2

2
(A2)
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is then evaluated as

%Y
2 (Y ) =

∫
dy1 dy2 δ

(
Y − y1 + y2

2

)
%y
1(y1) %y

1(y2)

=
1√

π (∆y)2
exp

(
− (Y − y0)2

(∆y)2

)
. (A3)

When deriving the analogous distribution of the mean
transverse momenta K⊥ of the pairs one starts from the
corresponding single-particle distribution (again normal-
ized to unity) [27]

%⊥1 (p⊥) =
1
N

d2N

dφdp⊥
=

1
2π

p⊥
T 2

inv

exp
(
− p⊥

Tinv

)
; (A4)

here Tinv is the measured inverse slope, and N is a nor-
malization constant. The average transverse momentum
of a pair with transverse momenta p1⊥, p2⊥ is

K2
⊥ =

1
4
(
p2
1⊥ + p2

2⊥ + 2p1⊥p2⊥ cos(φ1 − φ2)
)

, (A5)

where φ1 and φ2 are the azimuthal angles of the individ-
ual transverse momenta. Then the desired distribution
of K⊥ is obtained from

%⊥2 (K⊥) =
∫ ∞

0

dp1⊥
∫ 2π

0

dφ1

∫ ∞

0

dp2⊥
∫ 2π

0

dφ2

×%⊥1 (p1⊥) %⊥1 (p2⊥) δ
(
K⊥ − K̄⊥

)
, (A6)

K̄⊥ =
1
2

√
p2
1⊥ + p2

2⊥ + 2p1⊥p2⊥ cos(φ1 − φ2) . (A7)

We now integrate over the angles with the help of the
δ-function. The integration boundaries are most easily
implemented by using as integration variables

1
2
(p1⊥ + p2⊥) = ζ ∈ (K⊥, ∞) , (A8a)

1
2
(p1⊥ − p2⊥) = ξ ∈ (−K⊥, K⊥) . (A8b)

Integrating over ξ and substituting ζ by a dimensionless
variable α = ζ/K⊥ we obtain the final expression [19]

%⊥2 (K⊥) = 2
K3
⊥

T 4
inv

∫ ∞

1

dα exp
(
−2K⊥

Tinv
α

)
2α2 − 1√
α2 − 1

.

(A9)

The resulting distribution, for an inverse slope Tinv =
185MeV as used in the calculations, is illustrated in
Fig. 14. It is compared with the two naive guesses (both
normalized to unity)

f(K⊥) =
4K⊥
T 2

inv

exp
(
−2K⊥

Tinv

)
, (A10a)

g(K⊥) =
K⊥
T 2

inv

exp
(
−K⊥

Tinv

)
. (A10b)

Note that g(K⊥) is actually the distribution of p⊥ inte-
grated over the azimuthal angle (cf. (A4)); it seems to ap-
proximate %⊥2 (K⊥) better than f(K⊥). However, as seen
in Fig. 15 this is only the case for K⊥ < 500 MeV/c. For
high K⊥ the distribution %⊥2 (K⊥) asymptotically behaves
like f(K⊥). Thus in general, a replacement of %⊥2 (K⊥)
by either of the two distributions (A10) cannot be recom-
mended.

APPENDIX B: COMPUTATION OF THE
NEGATIVE HADRON TRANSVERSE

MOMENTUM SPECTRUM

The theoretical p⊥-spectrum needed in the fit in Sec-
tion IVA was calculated with the routine described in
[37]. Here we point out the changes in the original rou-
tine which were made before it was used in this work.

1. Bose-Einstein distribution for direct pions

The directly produced pions are distributed according
to the Bose-Einstein distribution, unlike in the original
code in which the Boltzmann (high-energy) approxima-
tion was employed. In practice this was done by ex-
panding the Bose-Einstein distribution into powers of the
Boltzmann distribution and truncating after a sufficient
number of terms (see also Appendix C 2). The pion chem-
ical potential was set to zero.

2. Chemical potentials for resonances

Baryon number and strangeness conservation in the
fireball requires the introduction of nonzero baryon and
strangeness chemical potentials µB and µS . Since these
chemical potentials turn out to be not negligible [61,63-
65], they may affect the multiplicities of baryonic and/or
strange resonances and thus also the number of pions.
The condition of strangeness neutrality of the fireball de-
termines µS as a function of T and µB.

The yield of particles with strangeness S is then mul-
tiplied by a factor λS = exp(S µS(T )/T ). Guided by the
dependence of µB on the temperature shown in Fig. 3
of Ref. [63] and with an eye on the results of [65,61] we
introduced a polynomial parametrization for µB(T ):

µB(T ) = a T 2 + b T + c , (B1)

with a = 24.8 GeV−1, b = −7.94, and c = 0.905 GeV. Al-
though rough, this parametrization is sufficiently precise
for our purposes and easy to handle. The strangeness
chemical potential µS was calculated from

0 =
∑

i

Si gi m2
i T e(BiµB+SiµS)/T K2

(mi

T

)
, (B2)
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where T is the freeze-out temperature and the sum runs
over all species. Particle masses, baryon numbers and
strangeness are denoted by mi, Bi, and Si, respectively;
gi is the spin and isospin degeneracy. When determining
µS(T ) all resonances up to 2 GeV were taken into ac-
count, in order to be consistent with [63]. The resulting
dependences of the chemical potentials on the tempera-
ture are shown in Fig. 16.

3. Non-pion contributions and resonance decays

Since we studied data on h−-spectra rather than iden-
tified pions, our calculations had to include non-pion neg-
ative hadrons. Their distribution is assumed to be given
by the same emission function with appropriately mod-
ified masses and multiplied by the corresponding spin-
isospin degeneracy factor. We used the Boltzmann ap-
proximation, which is justified due to the large masses of
these particles, with the appropriate chemical potentials.

Some kaons and antiprotons are also produced by res-
onance decays. We included the same set of resonances
as in the calculation of the pion spectrum (see Table I
of [37]). The decays contributing to the K− spectrum
are listed in Table VI, those leading to antiprotons in
Table VII.

As in [37], contributions to the pion spectra from Σ and
Λ decays were treated as decays of a single resonance Y
with an average mass of 1.15 GeV. Antiproton produc-
tion via decay chains of the type Σ̄∗ → Ȳ + . . . → p̄ + . . .
was effectively included by enhanced branching ratios for
the Ȳ decay channels. (We have also replaced by J = 3/2
the erroneous value J = 1/2 for the spin degeneracy of Σ∗

listed in [37].) As argued in [37], the above approxima-
tions work well because they only concern small relative
contributions to the full result.

APPENDIX C: TOTAL PION MULTIPLICITY

1. Boltzmann distribution

In this Appendix we derive formulae for the total num-
ber of produced pions predicted by the model (3.1),
both for the Gaussian (Eq. (3.3)) and the box-shaped
(Eq. (3.4)) transverse density profiles. They are obtained
by integrating the emission function (3.1) over positions
and momenta:

〈N〉 =
1

(2π)3

∫
p⊥ dp⊥ dy dφ dϕ r dr dη

τ dτ√
2π(∆τ)2

m⊥

× cosh(y − η) exp
(
− (τ − τ0)2

2(∆τ)2

)
exp

(
− (η − η0)2

2(∆η)2

)
× exp

(
−m⊥ cosh(y − η) cosh(ηf r/rrms)

T

)
×G(r) exp

(
p⊥ sinh(ηfr/rrms) cos(φ− ϕ)

T

)
. (C1)

The resulting expression takes the form [19]

〈N〉 =
1

2π2
m2 T K2

(m

T

)
Vinv , (C2)

where Vinv is the invariant volume of the fireball which
takes into account the Lorentz-contraction of the moving
volume elements and the Cooper-Frye-like flux through
the freeze-out hypersurface [48]. For a sharp freeze-out
hypersurface σf at τ = const., for example, this leads to

Vinv =
∫

σf

dVinv =
∫

σf

u · d3σ , (C3)

with

d3σµ = (cosh η, 0, 0, sinh η) τ dη r dr dϕ (C4)

and (using (3.5))

dVinv = u · d3σ = cosh ηt τ dη r dr dϕ . (C5)

The model (3.1) can be thought of as a Gaussian superpo-
sition of τ = const. hypersurfaces. Moreover, the volume
is not populated equally densely and the corresponding
distributions must also be taken into account:

Vinv = 2π

∫
r dr cosh ηt(r)G(r)

×
∫

τ dτ√
2π(∆τ)2

exp
(
− (τ − τ0)2

2(∆τ)2

)
×
∫

dη exp
(
− (η − η0)2

2(∆η)2

)
. (C6)

The last two integrals are trivial, but different transverse
density and flow profiles lead to different results for the
first integral. The combination of (3.6) with (3.3) yields

V Gauss
inv = 1

2 (2π)
3
2 r2

rms τ0 ∆η

×
[
1 +

ηf

2
eη2

f /4

∫ ηf /2

−ηf /2

e−x2
dx

]
, (C7)

while the box-shaped transverse density profile gives

V box
inv = (2π)

3
2 r2

rms τ0 ∆η

×
[√

2 sinh(
√

2ηf )
ηf

− cosh(
√

2ηf )− 1
η2

f

]
. (C8)

Here rrms = RG

√
2 for the Gaussian and rrms = RB/

√
2

for the box profile, respectively. For ηf = 0 (no trans-
verse flow) the box profile thus gives twice as many pions
as the Gaussian one (at the same value of rrms, i.e. for
the same interferometric signal). This is a volume effect:
at the same rrms the invariant volume is twice as large
for a box-shaped distribution than for a Gaussian one.

Transverse flow increases the invariant volume by the
factor given in the square brackets of (C7,C8). The phy-
sical picture is that the transversely moving fluid cells are
Lorentz contracted and thus more of them are needed to
“fill” the transverse profile of a given size. This Lorentz
contraction is reflected by the factor cosh ηt (i.e. the γ-
factor corresponding to the transverse motion) in (C5).

13



2. Bose-Einstein distribution

Since the pion mass is comparable to the freeze-out
temperature, the use of the Boltzmann approximation
for pions is questionable, in particular if they develop a
positive chemical potential. In this subsection we show
how the formulae for the total particle yield are modified
if the Bose-Einstein distribution is taken into account. In
this case the mean pion multiplicity is obtained from

〈N〉 =
∫

d3p

E

∫
dτ√

2π(∆τ)2
exp

(
− (τ − τ0)2

2(∆τ)2

)
(C9)

×
∫

σf

p · d3σ

[
exp

(
p · u(x)− µ0

T
− µ(x)

T

)
− 1
]−1

.

The last integration gives the momentum spectrum emit-
ted on a τ = const. freeze-out hypersurface [48]. In the
second integration one sums up contributions from such
hypersurfaces with Gaussian distributed τ values. The
“usual” chemical potential is denoted by µ0 while the
density distribution of the source is implemented via the
“x-dependent part of the chemical potential” [66,67] de-
noted by µ(x). The model with a Gaussian transverse
density profile is thus characterized by

µ(x)
T

= − (η − η0)2

2(∆η)2
− r2

2 R2
G

, (C10)

while the box-shaped source is implemented via

µ(x)
T

= − (η − η0)2

2(∆η)2
− B(r) , (C11)

where

B(r) =
{

0 if r ≤ RB,
∞ otherwise. (C12)

For practical evaluation the Bose-Einstein term under
the last integral in (C9) is expanded into a geometric
series. When exchanging the order of summation and
integrations one arrives at

〈N〉 =
∞∑

n=1

∫
d3p

E

∫
dτ√

2π ∆τ2
exp

(
− (τ − τ0)2

2(∆τ)2

)
×
∫

σf

p · d3σ exp
(
−p · u(x)− µ0

(T/n)
+

µ(x)
(T/n)

)
. (C13)

The Boltzmann approximation used in the previous sub-
section is recovered from the first term n = 1. Higher
terms n > 1 can be regarded as Boltzmann contributions
with lower effective temperatures T

n . In practice, for suf-
ficiently small chemical potentials, this allows to truncate
the expansion at a certain value ntrunc since the size of
the contributions decreases exponentially with n. For a
Gaussian density distribution one finds explicitly

〈N〉 =

√
2
π

τ0 r2
rms ∆η m2 T

∞∑
n=1

n−5/2 enµ0/T K2

(nm

T

)
×
[
1 +

ηf

2
√

n
eη2

f /4n

∫ ηf /2
√

n

−ηf /2
√

n

e−x2
dx

]
. (C14)

Note that the invariant volume cannot be factorized from
the expression. This is generally true for models with a
Bose-Einstein distribution with an x-dependent chemical
potential. A special case is the box-model where the
invariant volume (C8) still factorizes:

〈N〉 = V box
inv

m2T

2π2

∞∑
n=1

n−3/2 enµ0/T K2

(nm

T

)
. (C15)

The different factorization properties of (C14) and (C15)
imply that for ηf = 0 the yields are no longer related by a
simple factor 2 once Bose statistics is taken into account.

Expressions (C14) and (C15) were used in the calcula-
tions of the direct pion multiplicity in Sec. IVC. There,
the chemical potential µ0 was set to 0 since chemical
equilibrium was assumed. The calculations in Sec. VB 2
were done with the values of µ ≡ µ0 given there.
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[17] U. Heinz, B. Tomášik, U.A. Wiedemann, and Wu Y.-F.,

Phys. Lett. B 382, 181 (1996).
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TABLE I. Correlation radii for the Cartesian parametriza-
tion in the LCMS obtained by calculating the averages of
the squared radii from the analysis of MTPC and VTPC
data (see text). In the second row the values of Kbin

⊥ for
each bin according to (2.2) are displayed. Selected rapid-
ity bin: 3.9 < Y < 4.4. (In fact, in the MTPC analysis
the rapidity bin 4 < Y < 4.5 was used. Here that from
VTPC data sets has been adopted.) Momenta are given
in units of GeV/c. In the K⊥-bin 0.3 − 0.45, data from
[28] for 0.3 GeV/c < K⊥ < 0.4 GeV/c and from [29] for
0.3 GeV/c < K⊥ < 0.45 GeV/c were averaged.

K⊥-bin 0 – 0.1 0.1 – 0.2 0.2 – 0.3 0.3 – 0.45

Kbin
⊥ 0.065 0.151 0.247 0.365

R2
s (fm2) 33.3 ± 4.0 27.0± 3.5 25.0 ± 1.8 21.4± 2.5

R2
o (fm2) 38.7 ± 2.1 38.8± 3.3 33.6 ± 4.5 30.4± 5.2
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R2
l (fm2) 61.9 ± 5.3 46.7± 5.0 27.4 ± 5.6 20.7± 3.1

R2
ol (fm2) 8.4 ± 3.0 13.8± 2.2 8.4 ± 3.7 7.2± 5.6

TABLE II. The same as Table C 2, but for the correla-
tion parameters in the Yano-Koonin-Podgoretskĭı parametri-
zation. vYK is measured relative to the LCMS. The same
comments about binning as in Table C 2 apply.

K⊥-bin 0 – 0.1 0.1 – 0.2 0.2 – 0.3 0.3 – 0.45

Kbin
⊥ 0.065 0.151 0.247 0.365

R2
s (fm2) 32.7± 4.7 28.4± 3.3 26.0 ± 3.6 23.2± 5.5

R2
‖ (fm2) 59.6± 9.8 42.3± 5.8 25.9 ± 6.7 21.1± 3.3

R2
0 (fm2) 28.6± 18.7 14.8± 9.2 8.4 ± 6.7 8.1± 5.7

vYK -.15± .04 -.26± .04 -.23± .05 -.25± .10

TABLE III. Sets of model parameters for box-shaped (b*)
and Gaussian (g*) transverse density profiles, as obtained
from fits to the single-particle m⊥-spectrum and two-particle
correlation radii. For each parameter set, the average trans-
verse expansion velocity v̄⊥ and the total π− multiplicity N
(cf. Fig. 7) was calculated from the model. The errors for
N include only the uncertainties in the values of the model
parameters.

Box set b1 b2 b3

T (MeV) 100 120 160

ηf 0.6 0.5 0.35

RB (fm) 12.1 ± 0.2 11.5 ± 0.2 10.7± 0.2

τ0 (fm/c) 6.3 ± 1.1 5.5± 1.1 4.4± 3.5

∆τ (fm/c) 3.6 ± 0.6 3.2± 0.7 2.6± 2.0

∆η (fixed) 1.3 1.3 1.3

v̄⊥ 0.5 0.43 0.33

N 139 ± 24 254 ± 56 813± 649

Gauss set g1 g2 g3

T (MeV) 100 120 160

ηf 0.6 0.48 0.35

RG (fm) 6.5 ± 0.1 5.9± 0.2 5.6± 0.1

τ0 (fm/c) 7.8 ± 0.8 6.6± 0.9 5.5± 0.9

∆τ (fm/c) 2.3 ± 0.7 2.3± 0.7 1.8± 0.8

∆η (fixed) 1.3 1.3 1.3

v̄⊥ 0.46 0.39 0.29

N 96± 10 157 ± 24 544± 91

TABLE IV. The values of the effective intercept parameter
as a function of K⊥, estimated from the NA49 data.

K⊥ (GeV/c) 0.065 0.151 0.247 0.365
λdir 0.4 0.495 0.46 0.4

TABLE V. Estimated chemical potentials needed for the
box-models of Table III to fit the data for the average
phase-space density.

set T (MeV) µ (MeV)

b1 100 123± 9
b2 120 115 ± 15
b3 160 90± 20

TABLE VI. Decay channels included in the calculation
of the K− contribution to the h−-spectrum. Branching ra-
tios were multiplied by the Clebsch-Gordan coefficients cor-
responding to the given isospin states.

channel Mreson (MeV) Γ (MeV) J BR

K∗− → π0K− 892 115 1 1/3× 1
K̄∗0 → π+K− 892 115 1 2/3× 1

TABLE VII. Decays contributing to the production of an-
tiprotons. Branching ratios were multiplied by the appropri-
ate Clebsch-Gordan coefficients.

channel Mreson (MeV) Γ (MeV) J BR

∆̄++ → π−p̄ 1232 115 3/2 1
∆̄+ → π0p̄ 1232 115 3/2 2/3× 1
∆̄0 → π+p̄ 1232 115 3/2 1/3× 1

Λ̄ → π+p̄ 1116 ≈ 0 1/2 0.639
Σ̄+ → π0p̄ 1193 ≈ 0 1/2 0.516

Σ̄0 → Λ̄γ → π+p̄ 1193 ≈ 0 1/2 0.639
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FIG. 8. Measured h− spectrum in the rapidity window
4.15<y<4.65 [24] compared to the best model fits b1 and g1.
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