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Abstract

The emergence of free fermionic string models with solely the MSSM
charged spectrum below the string scale provides further evidence to the as-
sertion that the true string vacuum is connected to the Z2×Z2 orbifold in the
vicinity of the free fermionic point in the Narain moduli space. An important
property of the Z2 × Z2 orbifold is the cyclic permutation symmetry between
the three twisted sectors. If preserved in the three generations models the cyclic
permutation symmetry results in a family universal anomalous U(1)A, which
is instrumental in explaining squark degeneracy, provided that the dominant
component of supersymmetry breaking arises from the U(1)A D–term. Inter-
estingly, the contribution of the family–universal DA-term to the squark masses
may be intra-family non-universal, and may differ from the usual (universal)
boundary conditions assumed in the MSSM. We contemplate how DA–term
spectroscopy may be instrumental in studying superstring models irrespective
of our ignorance of the details of supersymmetry breaking. We examine the
possible effect of the intra–family non–universality on the resulting SUSY spec-
trum and the values of the strong coupling, effective weak mixing angle and
W-gauge boson mass, up to a two loop accuracy, in the two models (univer-
sal and non-universal). We find that non universality relaxes the constraint
of color and charge breaking minima which appears in the universal case. In
addition, it predicts a 3% smaller value of αs due to different threshold masses
obtained in the latter scenario. Finally, we present the experimentally allowed
predictions of the two models in an M0 and M1/2 parameter space.
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1 Introduction

Superstring phenomenology aims at achieving two goals. The first task is to

reproduce the phenomenological data provided by the Standard Particle Model. The

subsequent goal is to extract possible experimental signatures which may provide

further evidence for the validity of specific string models, in particular, and for string

theory, in general.

The most realistic superstring models constructed to date are those in the free

fermionic formulation [1, 2, 3, 4, 5, 6]. Not only do these models naturally give rise

to three generations with the SO(10) embedding of the Standard Model spectrum,

but it was recently also shown, that free fermionic models can also produce models

with solely the MSSM charged spectrum below the string scale [6]. Thus, for the first

time we have an example of a Minimal Superstring Standard Model! The success

of the free fermionic models suggests that some of their underlying structure will

persist in the true string vacuum. The key properties, which may be the origin

of the phenomenological success of the free fermionic models, are: 1) the fact that

the free fermionic formulation is formulated at an enhanced symmetry point in the

Narain moduli space; and 2) their relation with Z2 × Z2 orbifold compactification,

which underlies the free fermionic models. The phenomenological success of the free

fermionic models provides evidence to the assertion that the true string vacuum is

connected to the Z2 × Z2 orbifold in the vicinity of the free fermionic point in the

Narain moduli space.

Subsequent to establishing the phenomenological viability of heterotic–string free

fermionic models we may seek possible experimental signatures which will provide

further evidence to the validity of specific models, in particular, and to string theory,

in general. One such possible signature which has been discussed in the past is the

appearance of exotic states with fractional U(1)Y or U(1)Z′ charge [7]. Such states

appear because of the breaking of the non–Abelian gauge symmetries by “Wilson–

lines” in string theory. While on the one hand the existence of such light states

imposes severe constraints on otherwise valid string models [8], provided that the

exotic states are either confined or sufficiently heavy, they can give rise to exotic

signatures. For example, they can produce heavy dark matter candidate, possibly

with observable consequences [9].

In this paper we discuss another possible signature of realistic string models. Re-

alistic string models possess N = 1 space–time supersymmetry. Different mechanism
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for breaking supersymmetry have been proposed. These include the ideas of : (i)

gaugino condensation in the hidden sector [10]; (ii) dilaton dominated SUSY break-

ing [11]; (iii) gauge mediated SUSY breaking [12]; and (iv) SUSY breaking induced

by an anomalous U(1) D–term together with effective mass term of certain relevant

fields [13, 14]. A vital issue in SUSY phenomenology is the origin of the extreme de-

generacy in the masses of the squarks in at least the first two families as inferred from

the minuscule strengths of the K0 − K̄0 transition. The problem becomes especially

acute when considering theories which consistently unify gravity with the gauge in-

teractions. For example, in string theory the soft SUSY breaking terms are in general

expected to be not family universal [15]. String models that may explain the required

mass degeneracy are therefore especially interesting. Recently it was shown that free

fermionic models possess the desired structure to explain the required squark degen-

eracy [14, 16]. The important feature is the relation of the free fermionic models to

Z2 × Z2 orbifold compactification, which possesses a cyclic permutation symmetry

between the three twisted orbifold sectors. In some of the three generation models

this cyclic permutation symmetry is preserved [14, 16]. The permutation symmetry

is reflected in the charges of the three generations under the horizontal U(1) sym-

metries, resulting in the anomalous U(1) being family universal. In the case that

the family–universal anomalous U(1) provides the dominant source of SUSY break-

ing, the squark masses are family universal. The interesting aspect in regard to the

anomalous U(1) charges is that, although they are family universal, they may have

intra–family non–universal charges. In this case, although the contribution of the

anomalous U(1) D–term to the squark masses is family universal, it is intra–family

non–universal, and differs from the usual boundary conditions assumed in the MSSM.

Consequently, the resulting sfermion spectrum will have a distinctive signature which

differs from that of the MSSM. Furthermore, suppose that there are several sources

which contribute to the sfermion masses. Some of these sources may be family and

intra–family universal, like the one arising from the dilaton. On the other hand, the

anomalous U(1) D–term may contribute a family universal, but intra–family non–

universal component to the sfermion masses. It is this component which one would

like to extract from the supersymmetric spectrum in future experiments.

In this paper we examine these ideas in the framework of the free fermionic su-

perstring models. For concreteness we focus on two of the standard–like models.

One which produces family and intra–family universal squark masses, and the sec-

ond which produces family universal but intra–family non–universal sfermion masses.
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We contemplate how DA–term spectroscopy may be instrumental in studying super-

string models irrespective of our ignorance of the details of supersymmetry breaking.

We examine the possible effect of the intra–family non–universality on the resulting

SUSY spectrum and the values of the strong coupling, effective weak mixing angle

and W-gauge boson mass, up to a two loop accuracy, in the two models (universal

and non-universal). We find that non universality relaxes the constraint of color and

charge breaking minima which appears in the universal case. In addition, it predicts

a 3% smaller value of αs due to different threshold masses obtained in the latter sce-

nario. Finally, we present the experimentally allowed predictions of the two models

in an M0 and M1/2 parameter space.

2 Anomalous U(1) SUSY breaking in free fermionic models

Let us recall that a model in the free fermionic formulation is defined by a set

of boundary condition basis vectors, and the associated one–loop GSO projection

coefficients [17]. The massless spectrum is obtained by applying the generalised GSO

projections. A physical state defines a vertex operator which encodes all the quantum

numbers with respect to the global and gauge symmetries. Superpotential terms are

then obtained by calculating the correlators between the vertex operators [18, 19].

The realistic free fermionic models are constructed in two stages. The first stage

consists of the NAHE set, {1, S, b1, b2, b3}. This set of boundary condition basis

vectors has been discussed extensively in the literature [20]. The properties of the

NAHE set are important to understand the emergence of a family universal anomalous

U(1) [16]. The gauge group after imposing the GSO projections of the NAHE set

basis vectors is SO(10)× SO(6)3 × E8. The three sectors b1, b2 and b3 produce 48

multiplets in the chiral 16 representation of SO(10). The states from each sector

transform under the flavor, right–moving SO(6)j gauge symmetries, and under the

left–moving global symmetries. The cyclic permutation symmetry between the basis

vectors b1, b2 and b3 is the root cause for the emergence of flavor universal anomalous

U(1) in some free fermionic models. This is further exemplified by adding to the

NAHE set the boundary condition basis vector X [21]. With a suitable choice of the

generalised GSO projection coefficients, the SO(10) gauge group is enhanced to E6.

The SO(6)3 symmetries are broken to SO(4)3×U(1)3. One combination of the U(1)
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symmetries is embedded in E6,

U(1)E6 =
1√
3
(U1 + U2 + U3). (2.1)

This U(1) symmetry is flavor independent, whereas the two orthogonal combinations

U(1)12 =
1√
2
(U1 − U2) ; (2.2)

U(1)ψ =
1√
6
(U1 + U2 − 2U3) (2.3)

are flavor dependent. The final gauge group in this case is therefore E6 × U(1)2 ×
SO(4)3 × E8.

In the realistic free fermionic models the E6 symmetry is replaced by SO(10)×
U(1). This can be seen to arise either by substituting the vector X, with a boundary

condition basis vector 2γ [21]; or by the choice of the GSO phase c(X, ξ) = ±1, where

ξ = 1+b1 +b2 +b3. In both cases the right–moving gauge group is SO(10)×U(1)A×
U(1)2 × SO(4)3 × SO(16). The E6 × E8 gauge group in both cases is replaced by

SO(10) × U(1)A × SO(16) where U(1)A is the anomalous U(1) combination. We

therefore see how in this case the anomalous U(1) is just the combination which is

embedded in E6 and its flavor universality is fact arises for this reason.

The NAHE set and the related E6 × E8 and SO(10)× U(1)A × SO(16) models

are the first stage in the construction of the three generation free fermionic models.

The next step is the construction of several additional boundary condition basis

vectors. These additional boundary condition basis vectors reduce the number of

generations to three generations, one from each of the sectors b1, b2 and b3. The

additional boundary condition basis vectors break the SO(10) gauge group to one

of its subgroups and similarly for the hidden SO(16) gauge group. At the same

time the flavor SO(4)3 symmetries are broken to factors of U(1)’s. The number

of these U(1)’s depends on the specific assignment of boundary conditions for the

set of internal world–sheet fermions and can vary from 0 to 6. At the level of the

SO(10) × U(1)A × SO(4)3 model there exist a permutation symmetry between the

sectors b1, b2 and b3 with respect to their charges under the SO(4)3 symmetries. When

the SO(4)3 symmetries are broken to factors of U(1)’s this permutation symmetry

will in general be broken. It is remarkable, however, that in some of the three

generation models the permutation symmetry between the sectors b1, b2 and b3 with

respect to their charges under the horizontal U(1) symmetries is retained. In those

5



cases the anomalous U(1) combination is family universal. In the model of ref. [5]

the anomalous U(1) is just the combination in eq. (2.1), whereas the two orthogonal

combinations are those in eqs. (2.2) and (2.3). In the model of ref. [5] the charges of

the anomalous U(1) charges of the three generations are both family universal and

intra–family universal.

The standard–like model of ref. [4] and the flipped SU(5) model of ref. [22]

exhibit a similar structure of the anomalous U(1) and anomaly free combinations.

In these two models the U(1) symmetries, generated by the world–sheet complex

fermions {η̄1, η̄2, η̄3} and {ȳ3ȳ6, ȳ1ω̄5, ω̄2ω̄4} (or {ȳ4ȳ5, ȳ1ω̄6, ω̄2ω̄3} are anomalous,

with: TrU1 = TrU2 = TrU3 = 24, TrU4 = TrU5 = TrU6 = −12. The anomalous U(1)

combination in both models is therefore given by

UA =
1√
15

(2(U1 + U2 + U3)− (U4 + U5 + U6)) ; TrQA =
1√
15

180 . (2.4)

One choice for the five anomaly–free combinations is given by

U12 =
1√
2
(U1 − U2) , Uψ =

1√
6
(U1 + U2 − 2U3), (2.5)

U45 =
1√
2
(U4 − U5) , Uζ =

1√
6
(U4 + U5 − 2U6), (2.6)

Uχ =
1√
15

(U1 + U2 + U3 + 2U4 + 2U5 + 2U6). (2.7)

The anomalous U(1) in the model of ref. [4] is family universal, but is intra–family

non–universal. This arises because of the charges of the three generations under the

three horizontal symmetries U(1)4,5,6. Although the permutation symmetry between

the sectors b1, b2 and b3 with respect to charges under these three U(1)′s is maintained,

the charges differ between members of each family.

Supersymmetry breaking in the presence of a family–universal anomalous U(1)

symmetry in the realistic free fermionic models was analysed in detail in ref. [14].

Supersymmetry breaking will occur, at hierarchically small scale if there is a mass

term, mΦΦ̄, for some Standard Model singlet, which is charged under the anomalous

U(1). The effective potential then takes the form

V =
g2

2

∑
α

D2
α + m2(|Φ|2 + |Φ̄|2) (2.8)

where Dα are the various U(1) D–terms, and we assumed a common coupling g at

the unification scale, to simplify the analysis. Extremizing the potential it is found
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that SUSY is broken. Furthermore, for a specific solution of the F and D flatness

constraints it is found that the mass term m is hierarchically suppressed and that in

the minimum the D–terms of the family universal U(1)’s are nonzero, whereas those

of the family dependent U(1) vanish. This solution therefore provides an example

how the squark mass degeneracy may arise, provided that the dominant component

that breaks supersymmetry is the anomalous U(1) D–term. Furthermore, the mass

term m, which breaks supersymmetry, can be hierarchically small relative to the

Planck scale. This is because such a term must arise from nonrenormalizable terms

that contain hidden sector condensates. The condensation scale in the hidden sector

is determined by its gauge and matter content. For example, in the model of ref

[4] we found a cubic level flat F − D solution, with the mass term m induced at

order N = 8, by matter condensates of the hidden SU(5) gauge group [14]. A

numerical estimate of the mass term m yielded m ∼ (1/2− 50)TeV. The analysis of

flat directions and minimisation of of the potential in the presence of the mass term

was performed in ref. [14] for the string models of ref. [5] and [4]. The important

aspect is the distinction between the two models with respect to the charges of the

chiral generations under the anomalous U(1) symmetry. In the model of ref. [5] the

anomalous U(1) combination is given in eq. (2.1) and is both family universal and

intra–family universal. On the other hand in the model of ref. [4] the anomalous

U(1) combination is given in eq. (2.4) and is family universal but not intra–family

universal. The contribution of the anomalous U(1) D–term to the squark masses is

given by

[m2
q̃i
]DA

= g2Qi
A〈DA〉, (2.9)

and likewise for the sleptons. Here Qi
A are the charges of the sfermions under the

anomalous U(1) and 〈DA〉 is the vev of the D–term of the anomalous U(1) in the min-

imum of the potential. Thus, assuming that the anomalous U(1) provides the domi-

nant source of supersymmetry breaking, the two models will yield different boundary

conditions for the soft SUSY breaking terms at the unification scale. With this as-

sumption, whereas the model of ref. [5] produces the usual family and intra–family

universal boundary conditions for the soft SUSY sfermion masses[
m2(Q̃L) : m2(ũR) : m2(d̃R) : m2(L̃) : m2(ẽR)

]
DA

= 1 : 1 : 1 : 1 : 1 (2.10)

the model of ref. [4] produces the boundary conditions which are family universal

but intra–family non–universal boundary conditions,[
m2(Q̃L) : m2(ũR) : m2(d̃R) : m2(L̃) : m2(ẽR)

]
DA

= 3 : 1 : 3 : 1 : 1 (2.11)
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3 Superstring D–term spectroscopy

The boundary conditions in Eq. (2.10) and (2.11) represent the contribution of

the anomalous U(1) D–term to the sfermion masses. As argued in ref. [14] it is

likely that this contribution will be accompanied by another coming, for example,

from the dilaton VEV. Thus, the soft SUSY breaking boundary conditions may in-

clude a piece which is family and intra–family universal as well as the anomalous

U(1) D–term contribution which is family universal but may be intra–family non–

universal. The important point is that in the superstring models the charges under

the anomaly free and anomalous U(1) symmetries are given. Thus, in the event

that future experiments observe the supersymmetric partners, specific patterns of

the observed SUSY spectrum will be correlated with specific patterns of charges in

the superstring models. Naturally, a full correlation will require a more complete

solution to the problem of supersymmetry breaking in string theory. Nevertheless,

it is obvious that at first attempt what will be required is a crude analysis of the

type that we discuss here. Furthermore, the phenomenological data to be provided

by the future SUSY spectrum will be instrumental in constraining the viable super-

string models. Suppose then that at the unification scale the soft SUSY breaking

parameters are give by a piece which is family and intra–family universal as well as

one which depends on the anomalous U(1) D–term. It is precisely the piece which

depends on the anomalous U(1) charge which we will want to extract in future ex-

periments. In our analysis below we will assume heuristically that the soft SUSY

parameters are given at the MSSM unification scale, and a more refined analysis will

have to address the issue of bridging the MSSM and string unification scale, either

by the inclusion of additional matter states [22, 23] or by Witten’s M–theory solu-

tion [24]. With this assumptions the scalar masses at the low scale are parametrised

by the usual m1/2, m0, and A, soft SUSY breaking parameters, and the two Higgs

mixing parameters, as well as the anomalous U(1) D–term contribution. Using the

renormalization group equations (RGE’s), the soft supersymmetry breaking masses

at low energies are calculated from the parameters at the unification scale.

Although Yukawas contribute to sparticle masses in the RGE’s and their effect is

numerically calculable in terms of the KM angles and the top quark mass, it is conve-

nient to eliminate their influence from this program [25]. First, we may safely neglect

all but the top and bottom quark Yukawas. Second, in a charge-2/3 quark mass eigen-

state superfield basis, the top quark Yukawa will contribute only to third–generation
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sparticle masses. The bottom Yukawa will give non–diagonal contributions involving

the first and second generations which will lead to the requirement of an explicit

diagonalization of the 6 × 6 up and down squark mass matrices. However, these

off–diagonal contributions are suppressed by KM angles mixing the third generation

to the first and second, and except for very large values of tanβ (which imply a large

bottom Yukawa) may be neglected. In the case of equal top and bottom Yukawas

at the unification scale, the effects of Yukawas can be included in a full numerical

analysis. But for the purposes of the discussion here we restrict our analysis to first

and second generation sparticles and neglect the generally small effects of Yukawas

on these masses. This has the additional advantage of removing the soft supersym-

metry breaking trilinear coupling A and the superpotential Higgs mixing parameters

µ and B from the analysis. Because of experimental difficulties in detecting neutral

particles, and the possibility of confusion between the many other neutral particles in

supersymmetric theories, we also eliminate the sneutrinos from our phenomenological

discussion.

Under these assumptions the light–generation sparticle masses may then be ana-

lytically calculated from the one–loop RGE’s in terms of the three unknowns m 1
2
, m0,

cos2β, and the VEV of the anomalous U(1)A D–term, 〈DA〉, which is of the order of

the electroweak scale [14]:

m2
p̃ = m̃2

0 + cp̃m
2
1
2

+ dp̃cos2βM2
W + Qp̃

A〈DA〉 (3.1)

where m̃2
0 contain all the family universal contributions, like those arising from the

dilaton VEV and Qp̃
A is the charge of a sparticle under U(1)A. The coefficients

cp̃ for the different sparticles result from the running of the gaugino masses, and

dp̃ = 2(T p̃
3L
− 3

5
Y p̃ tan2 θW ) results from the electroweak Higgs VEVs. The last piece

entails the anomalous U(1) D–term contribution, and we absorbed all universal fac-

tors into 〈DA〉. It is this last piece that we would want to extract from a future su-

persymmetric spectrum, as it depends on the specific U(1)A charges in a given string

model. For example, given the ratio of U(1)A charges in eq. (2.11) we are interested

in extracting the relative weight between the different family members. Then we can

absorb all family universal dependence into 〈DA〉. The resulting equations (3.1) will

then depend on the anomalous U(1)A charges of the various sparticles. The equations

can then be solved for 〈DA〉 and through their dependence on the charges different

models will produce distinctive dependence on the measured sparticle masses. For
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example, with the charges given in Eq. (2.11) we have

cos 2β =
(m2

ũl
−m2

d̃l
)

2M2
W

=
∆Q

2M2
W

m2
1/2 =

(m2
d̃l
−m2

d̃r
)− (dd̃l

− dd̃r
)∆Q

2

(cd̃l
− cd̃r

)

〈DA〉 =
1

2

(
(m2

d̃r
−m2

ũr
)− (cd̃r

− cũr)m
2
1/2 − (dd̃r

− dũr)
∆Q

2

)
(3.2)

and similarly for m2
0. Thus, four measured sparticle masses can be used to test the

specific hypothesis on the source of the soft SUSY breaking terms, Eq. (2.11). More

generally, the measured sparticle masses will be used to investigate their correla-

tion with the charges in specific string models. Such hypothesis will then be further

tested by the additional sfermion masses. Just as the Standard Model charges pro-

vide strong support for an underlying SO(10) structure, a successful correlation will

provide further evidence for such successful string models. We shall postpone a more

detailed analysis of the sfermion spectroscopy in these models until the supersymmet-

ric spectrum is actually observed. In the next section we will examine the possible

effect of the non–universal stringy boundary conditions on Z–scale observables.

4 Spectroscopy and Z–Observables

In this section we examine the possible effect of the string intra–family nonuniver-

sal boundary conditions on Z–scale observable. For concreteness we assume that the

boundary conditions are given at the MSSM unification scale and extrapolate to low

energy assuming the MSSM spectrum. More detailed study, including the effect of

additional matter, is delegated to future work. In the following, we make a numerical

analysis of the two cases we mentioned so far :

Universal :

m2(Q̃L) : m2(ũR) : m2(d̃R) : m2(L̃) : m2(ẽR) = M2
0 : M2

0 : M2
0 : M2

0 : M2
0 ,

(4.1)

and
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Non Universal :

m2(Q̃L) : m2(ũR) : m2(d̃R) : m2(L̃) : m2(ẽR) = 3×M2
0 : M2

0 : 3×M2
0 : M2

0 : M2
0 .

(4.2)

We use two loop Renormalization group equations for the evolution of every cou-

pling and mass appeared in the model. In fact, we start by defining the gauge cou-

plings using the most precise experimental quantities : the Fermi coupling constant

GF = 1.16639×10−5 GeV−2, the electromagnetic coupling αEM(1 GeV) = 1/137.036

and the Z-boson mass, MZ = 91.187 GeV. These three quantities can be used to de-

fine the running value of the weak mixing angle (following the analysis of Refs.[26, 27])

and thus the running gauge couplings g1 =
√

5
3

e
cos θW

and g2 = e
sin θW

. We evolve them

up to the scale (GUT scale) where the couplings meet and we set the value of the

g3 equal to gGUT = g1 = g2. At this scale we impose the universal (non-universal)

boundary conditions of eqs. (4.1,4.2). We run all the parameters down to the EW

scale by assuming Radiative Electroweak symmetry breaking, where the full 1-loop

contributions to the minimisation conditions of the effective potential have been in-

cluded. Note also that in the above scheme both finite and logarithmic threshold

effects are taken properly into account [28, 29, 27]. We treat the thresholds for every

mass which appeared in the model by using the so called ’theta’-function approxima-

tion [30, 31]. That is when a running mass m(Q) passes through its physical mass

which is defined as m(Q) = Q, then this mass gets decoupled from the rest of the

RGE’s. Convergence with the above boundary conditions is reached after few iter-

ations and the outputs contain : the strong QCD coupling, αs(MZ), the (leptonic)

effective weak mixing angle, slepeff(MZ) (i.e., see Ref.[26, 27] for more details) the

W-pole mass and the sparticle spectrum.

In Table I we review the current experimental bounds on the SUSY and Higgs

particles, we have made use in this analysis. We also display the (theoretical) as-

sumptions which have been used in the derivation of these bounds. The references of

the most recent relevant articles are also displayed.

In Fig.1 we display the excluded regions in both cases of universal (M-SUGRA)

and non-universal boundary conditions and for two rather extreme values of the

tan β. Clearly, non-universality relaxes some of the experimental bounds. Thus, in

the case of Universal boundary conditions the parameter space with M0
<∼ 500 GeV

and M1/2
<∼ 190 GeV is ruled out by the Higgs searches∗ while in the case of the non-

∗We have used one loop corrections for the evaluation of the light Higgs boson mass.
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universal boundary conditions the corresponding excluded region is M0
<∼ 300 GeV

and M1/2
<∼ 190 GeV. The bounds from charginos, neutralinos and gluinos searches

exclude all the values for the M0 up to 800 GeV where M1/2 is less than 140 GeV

while they exclude all the values of M0
<∼ 800 GeV with M1/2

<∼ 120 GeV when we

assume non universal boundary conditions. These bounds are valid in all the figures

that follow in this article.

Particle Bound Assumptions Reference

mχ̃0
1

31 (42) all M0 (M0 ≥ 500) and tanβ ≥ 2 [32]

mχ̃0
2

61 (72) all M0 (M0 ≥ 500) and tanβ ≥ 2 [32]

mχ̃0
3

102 all M0 [32]

mχ̃0
4

127 [33]

mχ̃±1
84 (90.0) all M0 ≥ 100 and M1/2 ≥ 100 (M1/2 ≥ 150) GeV [32]

mχ̃±2
99 [33]

mν̃ 43.1 [33]

mẽR
84 for mχ̃0

1
< 50 [34]

mµ̃R
80 [35]

mτ̃R 80 [35]

mq̃ 250 [36]

mt̃1 83 (120) θt̃ = 56o (θt̃ = 00) and mχ̃0
1
< 50 [37, 38]

mb̃1
83 [39]

mg̃ 300 [36]

mh 78.8 [40]

mA 79.1 [40]

mH± 60 0.97 < tanβ < 40.9 [41]

Table I : Current experimental bounds on the masses of the SUSY and Higgs particles. The as-

sumptions used and the sources are also displayed.

The direct bounds from SUSY particles searches are depicted in Fig.2 in the case

of relatively large value of tan β = 30. In the case of universal boundary conditions

the upper left area is forbidden by the requirement of the Charge and Color Breaking

minima (CCB). Note that the full one loop corrections to the effective potential have

been included. In this area some of the (squared) squark or slepton masses become
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negative in the vicinity of the electroweak scale, bound which is related to the charged

and color breaking minima one. In this case, either this pattern of masses is ruled

out or there must be new physics beyond the MSSM at or below that scale [42].

Such a bound does not exist if one breaks the universality by the pattern of eq.(4.2).

However, the bounds from gaugino’s searches are stronger in the latter case and in

addition new bounds from the requirement that the LSP is the lightest neutralino,

arise.

In Figs.3,4 we present the resulting spectrum for the light squarks of the third

generation, the light charged slepton, and the light Higgs boson. The light stop mass

is lighter in the case of the non-universality and the opposite happens to be with

the light bottom squark. This fact is easily understood from eq.(4.2). The light tau

slepton mass turns out to be smaller in the case of where non-universal boundary

conditions are assumed. This is a renormalization group effect and we will discuss

it below. The light sbottom squark (squared) mass is a function of the combination

m2
Q̃

+ m2
d̃R

which is larger than the combination m2
Q̃

+ m2
ũR

which, ignoring the

electroweak breaking effects, is the (squared) mass of the light top squark. However,

this is only one part of the effect of the non universal boundary conditions. There

is another one which comes from the Renormalization Group analysis and affects all

the squarks and sleptons. Thus every RGE for the (squared) soft SUSY breaking

masses contains a term†

16π2dm2
q̃

dt
⊂ Aq̃ g2

1

{
m2
H2
−m2

H1
+ Tr

(
m2

Q̃
− 2m2

Ũc + m2
D̃c −m2

L̃
+ m2

Ẽc

)}
, (4.3)

where Aq̃ is a numerical factor, i.e., in the case of the selectron mass is AẼc = 6
5
. This

term is a multiplicative renormalised term in the absence of threshold corrections but

in this analysis where all the thresholds in the RGE for the squark masses have been

taken into account by the mean of the “theta” function approximation [31], this is

not the case. However, for universal boundary conditions this term vanishes at the

GUT scale and its effect in the running of the squark masses is rather small. If one

assumes non-universal boundary conditions this term gives a major contribution to

the RGE. Thus in our case of eq,(4.2) we obtain at the GUT scale,

16π2dm2
q̃

dt
⊂ Aq̃ g2

1 4M2
0 (4.4)

†This term appears in the RGE of the soft supersymmetry breaking masses when the gauge
group contains a U(1) [43, 44, 45, 46].
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which affects dramatically the squark and slepton masses as we can see from Fig.3,4.

Note, that in the case of the light Higgs boson mass the factors A come with opposite

sign, AH1 = −AH2 = 1/2, in the running of the (squared) masses m2
1 = m2

H1
+µ2 and

m2
2 = m2

H2
+ µ2 and thus we do not observe significant effect see, Fig.4. However, it

is worth to note that the light Higgs boson mass turns out to be larger by about 2-4

GeV in the case of the boundary conditions of eq.(4.2).

In Fig.5 we plot the masses of the lightest neutralinos and charginos. We display

only the results of the universal case since there is only a small difference in the non-

universal one. However, some few GeV differences are enough to change the allowed

or the excluded regions displayed in Fig.(1,2).

In Fig.6 we plot the resulting values of the strong coupling αs(MZ), as function of

the universal gaugino and squark masses M1/2 and M0. Threshold corrections affect

its value and thus we expect differences in the extracted values in both cases. Indeed,

we observe that in the case of the non universal boundary condition the αs(MZ) turns

out to be 3% smaller and thus closer to its experimental value, αs(MZ) = 0.119±0.002

[33]. In fact, for M1/2 = 450 GeV and M0 = 800 GeV the theoretical result is 4σ

in the case of universal and 2.5σ in the case of non universal boundary conditions,

away from the experimental result. For a rather light spectrum, M1/2 = 200 GeV and

M0 = 300 GeV the theoretical observation with the boundary conditions of eq.(4.1)

is 6.5σ far from the experimental value while in the case of the boundary conditions

of eq.(4.2) is 5σ. In the case of large value of the tan β the value of αs turns out to be

0.001 larger than the case of low values of tanβ in both cases. Thus we conclude that

in the case with non-universal boundary conditions the extracted value of the strong

coupling tends to agree with the experimental data. At this point we should say that

the string boundary conditions may affect the low energy results in interesting ways.

The uncertainties may be quite large because there may be additional matter in the

desert. The string threshold corrections have been discussed in detail in Ref.[47].

In Fig.7 the resulting effective leptonic weak mixing angle is depicted as a func-

tion of M1/2 with different values of M0 and tan β. For the experimental value,

sin2
eff(lept) = 0.23168 ± 0.00036, we show the LEP one where only the e and µ

asymmetries have been taken into account [48]. The theoretical predictions are in

agreement with the experimental data for moderate and large values of tanβ. In

the decoupling limit (where all the sparticles are heavy) we obtain a single value of

the sin2
eff=0.23135 (0.23150) for tanβ =2 (30). These values are independent of the

input values at the GUT scale for the M0, M1/2 thanks to the decoupling of the SUSY
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particles (for more details see Ref.[26]). No significant differences have been obtained

between the universal and non universal cases.

The prediction of the W-boson pole mass is coming next. We plot it in the Fig.8

for fixed values of mt = 175 GeV and A0 = 0 GeV. We observe agreement with the

experimental data both from CDF (80.405± 0.089) and LEP (80.427± 0.075) [33].

In the decoupling region, the W-boson pole mass takes on values 80.397 (80.412) for

tan β = 30 (tanβ = 2), and for all the input values‡. We obtain large changes of the

extracted W-pole mass only in the case of small values of M0 and M1/2.

5 Conclusions

In this article we aimed at achieving two goals : 1. To discuss how the anomalous

U(1) charges can be useful to study different string compactifications, in concrete

superstring models. The idea here is to show that irrespective of what we don’t know

about the mechanism of supersymmetry breaking the signature of the anomalous

U(1) charges will still provide useful information. 2. To analyse the implications

of the boundary conditions eqs.(4.1,4.2) which are given in Ref [14]. We find that

non-universality relaxes some of the experimental bounds. For example, in the case

of tanβ = 2 the mass of the light Higgs is increasing by 2-4 GeV (see Figs.(1,4)

). For large values of tan β = 30 the constraint from dangerous Charge and Color

breaking minima directions is removed in the case of the non-universal boundary

conditions of eq.(4.2) but a new constraint (this is when the LSP becomes a charged

slepton) appears in the region of large M1/2 and small M0 (see Fig.(2) ). When non-

universal boundary conditions are assumed the region M1/2
<∼ 110 GeV is excluded

for every value of M0
<∼ 800 GeV and every value of the tanβ between 2 and 30. Large

differences in the mass of the lightest top and bottom squarks as well of tau slepton

about 10% to 100% are obtained (see Figs.(3) ). Lightest charginos and neutralinos

remain unchanged and here we display the predictions for their masses only in the

case of universal boundary conditions (see Figs.(5) ). One can derive immediately the

bounds on the boundary conditions, M0 and M1/2 either by comparing the graphs

with the Table I or by looking the Figs.(1,2). We derive also the predictions on

the strong QCD coupling, effective weak mixing angle and W-pole mass, of the two

models by taking into account all the SM and SUSY threshold corrections. We find

that the extracted value of αs(MZ) turns out to be 3% smaller in the case of the

‡Variation of the trilinear coupling affects very slightly the results, i.e., see for instance Ref.[26]
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non-universal boundary conditions (see Figs.(6) ) . In addition, with squark masses

up to 1 TeV the value of αs is 2.5σ far from its experimental value. This discrepancy

can be removed from string/GUT threshold corrections which have not been taken

into account here. No significant changes are observed for the predicted values of

sin2
eff(lept) between the two models (see Figs.(7) ) . The predicted pole mass of the

W-gauge boson is in agreement with the data in both models although it prefers

non-universal boundary conditions in the region of light M1/2 and M0 (see Figs.(8) ).

Acknowledgements

AEF thanks the CERN theory division for hospitality while part of this work

was conducted. This work was supported in part by DOE Grant No. DE-FG-

0294ER40823. A.D is supported from Marie Curie Research Training Grants ERB-

FMBI-CT98-3438.

References

[1] I. Antoniadis, J. Ellis, J. Hagelin and D.V. Nanopoulos, Phys. Lett. B231 (1989)

65; J.L. Lopez, D.V. Nanopoulos and K. Yuan, Nucl. Phys. B399 (1993) 654.

[2] A.E. Faraggi, D.V. Nanopoulos, and K. Yuan, Nucl. Phys. B335 (1990) 347.

[3] I. Antoniadis, G.K. Leontaris and J. Rizos, Phys. Lett. B245 (1990) 161;

G.K. Leontaris, Phys. Lett. B372 (1996) 212;

G.K. Leontaris and J. Rizos, hep-th/9901098.

[4] A.E. Faraggi, Phys. Lett. B278 (1992) 131; Nucl. Phys. B387 (1992) 239.

[5] A.E. Faraggi, Phys. Lett. B274 (1992) 47; Phys. Lett. B339 (1994) 223.

[6] G.B. Cleaver, A.E. Faraggi and D.V. Nanopoulos, Phys. Lett. B455 (1999) 135;

hep-ph/9904301.

[7] X.G. Wen and E. Witten, Nucl. Phys. B265 (1985) 651;

G.G. Athanasiu, J.J. Atick, M. Dine, and W. Fischler, Phys. Lett. B214 (1988)

55;

A.N. Schellekens, Phys. Lett. B237 (1990) 363;

J. Ellis, J.L. Lopez and D.V. Nanopoulos, Phys. Lett. B247 (1990) 257;

16



S. Chang, C. Coriano and A.E. Faraggi, Phys. Lett. B397 (1997) 76; Nucl. Phys.

B477 (1996) 65.

[8] S. Chaudhoury, G. Hockney and J. Lykken, Nucl. Phys. B469 (1996) 357;

G.B. Cleaver et. al. , Nucl. Phys. B525 (1998) 3; Nucl. Phys. B545 (1998) 47;

Phys. Rev. D59 (1999) 055005; Phys. Rev. D59 (1999) 115003.

[9] K. Benakli, J. Ellis and D.V. Nanopoulos, Phys. Rev. D59 (1999) 047301;

A.E. Faraggi, K.A. Olive and M. Pospelov, hep-ph/9906345.

[10] M. Dine, R. Rohm, N. Seiberg and E. Witten, Phys. Lett. B156 (1985) 55;

J.P. Derendinger, L.E. Ibanez and H.P. Nilles, Phys. Lett. B155 (1985) 65;

H.P. Nilles, Phys. Lett. B115 (1982) 193.

[11] V. Kaplunovsky and J. Louis, Phys. Lett. B306 (1993) 269.

[12] M. Dine, A.E. Nelson, Y. Nir and Y. Shirman, Phys. Rev. D53 (1996) 2658.

[13] P. Fayet, Nucl. Phys. B90 (1975) 104;

I. Antoniadis, John Ellis, A.B. Lahanas and D.V. Nanopoulos, Phys. Lett. B241

(1990) 24;

A.E. Faraggi, E. Halyo, Int. J. Mod. Phys. A11 (1996) 2357;

G. Dvali and A. Pomarol, Phys. Rev. Lett. 77 (1996) 3728;

P. Binetruy and E. Dudas, Phys. Lett. B389 (1996) 503. R. Mohapatra and

A. Riotto, Phys. Rev. D55 (1997) 1138; N. Arkani–Hamed, M. Dine and S.P.

Martin, Phys. Lett. B431 (1998) 239;

T. Barreiro, B. de Carlos, J.A. Casas and J.M. Moreno, Phys. Lett. B445 (1998)

82;

N. Irges, Phys. Rev. D59 (1999) 115008.

[14] A.E. Faraggi and J.C. Pati, Nucl. Phys. B526 (1998) 21.

[15] L. Ibanez and D. Lust, Nucl. Phys. B382 (1992) 305.

[16] G.B. Cleaver and A.E. Faraggi, Int. J. Mod. Phys. A14 (1999) 2335;

A.E. Faraggi, Phys. Lett. B426 (1998) 315; hep-ph/9807341.

[17] H. Kawai, D.C. Lewellen, and S.-H.H. Tye, Nucl. Phys. B288 (1987) 1;

I. Antoniadis, C. Bachas, and C. Kounnas, Nucl. Phys. B289 (1987) 87;

I. Antoniadis and C. Bachas, Nucl. Phys. B298 (1988) 586.

17



[18] L. Dixon, E. Martinec, D. Friedan and S. Shenker, Nucl. Phys. B282 (1987) 13;

M. Cvetic, Phys. Rev. Lett. 59 (1987) 2829.

[19] S. Kalara, J.L. Lopez and D.V. Nanopoulos, Nucl. Phys. B353 (1991) 650.

[20] A.E. Faraggi and D.V. Nanopoulos, Phys. Rev. D48 (1993) 3288;

A.E. Faraggi, Nucl. Phys. B407 (1993) 57; hep-th/9511093; hep-th/9708112.

[21] A.E. Faraggi, Phys. Lett. B326 (1994) 62.

[22] I. Antoniadis, J. Ellis, S. Kelley and D.V. Nanopoulos, Phys. Lett. B272 (1991)

31.

[23] M.K. Gaillard and R. Xiu, Phys. Lett. B296 (1992) 71;

A.E. Faraggi, Phys. Lett. B302 (1993) 302;

S.P. Martin and P. Ramond, Phys. Rev. D51 (1995) 6515.

[24] E. Witten, Nucl. Phys. B471 (1996) 135.

[25] A.E. Faraggi, S. Kelley, J. Hagelin and D.V. Nanopoulos, Phys. Rev. D45 (1992)

3272;

S.P. Martin and P. Ramond, Phys. Rev. D48 (1993) 5365;

Y. Kawamura, H. Murayama and M. Yamaguchi, Phys. Lett. B324 (1994) 52;

J.L. Feng, M.E. Peskin, H. Murayama and X. Tata, Phys. Rev. D52 (1995) 1418;

Y. Kawamura, T. Kobayashi and T. Komatsu, Phys. Lett. B400 (1997) 284.

[26] A. Dedes, A.B. Lahanas and K. Tamvakis, Phys. Rev. D59 (1999) 015019.

[27] A. Dedes, A.B. Lahanas, J. Rizos and K. Tamvakis, Phys. Rev. D55 (1997)

2955.

[28] A.E. Faraggi and B. Grinstein, Nucl. Phys. B422 (1994) 3.

[29] J. Bagger, K. Matchev and D. Pierce, Phys. Lett. B348 (1995) 443.

[30] A.B. Lahanas and K. Tamvakis, Phys. Lett. B348 (1995) 451.

[31] A. Dedes, A.B. Lahanas and K. Tamvakis, Phys. Rev. D53 (1996) 3793.

[32] G. Abbiendi et al. [OPAL Collaboration], Eur. Phys. J. C8 (1999) 255.

[33] C. Caso et al., The European Physical Journal C3 (1998) 1.

18



[34] G. Abbiendi et al. [OPAL Collaboration], hep-ex/9808036.

[35] P. Abreu et al. [DELPHI Collaboration], Phys. Lett. B444 (1998) 491.

[36] B. Abbott et al. [D0 Collaboration], hep-ex/9902013.

[37] S. Navas-Concha, ’MSSM searches at LEP’, talk given at ‘SUSY 98’, Keble

College, Oxford, UK, July 11-17 1998.

[38] J. Valls, ‘MSSM and Higgs Search at the Tevatron’, XXIX ICHEP’98, Vancouver

Conference, July 1998;

K. De, ’MSSM searches at the Tevatron’, talk given at ‘SUSY 98’, Keble College,

Oxford, UK, July 11-17 1998.

[39] B. Abbott et al. [D0 Collaboration], hep-ex/9903041.

[40] A. Hocker, hep-ex/9903024.

[41] B. Abbott et al. [D0 Collaboration], hep-ex/9902028.

[42] T. Falk, K.A. Olive, L. Roszkowski and M. Srednicki, Phys. Lett. B367 (1996)

183.

[43] S.P. Martin and M.T. Vaughn, Phys. Rev. D50 (1994) 2282.

[44] Y. Yamada, Phys. Rev. D50 (1994) 3537.

[45] I. Jack and D.R. Jones, Phys. Lett. B349 (1995) 294.

[46] I. Jack, D.R. Jones and K.L. Roberts, Nucl. Phys. B455 (1995) 83.

[47] K.R. Dienes and A.E. Faraggi, Nucl. Phys. B457 (1995) 409.

[48] G. Altarelli, hep-ph/9811456.

19



Figure 1: Excluded region in the M0-M1/2 plane from the experimental bounds of the

SUSY particles. We have chosen the values displayed in the figure for the other input

parameters. The excluded regions are denoted with the shaded ones and the particle

which fails to pass the bound of Table I. Small shaded regions in the non-universality

case indicate excluded regions from neutralinos and scalar τ̃ ’s (left) and τ̃ as an LSP

(right).

20



Figure 2: The same as Fig.1 with tan β = 30.
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Figure 3: Predictions for the light top and bottom scalar quark masses as a function of

M1/2 for different values of M0 (displayed) and tanβ=2(solid) 30(dot-dashed) values.
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Figure 4: Predictions for the light tau scalar lepton and for the light Higgs boson

masses as a function of M1/2 for different values of M0 (displayed) and tan β=2(solid)

30(dot-dashed) values.
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Figure 5: Predictions for the lightest neutralino (LSP) and chargino masses as a

function of M1/2 for different values of M0 (displayed) and tan β=2(solid) 30(dot-

dashed) values.
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Figure 6: Resulting values of the strong coupling αs(MZ) as a function of M0 for

different values of the M0. The top quark mass 175 GeV is assumed. We display

results for both regions of small tan β = 2 (solid lines) and large tan β = 30 (dot-

dashed) lines).
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Figure 7: Resulting values of the effective (leptonic) weak mixing angle, sin2
eff(lept)

as a function of M1/2 for different values of the M0 =100,300,500,800 GeV and two

different values of tanβ =2,30 (dot-dashed lines). The LEP experimental value is

also shown.
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Figure 8: Resulting values of the physical W-pole mass, MW as a function of M1/2

for different values of the M0 =100,300,500,800 GeV and two different values of

tan β =2,30 (dashed lines). The experimental CDF and DØ values are also displayed.
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