EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN-EP/99-59

19 April 1999
A search for invisible Higgs bosons

produced in eTe™ interactions at
LEP 2 energies

DELPHI Collaboration

Abstract

Searches for HZ production with the Higgs boson decaying into an invisible final
state have been performed with the data collected by the DELPHI experiment
up to the centre-of-mass energy of 183 GeV. The hadronic and muon pair final
states of the Z boson were analysed. From the absence of signal, upper limits
on the cross-section and the corresponding Higgs boson mass limits were set at
95% confidence level. The results are interpreted as excluded parameter regions
in the framework of the minimal supersymmetric standard model and in the
simplest Majoron model with one Higgs doublet and one Higgs singlet field.
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1 Introduction

This paper presents a search for the production of e"e™ — HZ, with Z— qq or u* ™
and the Higgs boson decaying into stable non-interacting particles rendering it invisible
(see fig. 1). The search was carried out with the data accumulated by DELPHI at
Vs =~ 183 GeV. The DELPHI analyses at y/s= 161-172 GeV [1] have been taken into
account in deriving the results. The other LEP experiments have also performed searches
in this channel [2].

The process being studied is possible in the Minimal Supersymmetric Model (MSSM)
[3] when Higgs decaying into neutralinos 9 are open and R-parity is conserved, i.e. the
lightest supersymmetric particle (LSP) is x9 which is stable and invisible. Detailed infor-
mation about these decay modes can be found in [4]. Invisible Higgs boson decay modes
can be envisaged in other supersymmetric [5] and non-supersymmetric extensions of the
Standard Model (SM). The Majoron-type models [7,8] are taken here as a specific exam-
ple. The characteristic feature of these models is the presence of complex SU(2)xU(1)
singlet scalar fields. The spontaneous breaking of the global U(1) lepton number sym-
metry leads to the occurrence of a Goldstone boson, the Majoron J, which couples only
to right-handed neutrinos and which may have large couplings to the Higgs bosons. The
singlet field can generate mass terms for neutrinos.

The DELPHI detector and its performance are described in detail in [9,10]. Analyses
of hadronic and muon pair channels are described in sections 2 and 3, respectively. The
results are interpreted in section 4.

JLSP/]
et Y
Y4
N
X
(Z/7) NLSP/J
7 q/p
¢ q/fi

Figure 1: Feynman graph describing the signal process, in which the Higgs particle decays
into two lightest supersymmetric particles or two Majorons.

2 Hadronic channel

At /s ~ 183 GeV, the cross-section for the HZ production varies from 1.0 pb for
my = 60 GeV/c®* to 0.21 pb for my = 90 GeV/c?, and 70% of the Z decays into
hadronic final states. The signature of an invisible Higgs boson decay is a pair of acoplanar
and acollinear jets with a mass compatible with the Z mass, and a missing energy and
momentum of the invisible decay.



The data sample corresponds to an integrated luminosity of 50.6 pb~! which satisfies
the detector quality status criteria applied in this analysis. The background process
ete” — ff(n7y) and processes leading to four-fermion final states (Z/v)*(Z/7)*, WHW~",
Wer, and Zete™ were simulated using the Monte Carlo generator PYTHIA [11], whilst the
TWOGAM program [12] was used to describe the two-photon interactions. The simulated
signal samples were prepared with the HZHA program [13]. For this analysis, samples of
Higgs boson masses between 60 and 90 GeV /c? in 5 GeV /c? steps were used. Both signal
and background events were processed through the full DELPHI detector simulation and
reconstruction programme.

2.1 Particle and event selection procedure

Event variables were computed using reconstructed particles that satisfy the following
criteria. Charged particles were defined as reconstructed tracks with momenta above
100 MeV /e, extrapolating to within 4 cm from the primary vertex in R¢ and within
10 cm in z. Neutral particles were defined either as calorimeter showers without associated
tracks or as interaction or decay vertices in the tracking volume (e.g. converted photons
and V particles). The low-energy thresholds depended on the type of particle with the
minimum at 100 MeV.

The event topology of the signal channel resembles the Hvv channel analysed in [17],
therefore similar event variables were used, except that no beauty flavour signature was
required. The main kinematic variables are the estimated energy of a photon radiated in
the beam direction E, (normalized to the expected energy of a photon recoiling against a
real Z), the total visible energy F.i, the thrust value in the rest system 7, and the scaled
acoplanarity 10g facop- In order to enhance the discrimination against WHW~ events,
the missing transverse momentum pr, the acollinearity, the largest transverse momentum
between any particle and a jet, and the smallest jet mass of the event were used. For the
last two variables, the particles were clustered in jets with the LUCLUS[11] routine, with
the default scaled invariant mass parameter yjoin = may,/E%s = 0.05. Acollinearity and
acoplanarity were defined as 180 degrees minus the angle between the two main jet direc-
tions in space, and in the plane transverse to the beam, respectively. The acoplanarity
was then multiplied by the sine of the polar angle of the jet closest to the beam (scaled
acoplanarity).

The iterated nonlinear discriminant analysis program (IDA) [14] was applied to cal-
culate a second-order polynomial of event variables, thirteen in total. The polynomial
specifies a surface which maximizes the separation between signal and background in the
event variable space, and its values can be used as weights for signal events.

2.2 Preselections

Preselections were defined in three steps A, B and C. The agreement between the data
and the simulation was checked at each step.

A: To select multihadronic annihilation events, the following criteria were applied

e the number of charged particles should be at least nine;
e one or more tracks should extrapolate back to within 200 pum of the event vertex,
in the plane transverse to the beam axis. The event vertex was calculated using



good quality tracks with the additional constraint of beam spot determined by
the beam position monitors and the event vertices of proximate events;

e the total energy carried by charged particles should be greater than 0.1 E.ps,
and the visible mass should exceed 50 GeV /¢

B: Photon hermeticity
A veto algorithm based on the hermeticity counter signals was applied in order to
reject events with an on-shell Z and missed or poorly reconstructed photons at large
polar angles. These scintillator counters are installed at polar angles of 90 degrees
(the connection between two detector hemispheres) and 40 degrees (the gap between
the barrel and forward electromagnetic calorimeters) where a photon can escape
undetected. The rate of hadronic events of this type is about 1.5 pb. In the final
selection, the algorithm reduces the residual background of 3.5+0.2 events of this
kind to 0.8+0.1 events, with a relative loss of 6% in the signal efficiencies.

C: Signal region preselection
A loose selection based on the most discriminant variables was applied to define the
signal region. The ratio of expected signal and background is of the order of 0.05
after this step. The requirements are listed in table 1.

The agreement between the data and the simulation rates after each preselection step
is shown in table 2; the corresponding signal efficiencies are shown in table 3. The data
and simulation rates agree within about 5% after steps A and B. The distributions of
several event variables are shown for step C in figure 2. The observed and expected rates
are within 1.5 o of each other after step C. The systematic uncertainties quoted in the
final hadronic selection will be described in section 2.4.

Variable  min max
pr - 60 GeV/e
Myis - 103 GeV/c?
Acollinearity 10° 85°
Pl - 42 GeV/e
log g acop 0.6 -
T: 0.83 -

Table 1: Hqq channel: minimum and maximum permitted values in preselection C.
M is the visible mass, Py, is the momentum of the most isolated particle, other
variables are explained in the text.

2.3 Discriminant functions and mass reconstruction

The simulated events passing preselection C were used for calculating the first IDA
function which has the distribution shown in figure 3a. At this stage an unbiased com-
parison of the data and simulation can be made only in the range of the weight variable
where the possible signal contribution is negligible. A good agreement between the data
and the simulated background is observed. As input for the second iteration a cut was



Selection Data Total MC WTW~  Wer, qqy 77" ZeTe~ ~y+Bhabha
Step A 6246 6156 21 691.8+0.6 17.7+0.1 4918+1 46.1£0.2 36.740.9 450+20
Step B 5974 5879 +21 642.4+1.4 16.8£0.1 472543 44.1+0.4 34.5+1.0 420+20
Step C 244 222 4+5 61.1+41.4 11.240.2 122.5+1.2 3.6+0.2 1.040.3 2345
1st IDA 35 40 +1 22.0£09 7.0£0.2 8.1£0.3 2.5£0.2 0.0 0.0

Final 13  10.5+0.5 5.1£04 2.7+0.1 1.44+0.1 1.440.1 0.0 0.0

Table 2: Hqq channel: data and simulated background rates after different steps of the
analysis.

Selection Efficiency [%] for different my (GeV/c?)
60 65 70 75 80 85 90
Step A 94.9 93.6 93.9 93.3 92.6 93.1 90.9
Step B 88.5 87.5 86.4 85.7 84.8 86.3 84.1
Step C  70.4 70.6 70.9 68.6 66.6 67.4 52.9
1st IDA 56.9 61.0 61.3 63.0 61.0 62.0 47.9
Final 24.4 30.5 35.9 40.3 43.3 44.2 27.7
+(stat.) 14 1.5 15 1.6 1.6 1.6 1.4
+(syst.) 24 3.1 3.6 4.0 43 44 2.8

Table 3: Hqq channel: signal efficiencies after different steps of the analysis.

applied keeping 90% of the signal. The distribution of the weight after the second itera-
tion is shown in figure 3b. The weight distributions as well as the signal and background
estimates are obtained from simulation samples that are statistically independent from
the samples used in computing the IDA functions.

The invariant mass of the invisible system, the recoil mass, was determined by requiring
energy and momentum conservation and by constraining the invariant mass of the visible
system to the Z mass. The recoil mass is thus expressed as:

m Evis 2 m ?
Mrec = \l (Ecms - ]Zwvis ) - (1\4Zv1> )

where p is the missing momentum. The distributions of the second weight function
versus the recoil mass are shown in figure 4a for the data and in figure 4b for the expected
background. The data are in agreement with the prediction from background simulation
and no structure is observed in the recoil mass distribution, shown in figure 4c.

The minimum value required for the second IDA weight function, the working point,
was chosen by optimizing the expected exclusion limit (see section 4). The best expected
limit was obtained for the working point shown by the dashed and thick lines in figures 3b
and 4 a,b, respectively. The distributions of the recoil mass in figure 4c are projected for
the events above the working point. The efficiencies and expected number of background
events are summarized in tables 2 and 3, together with the observed data.




2.4 Results from hadronic channel

The selected data sample consists of 13 events, with an expected background of
10.540.5(stat.)£2.0(syst.). The largest background component in the final selection con-
sists of WTW™ pairs with one W boson decaying into hadrons and the other one into 7v
with a large amount of energy escaping in neutrinos.

The systematic uncertainties in the background are expected to be dominated by the
imprecision of the detector simulation in reproducing tails of event variable distributions.
These effects were studied by smearing the distributions of reconstructed particle mul-
tiplicities in the simulation. The amount of particle level smearing was specified by the
small deviations observed between the data and simulation in a high statistics sample
of hadronic Z events (y/s = my) collected in the same experimental conditions. These
smearings were applied in particle classes of different type, momentum, and polar angle.
A background uncertainty of 20% was estimated in the working point selection. Other
sources of systematics are negligible with respect to this value. The systematic uncer-
tainties in the efficiencies were checked using a signal-like event sample of hadron jet
topologies which were tagged by the presence of isolated particles (leptons from WHW~
decays or isolated photons in qq (n7y) events). The event variables were computed using
the hadronic systems recoiling against the tag particles and were passed through the se-
lection. The agreement between the data and simulation limits the uncertainties in the
signal efficiencies to & 10% relative.

3 Muon channel

The Hu™p represents 3.4% of the HZ final states. The experimental signature of
the HZ(Z— p*p~) final states is a pair of acoplanar and acollinear muons, with an
invariant mass compatible with the expectation from Z — p*u~ decays. The signal and
background simulations were made with the same programs as for the hadronic channel.
The analysed data sample corresponds to an integrated luminosity of 53.9 pb~1.

3.1 Particle and event selection

Charged particles were selected with similar criteria as those in the hadronic channel.
Tracks with momenta above 120% of the beam momentum or with large momentum
errors (0p/p greater than 100%) were rejected. Neutral particles were selected if their
energy in the calorimeters was above 100 MeV.

Events were required to have no more than five charged particles. The two fastest
particles were taken as lepton candidates and had to have opposite charges and momenta
greater than 10 GeV/c. Other charged particles had to have momenta below 5 GeV/c.
This recovered HZ(Z— pu ™) events with two muons accompanied by an electron pair
coming from the conversion of a final state photon. Cosmic ray events were rejected by
requiring an acollinearity of the two lepton candidates greater than 1°. At least one hit in
the vertex detector associated with the fastest charged particle was also required in order
to reduce triggers caused by cosmic rays. In addition, the energy of charged particles had
to be greater than 0.25,/s. At this level, 97.0% of the Bhabha events and 99.8% of the
vy events were rejected.



Muon identification was performed for the two fastest particles in the event to reduce
Bhabha and 4-fermions background further. The identification was provided primarily
by the algorithm described in [10] which relies on the association of charged particle
tracks to signals in the barrel and forward muon chambers. The same algorithm has
been extended to the surrounding muon chambers. The longitudinal profile of the energy
deposition in the hadron calorimeter was also considered, including the cathode read-out
information, in order to improve the identification efficiency. The performance of the
muon identification at /s =183 GeV was cross-checked using simulated Z — ptpu=(v)
and Z — 777 () events. After the muon identification, the dominant background comes
from ptp=(y) and vy — ptp~ processes. No Bhabha events survive.

Two thirds of the remaining two-photon processes are suppressed by selecting a mo-
mentum of the faster muon greater than 41 GeV/c, and lower than 74 GeV/c. Then,
the visible mass of the event was required to lie between 79 GeV/c? and 96 GeV/c?. At
this level of selection, the dominant background consists of u* ™ events with a photon
radiated along the beam pipe. The two-fermion and two-photon backgrounds were sup-
pressed after rejecting events with an acoplanarity of the muon pair with respect to the
beam axis below 1.45°. The acollinearity of the muon pair must also be larger than 2.3°
and below 62°. The sum of the momenta in the plane transverse to the beam axis was
required to be greater than 31 GeV/c. The missing momentum had to be greater than
12 GeV/c and below 51.5 GeV /¢, and its direction had to deviate from the beam axis by
more than 4.5° .

The above requirements were obtained by a step-wise optimization in which each cut
value is varied at a given efficiency in search of the minimum background, iterating over
the variables until a stable selection is achieved. The optimization was performed on
half of the simulated samples and the selection was then applied to the remaining half
to define unbiased efficiency and background estimates. Higgs boson masses from 60 to
95 GeV/c* were considered in the optimization. The working point, i.e. the optimal
combination of efficiency and background, was determined by minimizing the expected
limit, see section 4.

3.2 Results from muon channel

Table 4 details the effect of the selections on the data and the simulated samples
contributing to the background. The agreement of the data with the simulation was
satisfactory after cosmic ray rejection. This can also be seen in figure 5, which shows the
distributions of the acoplanarity and the acollinearity of the two lepton candidates after
the cosmic ray rejection, the momentum of the fastest muon, and the visible mass of the
event after the muon identification. At the end of the analysis, the expected background
comes mainly from WTW~, and amounts to 1.74 £ 0.25(stat.) & 0.59(syst.) events. The
signal efficiencies for different Higgs boson masses are given in table 5.

Two events were left in the data after the final selection, compared to 1.74 expected
from the simulation. In both events, the two muons are clearly identified in the barrel
muon chamber and by the cathode readout of the hadron calorimeter. The kinematical
variables of these events are shown in table 6.

The systematic uncertainties on the number of events expected for the signal and
background were estimated by smearing the selection criteria by amounts corresponding



Selection Data  Total ~ WTW— ZZ" putu=(y) ZeTe™ ~y Bhabha Hutu~
background 77 () Wer, e(%)
Anti-cosmics 3035 3091 +13 52.1  2.57 337 10.9 630 2056 86.1

w identification 402 408 +4 11.8 1.26 230 4.76 160 0 83.2
Lepton momenta 143 143+ 3 9.50 0.94 101 2.45 29.7 0 80.4
Dimuon mass 49 51.24+1.5 2.14 0.20 45.6 0.87 2.39 0 66.1
Event shape 3 2984035 142 0.15 1.12 0 0.30 0 63.4
Miss. momentum 2 1.744+0.25 1.24 0.15 0.35 0 0 0 63.2

Table 4: Hutp~ channel: effect of the selections on data, simulated background, and
simulated signal events at /s = 183 GeV. Efficiencies are given for an my=80 GeV/c?
simulation. The zero quantities have been cross-checked by ignoring the muon identifica-
tion cut with no new entries at the end.

Efficiency [%) for different my (GeV/c?)
60 65 70 75 80 85 90 95
341£10 528 +1.1 58.5+£0.7 59.8+1.0 63.2+1.0 62.0£0.7 59.1£0.7 37.0£1.0

Table 5: Hu"p~ channel: efficiency of the selection at /s = 183 GeV as a function of
the mass of the Higgs boson. The uncertainties are due to simulation statistics.

p(p1)  p(p2) Acollinearity Acoplanarity pipiq Omis Myis(fit) Mipies(fit)

GeV/c GeV/c ° ° GeV/e °  GeV/c2  GeV/c?
Event 1 57.2 41.2 44.1 64.1 39.8 70 90.0+£ 2.7 749+ 43
Event 2 64.2 32.2 104 15.9 32.7 88 91427 79.7+£5.1

Table 6: Hutp~ channel: the selected events. Columns p(u1) and p(pg) are the muon
momenta. Columns p ;s and 6, are the missing momentum and polar angles of the
missing momentum vectors, respectively. M;q(fit) and My ;44(fit) are the fitted invari-
ant masses of the visible and recoil systems, respectively.



to the differences between the mean values of the data and simulation distributions of
the event variables. In order to have further sensitivity to generator level effects, the
four-fermion processes obtained with the PYTHIA and EXCALIBUR [16] generators were
compared at each step of the selection. A systematic uncertainty of £0.59 events in
the expected background at the working point was assigned, which includes effects from
efficiency uncertainties.

4 Interpretation

A confidence level method was used for optimizing the working points and deriving the
limits. The confidence at which the signal hypothesis can be rejected (C'Lg) was calculated
with the technique of modified frequentist likelihood ratio [15], using the reconstructed
recoil mass distributions as the event statistic. In this procedure, working points of the
two non-overlapping channels Hqq and Hu™ p~were chosen by maximizing the expected
limit. The observed rates of events and their recoil mass distributions were then combined
for cross-section and mass limits at the 95% CL,. The DELPHI 161-172 GeV results of
event counting in the hadronic channel [1] were included in the likelihood ratio. These
data sets correspond to an integrated luminosity of 19.7 pb~!. One event was observed
with an expected total background of 2.2 events and with signal efficiencies in the 14-25%
range.

4.1 Cross-section limit

The observed and expected upper limits on the cross-section for the process ete™ —
Z(anything)H(invisible) were calculated as a function of the Higgs mass. This model-
independent result is shown in figure 6a. From the comparison with the SM Higgs boson
cross-section and assuming a branching fraction of the Higgs boson into invisible parti-
cles, BRipy=100 %, the expected and observed lower mass limits are 80.9 GeV/c? and
76.1 GeV/c?, respectively.

The invisible branching fraction can be assumed to be a free parameter while keeping
the relative SM decay probabilities for the visible decays. In this case, the searches
for visible and invisible Higgs bosons can be combined, and the excluded region in the
(BRiny, my ) plane is determined assuming SM production cross-sections. Using the
DELPHTI limits on the visible cross-section [17] a lower mass limit of 76.1 GeV/c? is
found, independent of the fraction of invisible decays, as is apparent from figure 6b. In
computing these limits, the overlap between the Standard Model Hvo and the invisible
Higgs boson hadronic selections have been resolved, by using only one at the time: the
invisible hadronic mode in the region BR;,, > 50%, and Hrv in the region BR,, < 50%.

4.2 MSSM parameter space exclusion

In the MSSM the Higgs sector is extended to two isodoublets of scalar fields. This
leads to the existence of five physical Higgs particles: two CP-even bosons h and H, one
CP-odd boson A, and two charged Higgs particles H*. The h boson, being the lightest
of these five, may be accessible at LEP2 energies.



The MSSM parameters describing the branching ratio of h into invisible states are
tan (3, the ratio of the Higgs field vacuum expectation values, the gaugino mass parameter
M, assumed to be unified with the mass term M;, and the Higgs mixing parameter p. In
addition to the kinematical constraints, i.e. the Higgs and neutralino masses, weak isospin
conservation in the Higgs boson decay requires that the LSPs are not pure Higgsino or
gaugino states, and therefore the branching ratio into neutralinos is largest at My >~ |pu.
For small tan 3, the decay of the lightest Higgs boson into a pair of LSPs is favoured,
leading to invisible final states. In fact, it turns out that whenever the parameters allow
an invisible decay, the branching ratio is likely to be near 100%. The MSSM h boson
production cross-section is proportional to the SM Higgs boson cross-section with a ratio
sin?(8 — ). The mixing parameter « is defined by my, ma and tan 3 .

The program HDECAY|[18] was used to calculate the branching ratio for the lightest
Higgs boson into LSPs. Assuming tan = 1.65 and my4 = myz a scan can be made
over the two remaining parameters M, and p. A point in the MSSM parameter space is
excluded if it satisfies the requirement

o(h — inv ) = oqp(hZ) - sin®(8 — ) - BR(h — inv ) > o(limit)

The 95% CL excluded region, with the specified parameter values, is shown in figure 6c.
The parameter region overlaps the exclusion region from direct searches for charginos and
neutralinos [6].

4.3 Majoron model

The cross-section limits can be used to set a limit on the Higgs bosons in a Majoron
model with one Higgs boson doublet ¢ and one singlet n [7,8]. Mixing the real parts of ¢
and 7 leads to two massive Higgs bosons:

H = ¢r cosf —nr sinfd
S = ¢r sinf +nr cosd,

where 6 is the mixing angle. The imaginary part of the singlet field is identified as
the Majoron which decouples from the fermion and gauge sector but might have large
couplings to the Higgs bosons. The free parameters of this model are the masses of the
two Higgs bosons (H and S), the mixing angle 6, and the ratio of the vacuum expectation
values of the ¢ and 7 fields (tan 8 = vy/vy).

The production rates of the H and S are reduced with respect to the SM Higgs boson
by factors of cos?f and sin?# respectively. The decay widths of the H and S into the
heaviest possible fermion-antifermion pair are reduced by the same factor and their decay
widths into a Majoron pair are proportional to the complementary factors (cos®#6 for S
and sin? § for H). We concentrate on the case where the invisible Higgs boson decay mode
is dominant (tan 3 large). The excluded region in the mixing angle versus Higgs boson
mass plane is shown in figure 6d.

5 Conclusion

In a data sample of 54 pb~!collected by the DELPHI detector at centre-of-mass ener-
gies of \/s ~ 183 GeV two Hutp~ candidates were found with an expected background
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of 1.740.2(stat.)+0.2(syst.) events, and 13 Hqq events were selected with an expected
background of 10.540.5(stat.)+2(syst.) events.

Combining these analyses and the earlier DELPHI LEP2 results, the mass limit for
Higgs bosons is 76.1 GeV /c? with a Standard Model cross-section. This limit is valid for
an arbitrary fraction of invisible Higgs boson decays. In the Majoron model with one
doublet and one singlet, a large region in the Higgs boson mass versus the mixing angle
plane is excluded beyond the reach of LEP1.
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Figure 2: A comparison of data (dots) and simulated background for the six variables,
defined in the text, in the Hqq channel after preselection C. The thin histogram line
is the sum of qqvy (hatched), 4-fermion background (double hatched), vy and a small
contribution from Bhabha processes. The thick line is the expected signal distribution
for an 80 GeV/c? Higgs boson with arbitrary scale.



13

U) I '
é a) DATA : 244 events DELPHI
© 50 - MC : 222.3 events i
40 - §
30 - §
g
10 a % —
0 m NI I NS e s \\\x AN N1 L1
-3 25 -2 -15 -1 -05 O 0.5 1 15 2
Weight output after IDA1
%)
% 14 7b) DATA : 35 events I
12 + MC : 39.6 events
10 - §
8- i
: T XX I“’—I—“_|_‘;
4 - .,.,‘o'o'o'ovo:o’
0 NN 7 NI N\\i\\x\\\\w\\\\\“\ NN NN PGS 4
-3 -2 -1 0 1 2 3 4 5 6

Weight output after IDA2

Figure 3: The weight from the first (a) and second (b) step of the iterative discriminant
analysis (IDA) for the Hqq channel. The applied cuts are shown as vertical lines. The
thick line is the expected signal distribution for an 80 GeV/c? Higgs boson, normalized
to the luminosity, scaled up by factors of ten and two in (a) and (b), respectively. The
dots represent the data and the background is defined as in figure 2.



14

e0: o<4oOQd0=0
O:c000o0doo0no

so00c00000

o OoogooO0d0ocooo

P =0 OoOooOJoOdoO0dOcoo
=seo0e-0c0o000o00e00 0000000
=1 il iml=te] =Tl =) =l
»e0 0 oooefgOoo00o0000o0QQOOO]D
.00 O-00000e:0e«00-0000000
O-:o0ee0=[Joododooodod

weight output (IDA2)
weight output (IDA2)

s0-00e0800 OO0c000e=000000000
oo «Oso Oooof0cOoa0oongdss
a5en s 5]

. =]
boo - o o [Jooscooodddoooddo
»e200 =0eo000-000:-0000000000

'1 [+« F -ooOdoogoboo 00o0o00<00000w 17
. e sDoOO0 oo :

40 60 80 100 100
reconstr. mass (Ge\f})c reconstr. mass (Ge\fl)c

10 -C) DATA : 13 events DELPHI
i MC : 10.5 events

events

RXRZS
[So%0093e% 25
o aoosse0sess
ST oooozzi:i:i:v‘w.‘.?? 55

RIS
Dgososeeetetetetetessessss
CRRLRLLRERS

o8
R
0909699 9:9%
r [N s 60000000 0000000050505 050 008080008000 %% %! IR
P . S S AR L |
0 aaviraaravarare POCOOG i S e St I ) | L

30 40 50 60 70 80 90 100
Higgs mass (Gevh

0
000

X
%

%S
5

5
R
3%
KL

o
%

35
3
8
25

<
%

e

35
R KK

Figure 4: The distributions of the second IDA weight function vs. the recoil mass for the
events selected after the first IDA iteration for the data (a) and the background (b), and
the distribution of the recoil mass (c) in the working point region above the horizontal
line in (a,b). The thick line is the expected signal distribution for an 80 GeV/c? Higgs
boson, normalized to the luminosity and added on top of the background. The dots
represent the data and the background is defined as in figure 2.



15

c c
E SE é 102;
5 10°0 DELPHI (a) ;% DELPHI (b)
51020 5 |
> 10 E > N
o F 10
10 g
|
10 p | | | ‘ | | | ‘ | | L ‘ | | | ‘ ; ‘ | | | ‘ | | | ‘ | | | ‘ \H\ ’\_“ H
0 20 40 60 80 0 20 40 60 80
Acoplanarity (deg.) Acoplanarity (deg.)

(d)

events / bin
=
o
N
events / bin
=
o
N

10 10
1
10 -1 | | | | ‘ | | | | ‘ | | | | ‘ | | 1 | | | | ‘ | | | | ‘H\ m m | ‘ \H\ |
0 50 100 150 0 50 100 150
Acollinearity (deg.) Acollinearity (deg.)
c c
ie) 50; i) r f
@ 400 0 150 [ (f)
5 B 5 B
s 30F 100
20 g
101 0
o F 1 = 0 : 1 ‘ | e ) ‘ |
0 50 100 0 50 100
Fasteqn momentum (GeV/c) Fasten momentum (GeV/c)
£ 60 £
o L 8 D
2 @ 3,00 (h)
S 40+ s L
> = > L
(%) L (5 B
20 200 |-
07 _______ e Oiljl L1 \\\‘\\\\‘\
0 50 100 150 200 0 50 100 150 200
Visible mass (Gevf() Visible mass (GeV/?()

Figure 5: Hutp~ analysis: Distributions of the acoplanarity (a-b) and of the acollinearity
(c-d) of the two muon candidates after the rejection of cosmic ray events. Distributions
of the momentum of the fastest muon (e-f) and of the visible mass (g-h) after muon iden-
tification. The plots on the left show a comparison between /s =183 GeV data (points)
and simulated background events (solid line) normalized to the experimental luminos-
ity. The light grey area represents the contribution from the 4-fermion background, the
dark grey the contribution of Bhabha and 2-photon processes, and the white area the
contribution of 11(7)(DYMU3 generator). The plots on the right show the unnormalized
expected distributions for a Higgs boson of 80 GeV /c?.



= 1.1 r =
s 19 DELPHI | £
1l !
I <
i @
0.9 -
08|
04 7 — observed limit
L .- expected limit
[ -0
03[ SM 80.9
i 76.2
020l L L. L -
60 70 80 90
Higgs mass (GeV?;t
~p 300 ®
> h o DELPHI | &
O 183 GeV
=250 1
Il excluded at 95% CL
200 -
150 -
100
507\\\\\\\\\\\\\\\\\\\\\\\\
50 100 150 200 250 300
1 GeV/é
Figure 6:
ete”

16

-b) DELPHI -
09 ]
08F e 4 .
07 .
0.6 et ]
05F @* q ]

: 0%

04 - C/O@ b
03 O ]

r --invisible channels only

[ - visible channels only
0.2 = —poth channels combined ]
01F .

0 E L ]
60 70 80 90
Higgs mass (Gev?¢
1r
“d)
09 L DELPHI
0.8 , Excluded for S
F at 986 CL
0.7 F
06 F
05F
0.4 ¢
03F
0.2 : Excluded for H
at 986 CL
0.1F
0:H\MHMHMHMHMHMH\HMHMH
60 62 64 66 68 70 72 74 76 78 80

—  Z(anything) H(invisible) as a function of the Higgs boson mass.

Higgs mass (GeVfy

a) The 95% CL upper limit on the cross-section of the process

The

dashed-dotted line shows the Standard Model cross-section. b) Limits on myas a func-
tion of the branching ratio into invisible decays, assuming a (1 — BR) branching ratio
into standard visible decay modes. c¢) Excluded area in the MSSM M, vs. p plane for
my = my and tan 3 = 1.65. d) Limit on sin?# as a function of the Higgs boson mass at
95% CL. S and H are the Higgs bosons in the Majoron model with expected production
rates for large tan 5. In this case, the Higgs boson decays only invisibly.



