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1 Introduction

In recent years, kinetic theory has proven to be a powerful tool to construct effective

theories for the soft fields in ultrarelativistic plasmas. Thus, the effective theory at the

scale gT follows from a collisionless kinetic equation, of the Vlasov type [1]. The effective

theory at the scale g2T is generated by a Boltzmann equation which includes a collision

term for colour relaxation [2, 3, 4, 5]. (Here, T is the temperature, and g is the cou-

pling constant, assumed to be small.) The kinetic description relies on the separation

of scales between single-particle and collective excitations. This allows for kinematical

approximations which, like the relevant scales themselves, are controlled by powers of

g. By using these approximations, kinetic equations have been rigorously constructed

from the quantum equations of motion [1, 2, 4, 6], thus providing justification for nu-

merous previous works using ad hoc transport equations inspired by classical physics

[7, 8, 9, 10, 11, 12, 5, 13, 14]. Previous attempts to derive these equations [15] generally

failed to recognize the proper separation of scales which turns out to be essential in order

to control the gauge invariance of the approximations involved.

The single-particle excitations of the QCD plasma are hard transverse gluonsd with

typical momenta k ∼ T . The soft fields are colour fields Aµ
a(x) with momenta of the order

gT or less. When acting on the hard particles, these soft fields induce longwavelength

(λ >∼ 1/gT ) collective excitations, with λ much larger than the mean interparticle distance

r̄ ∼ 1/T [16, 17, 6]. In the framework of the kinetic theory, these excitations are described

by a colour density matrix δNab(k, x) to which the soft fields Aµ
a(x) couple via kinetic

equations. By solving these equations, one can express δNab as a functional of the fields

Aµ
a . The corresponding colour current (with vµ = (1,k/k)) :

jµ
a (x) ≡ 2g

∫ d3k

(2π)3
vµ Tr

(
T aδN(k, x)

)
, (1.1)

acts as a generating functional for the (equilibrium) amplitudes of the soft fields [1, 6]:

ja
µ = Πab

µνA
ν
b +

1

2
Γabc

µνρA
ν
bA

ρ
c + ... (1.2)

Here, Πab
µν = δabΠµν is the soft polarization tensor, and the other terms represent vertex

corrections. These are the amplitudes which define the effective theory for the soft fields.

When applied to colour excitations at the scale gT [1, 6, 16], this strategy provides the so-

called “hard thermal loops” (HTL) [18, 19, 17]. It is our purpose in this paper to generalize

this strategy to the ultrasoft scale g2T , and construct the corresponding amplitudes.

Remarkably, to the order of interest the density matrix can be parametrized as:

δNab(k, x) = −gWab(x,v) (dN0/dk), (1.3)

dWe consider here a purely Yang-Mills plasma, with no quarks.
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where N0(k) ≡ 1/(eβk − 1) is the Bose-Einstein thermal distribution, and W (x,v) ≡
Wa(x,v)T a is a colour matrix in the adjoint representation which depends upon the

velocity v = k/k (a unit vector), but not upon the magnitude k = |k| of the momentum.

Then, the kinetic equations are written as equations for Wa(x,v).

Let us briefly recall the situation at the scale gT . The relevant kinetic equation is

a non-Abelian generalization of the Vlasov equation [1]:

(v ·Dx)
abWb(x,v) = v ·Ea(x). (1.4)

It differs from the corresponding Abelian equation, namely (with W (x,v) a fluctuation

in the electric charge density)

(v · ∂x)W (x,v) = v · E(x), (1.5)

merely by the repacement of the ordinary (soft) derivative ∂x ∼ gT by the covariant one

Dx = ∂x + igA. Accordingly, the soft gluon polarization tensor derived from eq. (1.4) is

formally identical to the photon polarization tensor obtained from eq. (1.5). In addition,

eq. (1.4) also generates, through the covariant derivative, an infinite series of gluon ver-

tices. These are the HTL’s alluded to before, corresponding to one-loop diagrams with

soft external lines and hard internal momenta [18, 19]. Note that the kinetic equation

(1.5) isolates directly the dominant contributions of such diagrams, in a gauge invariant

manner.

This close similitude between the response of Abelian and non-Abelian plasmas to

longwavelength perturbations disappears, however, when going to very soft perturbations,

where collisions start to play a role. The effects of the collisions depend upon the specific

excitations one is looking at. To give a crude estimate of these effects, one may use the

relaxation time approximation, where the kinetic equation is written as

(v ·Dx)
abWb(x,v) = v ·Ea(x) − W a(x,v)

τcol

, (1.6)

and τcol is the typical relaxation time for small off-equilibrium colour fluctuations. Like the

damping rate γ for hard quasiparticles [20, 21, 22, 23], to which it is intimately related

(see below), the relaxation of colour is dominated by the singular forward scattering

(i.e., by soft momentum transfers in the collision in Fig. 1), which yields τcol ∼ 1/γ ∼
1/(g2T ln(1/g)) [8, 9]. Then, eq. (1.6) shows that the effect of the collisions become

a leading order effect for inhomogeneities at the scale ∂x ∼ g2T , or less. This should

be contrasted with the case of colourless fluctuationse, for instance fluctuations in the

eNote also that, for colourless fluctuations, the analogue of eq. (1.6) will generally involve a momentum-
dependent relaxation time [12]; see Sec. 4.2 below.
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momentum or the electric charge distributions, where the typical relaxation time is much

larger, τel ∼ 1/(g4T ln(1/g)), as it requires large angle scattering [7, 11, 12].

For colour fluctuations at the scale g2T , it is further convenient to constrain the

amplitudes of the associated mean fields such as |Aµ
a | ∼ gT ; then the two terms of the

ultrasoft covariant derivative are of the same order in g (namely ∂x ∼ gA ∼ g2T ) and, in

the derivation of the kinetic equations, one can consistently preserve gauge symmetry with

respect to the background field [4]. There is another reason which makes this constraint

interesting: |Aµ
a | ∼ gT is the typical amplitude of the thermal fluctuations at the scale

g2T [24]. These fluctuations have relatively large amplitudes because of Bose-Einstein

enhancement, and their dynamics is fully non-linear; as a result, perturbation theory

breaks down at the scale g2T [17, 25]. Moreover, these large amplitude fluctuations make

it impossible to give a gauge independent meaning to inhomogeneities on scales much

larger than 1/g2T . A convenient strategy to deal with this situation is to observe that the

soft modes can be treated as classical fields, precisely because of their large occupation

numbers [26, 25, 27, 2] (and references therein). Then, the non-perturbative dynamics can

be studied via classical lattice simulations of the effective theory for soft fields [28, 29, 30].

In order to explicitly construct this theory, however, one needs to go beyond the

relaxation time approximation (1.6). In fact, eq. (1.6) is inconsistent with gauge symme-

try, as it leads to a colour current which is not conserved. The correct kinetic equation,

as derived in [2, 4] (see also Refs. [3, 5, 13]), involves a more complicated collision term,

which is local in x, but non-local in v (see eq. (2.15) below). Since this collision term

is saturated by soft momentum transfers (it is logarithmically sensitive to all momenta

q <∼ gT ), it is useful to isolate the ultrasoft (q ∼ g2T ) background fields from the soft

(g2T <∼ q <∼ gT ) gluons exchanged in the collisions by introducing an intermediate scale µ

such as g2T � µ � gT (e.g., µ ' g2T ln(1/g)). Then, the Boltzmann equation generates

an effective theory for the ultrasoft (q < µ) fields, corresponding to “integrating out” the

hard and soft (q > µ) fields to leading order in perturbation theory [2, 4] (see also Secs.

2 and 3.2 below for a discussion of the relevant approximations). The scale µ acts as an

infrared (IR) cutoff for the collision integral, and as an ultraviolet (UV) cutoff for the

effective theory, and it must cancel in any complete calculation of ultrasoft correlation

functions (a cancellation referred to as matching).

It is our purpose in this paper to study the contribution of hard and soft fields to

the amplitudes with ultrasoft external fields (ultrasoft amplitudes in brief) by an analysis

of the solution to the Boltzmann equation.

In previous applications of the latter — namely, to the calculation of the (transverse)

colour conductivity to leading logarithmic accuracy [8, 9, 2, 3] —, the non-local piece of

the collision term turned out not to be important. But this was specific to that particular
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approximation, which has ignored all the non-local and non-linear effects in the problem

(essentially because the drift term v · Dx ∼ g2T has been neglected as compared to

γ ∼ g2T ln(1/g); see Sec. 3.4 for more details). In that situation, the ultrasoft amplitudes

in eq. (1.2) collapsed to a single, local quantity, namely the colour conductivity.

Our intention here is to go beyond this leading logarithmic approximation and

study the generic ultrasoft amplitudes generated by the Boltzmann equation for colour

relaxation. This includes, in particular, the non-local effects in space and time, as governed

by the drift term v ·Dx, and also the non-local effects in v coming from the collision term.

Because of the latter, the Boltzmann equation cannot be exactly solved in general. Thus,

we will not be able to provide full expressions for the ultrasoft amplitudes except in some

simple limits (cf. Sec. 4.2). Still, many of the important properties of these amplitudes

can be inferred from an analysis of the Boltzmann equation (cf. Secs. 3.1, 3.3 and 4

below). Moreover, some formal solutions can also be obtained, by iterations, and this is

specially useful for comparison with diagrammatic perturbation theory (cf. Secs. 3.2 and

3.3). The Boltzmann equation accomplishes a non-trivial resummation of the perturbative

expansion, made evident by the derivation of this equation from quantum field theory [4],

where the collision term has a direct diagrammatic interpretation (see Sec. 2 below for a

short review of this derivation).

Let us briefly enumerate here the main properties of the ultrasoft amplitudes, to be

derived below in this paper: For generic external momenta of order g2T , these amplitudes

are of the same order in g as the HTL’s, which they generalize by taking into account the

effects of the collisions. The ultrasoft amplitudes share many of the remarkable properties

of the HTL’s: i) they are non-perturbative, in the sense that in the kinematical regime of

interest (ω � p <∼ g2T ), they are as large as the corresponding tree-level amplitudes; ii)

they are gauge-fixing independent, as they involve only collisions among on-shell, hard,

transverse gluons, iii) they satisfy simple Ward identities, which express the conservation

of the colour current; iv) in the static limit ω → 0, they reduce to the usual Debye mass

term m2
D = g2NT 2/3 for the electric fields. That is, to the order of interest, collisions do

not modify Debye screening (see also Ref. [31], and Sec. 3.3 below for more details).

On the other hand, there are also significant differences with respect to the HTL’s:

i) The ultrasoft amplitudes have no Abelian counterpart: in QED, the effects of the

collisions become important only at the scale e4T (see also Sec. 2 below). ii) Unlike the

HTL’s, which correspond to one-loop Feynman graphs, the ultrasoft amplitudes receive

contributions from an infinite series of multi-loop diagrams, with a specific structure

(essentially, chains of ladder diagrams). Recently, the first few such diagrams for the

polarization tensor have been explicitly computed by Bödeker [32], with results which

agree with the (first order iteration of the) solution to the Boltzmann equation. But it
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p p’=p+q

Figure 1: Elastic scattering in the (resummed) Born approximation. The continuous lines

refer to hard gluons (these are off-equilibrium propagators), while the wavy line is the

soft gluon exchanged in the collision. The blob stands for HTL resummation.

is clear that, in general, computing directly these diagrams would be a tedious exercice,

especially since important cancellations occur among the various graphs [4, 32]; this will be

further discussed in Secs. 3.2 and 4.1 below. iii) The resummation of the collision effects

drastically modify the longwavelength behaviour of the transverse colour conductivity

σT (ω = 0, p → 0): the would-be divergence of the HTL result for σT , namely σ
(0)
T ∝ m2

D/p,

is now screened away by γ, with the net result that σT (ω = 0, p → 0) = m2
D/3(γ−δ). Here

δ is a term of order g2T (and which satisfies |δ| < γ), to be computed in Sec. 4.2 below.

iv) For ultrasoft momenta p ∼ g2T , the above formula for σT holds up to corrections of

O(ln−2) (with ln ≡ ln(1/g)).

2 The Boltzmann equation

In this section, we review the main features of the Boltzmann equation for colour relax-

ation which was recently derived in Ref. [4]. There are no new results to be reported

here, but the equations derived in [4] will be presented in a slightly different way, to better

emphasize the difference between coloured and colourless excitations, and also between

Abelian and non-Abelian gauge theories. Moreover, the diagrammatic representation of

the collision term will be explained in more detail, in order to facilitate the discussion of

the diagrammatic interpretation of the ultrasoft amplitudes, in Sec. 3.2 below.

The space-time inhomogeneities in the distribution of the hard particles (transverse

gluons) are described by a density matrix δǴab(k, x) where the momentum k is hard

(k ∼ T ) and on-shell (k2
0 = k2), and the derivative ∂x is ultrasoft (∂x ∼ g2T ). Below, we

shall be interested either in colourless fluctuations (in which case δǴab = δabδǴ), or in
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coloured ones in the adjoint representation (such as δǴab = ifabcδǴc). Also, we shall find

convenient to use the following parametrization for the density matrix, where the on-shell

structure is explicit:

δǴab(k, x) ≡ −ρ0(k)Wab(k, x)
dN0

dk0

= βρ0(k)Wab(k, x) N0(k0)[1 + N0(k0)]. (2.1)

In this equation, N0(k0) = 1/(eβk0 − 1) and ρ0(k) = 2πε(k0)δ(k
2) are, respectively, the

thermal distribution and the spectral density for hard transverse gluons, and the new

function Wab(k, x) has support only at the mass-shell: Wab(k, x) = θ(k0)Wab(k, x) +

θ(−k0)Wba(−k, x). [The density matrix δNab(k, x) in the Introduction, eq. (1.3), is related

to the function Wab(k, x) by δNab(k, x) = −Wab(k, x)(dN0/dk).]

The Boltzmann equation is the kinetic equation satisfied by the density matrix to

leading order in g [4]. It reads (in matrix notations):

2
[
k ·Dx, δǴ(k, x)

]
− 2gkµFµν(x)∂ν

kG<
0 (k) = C(k, x). (2.2)

In the l.h.s., k · Dx is the gauge-covariant drift operator, with Dµ ≡ ∂µ + igAµ and

∂x ∼ gA ∼ g2T , so that Dx = O(g2T ); kµFµν(x)∂ν
k , with Fµν ≡ [Dµ, Dν ]/ig, is the “force”

term acting on the equilibrium correlation function G<
0 (k):

G<
0 (k) ≡ ρ0(k)N0(k0), G>

0 (k) ≡ ρ0(k)[1 + N0(k0)]. (2.3)

(The second function G>
0 (k) will be needed below.)

In the r.h.s. of eq. (2.2), C(k, x) is the collision term associated to the one-gluon

exchange process depicted in Fig. 1. A priori, all the lines in this figure (that is, both

the external lines associated with the colliding particles, and the wavy line associated to

the exchanged gluon) are off-equilibrium propagators. However, to the order of interest,

the collision term can be linearized with respect to the off-equilibrium fluctuations in the

propagators of the external lines, and the internal propagator can be taken to be the

equilibrium propagator. Since the collision term for colour relaxation is dominated by

soft momentum transfers (g2T <∼ q <∼ gT ) [8, 9, 2, 3, 4], the propagator of the exchanged

gluon has to be dressed with the corresponding hard thermal loop [16, 17].

The scattering process in Fig. 1 can be associated to the collisional self-energy in

Fig. 2 (see Ref. [4] for more details on the formalism). Upon linearization, this leads to

the four processes displayed in Fig. 3. Each diagram involves fluctuations in one of the

four external lines in Fig. 1. Thus, C = C1 + C2 + C3 + C4, where C1(k, x) involves the

fluctuations δǴ(k, x) in the incoming field with momentum k (Fig. 3.a), and C2, C3 and

C4 involve fluctuations along the lines with momenta k′, p and p′ (Figs. 3.b, c and d,
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Figure 2: Self-energy describing collisions in the (resummed) Born approximation. All

the lines represent off-equilibrium propagators. The continuous lines refer to the hard

colliding particles in Fig. 1. The wavy lines with a blob denote soft gluon propagators

dressed by the screening effects.

respectively). In these figures, the off-equilibrium propagators are marked with a cross; all

the other lines denote equilibrium propagators. In particular, C1(k, x) = −Γ(k) δǴ(k, x),

where

Γ(k) ≡ Σ<
eq(k)− Σ>

eq(k) = −2 ImΣR(k) , (2.4)

is the quantity which determines the quasiparticle damping rate γ ≡ Γ(k0 = k)/(4k) ∼
g2T ln(1/g) [18, 20, 21, 22].

By using the parametrization (2.1) for the density matrix, the (linearized) collision

term can be compactly written asf :

Cab(k, x) = −
∫

dT |Mpk→p′k′|2 N0(k0) N0(p0) [1 + N0(k
′
0)] [1 + N0(p

′
0)]

×
{
N
(
NWab(k, x)− (T aT b)cdWcd(k

′, x)
)

+

+ (T aT b)cc̄(T
cT c̄)dd̄

(
Wd̄d(p, x)−Wdd̄(p

′, x)
)}

. (2.5)

In this equation, |Mpk→p′k′|2 is the matrix element squared corresponding to the one-

gluon exchange depicted in Fig. 1, and dT is a compact notation for the measure of the

phase-space integral:∫
dT ≡ β

∫
d4p

(2π)4

∫
d4q

(2π)4
ρ0(k)ρ0(p)ρ0(p + q)ρ0(k − q). (2.6)

The four terms within the braces in eq. (2.5) are in one to one correspondance with the

diagrams 3.a, b, c and d. The appearance of the matrix element squared, and also of

fEq. (2.5) is merely a convenient rewriting of eqs. (3.99)–(3.104) in Ref. [4].
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q q

k-q

q
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(d)

k

k

k

k-q

(b)

p

k-q

(c)

p

Figure 3: Pictorial representation of the linearized collision term. Each one of the four

diagrams correspond to off-equilibrium fluctuations in one of the colliding fields (the one

which is marked with a cross). All the unmarked propagators are in equilibrium.

the various equilibrium statistical factors in eq. (2.5), is familiar. What is specific to the

problem at hand is the colour structure in eq. (2.5), which is at the origin of an important

difference between coloured and colourless excitations:

Consider first the case of a colourless fluctuation, for which δǴab = δabδǴ, and

Wab = δabW . The various colour traces in eq. (2.5) are trivial (e.g., (T aT b)cc = Nδab), so

that Cab = δabC, with

C(k, x) = −N2
∫

dT |Mpk→p′k′|2 N0(k0) N0(p0) [1 + N0(k
′
0)] [1 + N0(p

′
0)]

×
{
W (k, x)−W (k′, x) + W (p, x)−W (p′, x)

}
. (2.7)

This is the standard collision term for one-gluon exchange used in previous applications

of kinetic theory to the hot quark-gluon plasma or to the electroweak plasma [12].

What is remarkable about eq. (2.7) is that the corresponding phase-space integral

is dominated by relatively hard momentum transfers gT <∼ q <∼ T , even though each of

the four individual terms in the r.h.s. is actually saturated by soft momenta. This is a

consequence of the cancellation of the leading infrared contributions among the various

terms [4]. For instance, for soft q, W (k′, x) ≡ W (k − q, x) ≈ W (k, x), so that the IR

contributions to the first two terms in eq. (2.7) cancel each other. This corresponds to

a cancellation among the graphs displayed in Figs. 3.a and b, to be further discussed in

Sec. 3.2 below. A similar cancellation occurs between the last two terms in eq. (2.7),
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namely W (p, x) and W (p′, x). Thus, in order to see the leading IR (q � T ) behaviour of

the full integrand in eq. (2.5), one has to expand W (k′, x) and W (p′, x) to higher orders

in q. This generates extra factors of q which remove the most severe IR divergences in the

collision integral. (This is the familiar (1 − cos θ) factor of the “transport cross section”

[33].) As a result, the typical rate involved in the calculation of the transport coefficients

like the shear viscosity is ∼ g4T ln(1/g), where the logarithm originates from screening

effects at the scale gT [7, 11]. This is suppressed by one power of α ≡ g2/4π with respect

to the damping rate γ ∼ g2T ln(1/g).

Consider now the case of colour fluctuations corresponding to a density matrix

W (k, x) of the form W (k, x) ≡ Wa(k, x)T a. The colour algebra in eq. (2.5) can be

performed with the following identities:

Tr(T aT bT c) = ifabc N

2
, (T aT b)cc̄(T

cT c̄)dd̄(T
e)d̄d = ifabe N2

4
. (2.8)

The resulting collision term is of the form C = CaT
a with

Ca(k, x) = −N2
∫

dT |Mpk→p′k′|2 N0(k0) N0(p0) [1 + N0(k
′
0)] [1 + N0(p

′
0)]

×
{
Wa(k, x)− 1

2
Wa(k

′, x)− 1

4

(
Wa(p, x) + Wa(p

′, x)
)}

. (2.9)

There are two notable differences with respect to eq. (2.7):

i) The first two terms within the braces enter with a relative factor 1/2, so they do not

cancel each other when q → 0 :

Wa(k, x)− 1

2
Wa(k − q, x) ' 1

2
Wa(k, x). (2.10)

Rather, their overall contribution is half the corresponding contribution of the first term

alone, that is, Γ(k)/2.

ii) The last two terms in eq. (2.9) enter with a factor 1/4 and add each other. This is so

because the colour matrix Wd̄d(p, x) in eq. (2.5) is antisymmetric, rather than symmetric,

as it is for colourless fluctuations. Accordingly, for soft q,

1

4

(
Wa(p, x) + Wa(p + q, x)

)
' 1

2
Wa(p, x). (2.11)

Thus, for colour fluctuations, the colour structure of the collision term prevents a complete

cancellation of the leading infrared contributions: like the damping rate, the collision term

for colour relaxation is saturated by soft momentum transfers (g2T <∼ q <∼ gT ), for which

eqs. (2.10) and (2.11) hold and the collision term (2.9) simplifies to [3, 4]:

Ca(k, x) ' − N2

2

∫
dT |Mpk→p′k′|2 dN0

dk0

dN0

dp0
{Wa(k, x) − Wa(p, x)} . (2.12)
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In the same approximation, the matrix element |M|2 can be evaluated as:

|M|2 = 16g4ε2
kε

2
p

∣∣∣∗Dl(q) + (q̂× v) · (q̂× v′) ∗Dt(q)
∣∣∣2, (2.13)

where v ≡ k̂, v′ ≡ p̂, and ∗Dl and ∗Dt are the longitudinal (or electric) and the transverse

(or magnetic) components of the (retarded) gluon propagator, in the hard thermal loop

approximation [16, 17]. The phase-space measure (2.6) can be similarly simplified. This

eventually yields a simpler equation for the density matrix Wa(k, x) which, remarkably,

is consistent with Wa(k, x) being independent of the magnitude k ≡ |k| of the hard

momentum. That is,

Wa(k, x) ≡ gWa(x,v), (2.14)

where v ≡ k/k is the velocity of the termal particle (a unit vector), and a factor of g has

been introduced to keep in line with the notations of Ref. [4].

Finally. the Boltzmann equation, written as an equation for Wa(x,v), reads [4]:

(v ·Dx)
abWb(x,v) = v · Ea(x)−m2

D

g2NT

2

∫ dΩ′

4π
Φ(v · v′)

{
W a(x,v)−W a(x,v′)

}
.

(2.15)

The angular integral above runs over all the directions of the unit vector v′, and m2
D is

the Debye mass squared:

m2
D ≡ − g2N

π2

∫ ∞

0
dp p2 dN0

dp
=

g2NT 2

3
. (2.16)

Furthermore:

Φ(v · v′) ≡ (2π)2
∫

d4q

(2π)4
δ(q0 − q · v)δ(q0 − q · v′)

∣∣∣∗Dl(q) + (vt · v′t) ∗Dt(q)
∣∣∣2, (2.17)

with the two delta functions expressing the energy conservation at the two vertices of

the scattering process in Fig. 1. Up to a normalization, the function Φ(v · v′) represents

the cross section for the collision between two hard particles with velocities v and v′

exchanging (in the t-channel) a soft (dressed) gluon.

The collision term in eq. (2.15) involves two pieces: one which is local in v (pro-

portional to W a(x,v)), and one which is non-local (involving the kernel Φ(v · v′). The

coefficient of the local piece is proportional to Γ :

m2
D

g2NT

2

∫
dΩ′

4π
Φ(v · v′) =

Γ(k0 = k)

4k
≡ γ. (2.18)

By using the expression above, we can rewrite the Boltzmann equation (2.15) in the

following way:

(v ·Dx)
abWb(x,v) = v · Ea(x)− γ

{
W a(x,v) − 〈W a(x,v)〉

}
, (2.19)
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which emphasizes the fact that the quasiparticle damping rate γ sets the time scale for

colour relaxation: τcol ∼ 1/γ ∼ 1/(g2T ln(1/g)) [8] (see also Sec. 4.2 below). In eq. (2.19)

we have introduced a notation which will be used hereafter: for an arbitrary function of

v, say F (v), we denote by 〈F (v)〉 its angular average with weight function Φ(v · v′):

〈F (v)〉 ≡
∫ dΩ′

4π
Φ(v · v′)F (v′)∫ dΩ′
4π

Φ(v · v′)
, (2.20)

which is still a function of v.

We conclude this section by recalling that eq. (2.15) is invariant under the gauge

transformations of the background field, and also with respect to the choice of a gauge

for the shortwavelength fluctuations (here, the hard (k ∼ T ) fields which take part in the

collective motion and the soft (g2T <∼ q <∼ gT ) gluons which are exchanged in the collision

process). In Ref. [4], eq. (2.15) was derived in Coulomb gauge, but we expect it to be

gauge-fixing independent. Except for the collision term, this has been explicitly verified

in [1] (see also Refs. [18, 19]). The collision term should be gauge-fixing independent

as well, since it involves only the off-equilibrium fluctuations of the (hard) transverse

gluons, together with the (gauge-independent) matrix element squared (2.13). However,

an explicit proof comparable to the corresponding one for the non-Abelian Vlasov equation

[1] is somewhat tedious: in an arbitrary gauge (e.g., a covariant one), one has to consider

collisions involving fictitious degrees of freedom (hard longitudinal gluons and ghosts),

and verify that their respective contributions to the collision term mutually cancell.

3 Ultrasoft amplitudes

In this section, we introduce and study the ultrasoft amplitudes, i.e., the contributions

to the one-particle irreducible amplitudes with ultrasoft external lines which are obtained

from the solution to the Boltzmann equation.

3.1 The induced current

The longwavelength colour fluctuations of the hard particles generate a colour current

given by (the factor of 2 below stands for the two transverse polarizations):

ja
µ(x) = 2g

∫
d4k

(2π)4
kµ Tr

(
T aδǴ(k, x)

)
, (3.1)

which acts as a source in the Yang-Mills equations for the ultrasoft colour fields Aµ
a :

(DνFνµ)a(x) = ja
µ(x). (3.2)

11



By using the parametrization (2.1) for the density matrix, one can perform the integral

over the radial momentum k ≡ |k| to obtain:

jµ
a (x) = m2

D

∫
dΩ

4π
vµ Wa(x,v), (3.3)

with the Debye mass mD defined in eq. (2.16). By using the equation of motion (2.15)

for W a(x,v), one can verify that the current (3.3) is covariantly conserved,

Dµj
µ = 0, (3.4)

as necessary for the consistency of the mean field equations of motion (3.2) (recall that

DµDνFνµ = 0). Indeed, eq. (2.15) implies:

Dµj
µ = m2

D

∫
dΩ

4π
v · Ea(x)

− m4
D

g2NT

2

∫
dΩ

4π

∫
dΩ′

4π
Φ(v · v′)

{
W a(x,v)−W a(x,v′)

}
, (3.5)

which is zero because both terms in the r.h.s. vanish after the angular integration.

By solving the Boltzmann equation, one can obtain the density matrix Wa(x,v),

and therefore also the induced current jµ
a (x), as functionals of the gauge fields Aµ

a(x).

Since eq. (2.15) is non-linear with respect to the fields Aµ
a , the resulting functional jµ

a [A]

will be non-linear as well, and can be formally expanded as follows:

ja
µ = Πab

µνA
ν
b +

1

2
Γabc

µνρA
ν
bA

ρ
c + ... (3.6)

The coefficients in this expansion are the one-particle-irreducible amplitudes of the fields

Aµ
a , evaluated in thermal equilibrium [16, 6, 1]. For instance, Πab

µν = δabΠµν is the polariza-

tion tensor, Γabc
µνρ ≡ ifabcΓµνρ is a correction to the 3-gluon vertex, etc. These amplitudes

will be referred to as the ultrasoft amplitudes.

Some of the properties of the ultrasoft amplitudes follow immediately from the

previous discussion: For generic momenta of order g2T , they are of the same order in

g as the hard thermal loops [18, 19, 1, 16, 17, 6], which they generalize by including

the effects of the collisions. Furthermore, they are gauge-fixing independent (like the

Boltzmann equation itself), indicating that only the physical hard degrees of freedom

of the plasma (namely, the on-shell transverse gluons) contribute to these amplitudes.

Also, they satisfy simple Ward identities which follow from the conservation law (3.4) by

successive differentiations with respect to the fields Aµ
a . For instance:

P µ Πµν(P ) = 0,

P µΓµνρ(P, Q, R) = Πνρ(Q)− Πνρ(R) . (3.7)

All these properties are, of course, very reminiscent of the hard thermal loops, and, as we

shall see later, there are other similarities. But let us first discuss the interpretation of

the ultrasoft amplitudes in terms of Feynman diagrams.

12



3.2 Diagrammatic interpretation of the ultrasoft amplitudes

In this subsection, we discuss the interpretation of the solution to the Boltzmann equation

in terms of Feynman diagrams. (See also Refs. [34, 35] for a related analysis in the context

of scalar field theory, and Ref. [32] for a recent calculation of some of the diagrams relevant

to QCD, namely those in Fig. 8 below.) This analysis will show that, unlike the HTL’s

— which correspond to one-loop diagrams [18, 19] —, the ultrasoft amplitudes receive

contributions from an infinite set of multi-loop Feynman graphs, which, in the kinematical

regime of interest, contribute all at the same order in g.

Our discussion here will be only qualitative: we shall not compute Feynman graphs

explicitly, but rather rely on the diagrammatic representation of the collision term (cf.

Figs. 1, 2 and 3) in order to identify, by iterations, the structure of the diagrams con-

tributing to the ultrasoft amplitudes.

To carry out the analysis, it is convenient to use the original form of the Boltzmann

equation, where the collision term is directly related to the self-energy. This is eq. (2.2)

with the collision term (2.5), which we rewrite here as follows:[
v ·Dx, δǴ(k, x)

]
= gvµFµν(x)∂ν

kG<
0 (k) + C(k, x),

C = C1 + C2 + C3 + C4, C1 = − 1

2k0
Γ(k) δǴ(k, x), (3.8)

where vµ = kµ/k0, and the four pieces of the collision term correspond, respectively,

to the linearized fluctuations depicted in Figs. 3.a, b, c and d. (Note that the present

normalization of the collision term differs by a factor 1/2k0 from the previous one in

eq. (2.2).) For comparison with perturbation theory, it is useful to regard the collision term

as a “small perturbation” and solve the Boltzmann equation (3.8) formally by iterations.

The zeroth order iteration is the solution to eq. (3.8) with the collision terms ex-

cluded:

δǴ(0) = g
1

v ·D vµFµν∂
νG<

0 . (3.9)

Here, 1/(v · D) is a compact, but formal, notation for the retarded Green’s function

∆R(x, y;v) of the covariant drift operator v ·D. This satisfies:

(v ·Dx)ab∆
bc
R (x, y;v) = δacδ(4)(x− y), (3.10)

with ∆R(x, y;v) = 0 for x0 < y0, and has the following expression (with t ≡ x0 − y0):

∆ab
R (x, y;v) = θ(t) δ(3)

(
x− y − vt

)
Uab(x, y) ≡

〈
x, a

∣∣∣ i

i(v ·D) + iε

∣∣∣y, b
〉
, (3.11)

where U(x, y) is the Wilson line connecting the points x and y :

U(x, y) = e−ie
∫

dzµAµ(z), (3.12)
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Figure 4: Mean field approximation, or zeroth order iteration for the solution to the

Boltzmann equation, eq. (3.9).

and the integration path in eq. (3.12) is fixed by the delta function in eq. (3.11). ∆R(x, y;v)

is the eikonal propagator along the straightline trajectory of velocity v.

Eq. (3.9) can be given the diagrammatic representation in Fig. 4 where, for more

clarity, we have distinguished the insertion of the electric mean field Ea, the “Lorentz

force” in the r.h.s. of eq. (3.8), from the insertions of colour fields Aµ
a due to the covariant

derivative v · D in the l.h.s. Thus, the propagator on the left of the electric field Ea

is the eikonal propagator (3.11), while the propagator on the right is ∂kG
<
0 (k). The

corresponding colour current, namely:

j(0) a
µ (x) = 2g

∫ d4k

(2π)4
kµ Tr

(
T aδǴ(0)(k, x)

)
= m2

D

∫ dΩ

4π

vµviEi

v ·D , (3.13)

involves a supplementary integration over the hard momenta k, which, in terms of di-

agrams, corresponds to closing the straight line in Fig. 4 into a hard loop. Thus, the

polarisation amplitudes generated by j(0)
µ (cf. eq. (3.6)) are one-loop amplitudes where

the internal momentum is hard, while all the external lines are soft (or ultrasoft); some

examples are shown in Fig. 5. These are precisely the hard thermal loops, which have been

originally computed from one-loop diagrams indeed [18, 19]. As well known, the HTL’s

are only a part of the corresponding one-loop amplitudes [18, 19, 17] (namely, the leading

order part for soft external lines), and this part is directly singled out by the collisionless

kinetic equation, cf. eqs. (3.9) and (3.13) [1, 16, 6].

Consider now the first order iteration of the collision term, which yields:

δǴ(1) =
1

v ·D C[δǴ(0)] . (3.14)

The collision term C[δǴ(0)] is illustrated in Fig. 6, which should be compared to Fig. 3.

For simplicity, we have only represented here single field insertions, that is, we have lin-
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Figure 5: Two and four-gluon vertices in the HTL approximation.
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Figure 6: The first order iteration of the collision term C[δǴ(0)], to linear order in the

background field.
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Figure 7: First order iteration for the ultrasoft polarization tensor.

earized C[δǴ(0)] with respect to the colour mean field. This is all what we need in order

to compute the first-order iteration of the ultrasoft polarization tensor Πµν . The corre-

sponding result is illustrated in Fig. 7, and involves loop corrections to the corresponding

HTL (cf. Fig. 5.a).

Before going on with higher iterations, let us make some comments on the diagrams

in Fig. 7. These should be regarded as diagrams of the thermal perturbation theory in real

time, or linear combinations of them. For instance, the self-energy insertion in Fig. 7.a

stands for the combination Γ(k) = Σ<
eq(k)−Σ>

eq(k) (cf. eq. (2.4)) and thus corresponds to

the insertion of the quasiparticle damping rate in the hard internal line. Similarly, the soft

internal line (with a bubble) in Fig. 7.b stands for either ∗D<
µν(q) = −

(
∗DRΠ<

(0)
∗DA

)
µν

,

or ∗D>
µν(q) = −

(
∗DRΠ>

(0)
∗DA

)
µν

, where Πµν
(0) denotes the two-point HTL (cf. eq. (4.18)

below), and ∗Dµν is the HTL-resummed propagator (the subscripts R and A refer, as usual,

to retarded and advanced propagators) [4]. To simplify the graphical representation, it

is convenient to replace these graphs with the corresponding ones in the imaginary time

formalism, where the two diagrams in Figs. 7.a and b are replaced by the graphs in Fig. 8.a

and b, respectively, while the diagrams in Figs. 7.c and d remain formally the same, and

are globally represented in Fig. 8.c.

Now, since the Boltzmann equation has been obtained from the exact field equations

by using various kinematical approximations [4], the correspondence between its solution

(here, eq. (3.14)) and the diagrams in Fig. 8 is only approximate: the kinetic equation

isolates only the dominant parts of these diagrams for ultrasoft external lines. In fact, in

the same way as the Vlasov equation (3.9) provides the leading contribution to the one
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Figure 8: A simpler redrawing of the diagrams in Fig. 7.

loop diagrams when the external momenta are ∼ gT , the Boltzmann equation generates

automatically the leading contributions to the ultrasoft amplitudes when the external

momenta are ∼ g2T . Recently, this has been verified explicitly by Bödeker [32], who

computed the diagrams in Fig. 8 and got the same result (namely, eq. (4.19) below) as

that obtained from the iteration of the Boltzmann equation. In fact, the approximations

leading to the Boltzmann equation [4] and those performed in Ref. [32] are similar. They

all rely upon the following chain of inequalities:

∂x � q � k , (3.15)

which are controlled either by powers, or, at least, by a logarithm of the coupling constant.

Specifically:

(a) The gauge covariant gradient expansion retains the terms of leading order in

∂x/k; this is an excellent approximation since the neglected terms are of O(g2) or less.

Diagramatically, this translates into the fact that the smooth lines in Figs. 5, 7, or 8 (and

also in the diagrams to come) represent eikonal propagators, of the form (cf. eq. (3.11)):

∆R(P,v) =
i

v · P + iε
, (3.16)

rather than standard tree-level propagators. Moreover, all the vertices in these diagrams

are simplified by systematically ignoring the external momentum P .

(b) In the construction of the collision term, we have retained only the terms of

leading order in an expansion in powers of ∂x/q. This approximation, which assumes that

both particles taking part in the collision (see Fig. 1) feel the same mean field, is needed

in order to put the collision term into a form local in x. But for colour fluctuations at
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the scale g2T , this is correct only up to corrections of O(1/ ln(1/g)) : indeed, ∂x ∼ g2T ,

while the cross section in eq. (2.6) is logarithmically sensitive to momenta q ∼ g2T (see

eq. (3.29) below). Diagrammatically, this affects only the diagram 8.c (more generally,

the diagrams involving two or more hard loops; see, e.g., Fig. 10 below), where it amounts

to assume that both the internal wavy lines (the two gluons connecting two hard bubbles)

carry the same momentum q. (Strictly speaking, if one of these lines has a momentum q,

then the other one should rather carry a momentum p− q.)

(c) Within the collision term, we have neglected, wherever possible, the exchanged

momentum q as compared to the hard momenta of the colliding particles (recall the

discussion after eq. (2.9)). This is a good approximation since q/k = O(g) or less. Dia-

grammatically, this entails more simplifications in the propagators and vertices in Figs. 8:

the velocity remains unchanged when running along a given hard loop (e.g., in Fig. 8.c,

there are only two velocities: v ≡ k̂ for the left hand loop, and v′ ≡ p̂ for the right hand

one), and the momentum q is neglected in all the vertices.

It is interesting to examine the validity of these approximations in the separate

cases of colour fluctuations and colourless ones. The approximations (a) and (b) are

quite generic in relation with the Boltzmann equation, and are actually better justified

for colourless fluctuations than for coloured ones: Indeed, we have seen in Sec. 1.1

that the colourless fluctuations relax mainly via hard (or large angle) scattering, q ∼ T ,

with a typical relaxation rate ∼ g4T ln(1/g). In this case, the effect of the collisions

becomes a leading order effect only for very soft inhomogeneities, ∂x ∼ g4T , for which

both inequalities ∂x � k and ∂x � q are very well satisfied. On the other hand, the third

approximation (c) does not apply to colourless fluctuations, for which, because of the

cancellations discussed after eq. (2.7), q ∼ k ∼ T . Note that it is precisely approximation

(c) which allowed us to reduce the original collision term (2.5) to the simpler expression

in eq. (2.12).

The simplifications arising from approximation (c) (cf. eqs. (2.10) and (2.11)) have

actually a simple diagrammatic interpretation as cancellations among Feynman graphs.

The two diagrams in Figs. 8.a and b correspond respectively to the terms involving W (k, x)

and W (k′, x) in eq. (2.5). For colourless fluctuations in QCD, or, equivalently, for electric

fluctuations in QED, eq. (2.7) teaches us that these two diagrams cancel each other in the

limit where q is neglected next to k or p. That is, each of these diagrams is individually

dominated by soft momenta q, but their leading infrared contributions mutually cancel

in the sum of the diagrams, so that we are left with the (subleading) contribution of hard

q momenta. (This is what makes the colourless collision term (2.7) difficult to deal with;

see, e.g., [18, 9, 11].)

In QED, this cancellation has been also verified via direct diagrammatic calculations,
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Figure 9: (a) A ladder diagram, as generated by iterations of the first two pieces, C1 and

C2, of the collision term; the smooth lines with a bubble are eikonal propagators dressed

with a damping rate 2γ. (b) The sum of all the ladders in (a), as obtained after using the

partial cancellation between vertex and self-energy corrections to effectively remove the

ladders; the thick line is an eikonal propagator with a damping rate γ.

in Refs. [20, 36, 37, 32]. In particular, in Ref. [32], this has been related to the absence

of HTL vertices with four external photons. Indeed, the two diagrams in Figs. 8.a and

b can be generated from the four-particle hard thermal loop in Fig. 5.b, by closing two

of the external lines in all the possible ways. In QED, this involves the four-photon

HTL which, however, is well known to vanish [18, 1] : the HTL-like contributions of

the individual diagrams with four external photons (as in Fig. 5.b) mutually cancel after

summing over the permutations of the external lines. In the present framework, the sum

over the permutations corresponds precisely to the sum of the two diagrams in Figs. 8.a

and b, so this sum has to vanish as well.

In QCD, on the other hand, the sum over permutations produces a colour commu-

tator, which thus provides both a non-vanishing four-gluon HTL [18, 19], and a non-zero

global contribution from the diagrams in Figs. 8. This is the content of eqs. (2.9)–(2.12).

In fact, eq. (2.10) shows that, even in QCD, there remains a partial compensation be-

tween the self-energy and vertex corrections in Figs. 8.a and b (while the two diagrams in

Fig. 7.c and d rather reinforce each other; cf. eq. (2.11)). The net effect is that half of the

self-energy correction is cancelled by the vertex correction, with the factor 1/2 coming

from the colour algebra (cf. the first trace identity in eq. (2.8)).

We now turn to the higher order iterations. Clearly, by iterating the self-energy

insertion in Fig. 3.a, one ends up with replacing the propagator of the hard gluon with a

dressed propagator which includes the damping rate. That is, the bare eikonal propagator

(3.16) is replaced by the following dressed propagator

∗∆R(P,v) =
i

v · P + 2iγ
, (3.17)

to be graphically represented by a straight line with a blob (see Figs. 9.a and 10).

Equivalently, this resummation can be achieved by moving the first collision term C1 into

the l.h.s. of the Boltzmann equation (3.8). Similarly, by iterating the vertex correction in
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Figure 10: A generic ladder diagram contributing to the ultrasoft polarization tensor, as

obtained from the Boltzmann equation.

Fig. 3.b one generates the ladders diagrams depicted in Fig. 9.a. Finally, diagrams with

two or more hard loops will be generated by iterating the other two pieces, C3 and C4, of

the collision term (cf. Figs. 3.c and d, and Fig. 8.c).

We conclude that the typical diagrams which are resummed by the solution of the

Boltzmann equation (3.8) are as shown in Fig. 10. They involve a chain of an arbitrary

number of hard loops, each of them dressed by ladders and damping effects as in Fig. 9.a,

and connected one to the other by pairs of soft gluons. The smooth lines with a blob

represent the dressed eikonal propagator (3.17), while those without a blob are thermal

correlation functions like G>
0 and G<

0 (cf. eq. (2.3)), or derivatives of them (cf. eq. (3.9)).

Now, all the previous examples involve diagrams which contribute to the ultrasoft polar-

ization tensor (or 2-point amplitude) Πµν(P ). But, of course, similar diagrams exist for all

the higher point ultrasoft vertices: they can be obtained by inserting more external lines

along the hard loops in Fig. 10, on any of the internal eikonal lines (which, in general,

can be seen as eikonal propagators in a background field; cf. eq. (3.11)).

It is finally possible to give a simple graphical interpretation of the (partial) infrared

cancellations between self-energy and vertex corrections, as discussed above. To the order

of interest, the only effect of the ladder corrections in Fig. 9.a is to reduce to damping

rateg in eikonal propagators like (3.17) from 2γ to γ (cf. eq. (2.10)). This is depicted in

Fig. 9.b, where the thick internal line denotes the following eikonal propagator (compare

to eqs. (3.16) and (3.17)):

∆́R(P,v) =
i

v · P + iγ
(3.18)

while the thin line corresponds to ∂kG
<
0 (k).

3.3 General properties and iterative solutions

We now return to a discussion of the general properties of the ultrasoft amplitudes. Since

they encompass, and generalize, the HTL’s, we expect these amplitudes to describe phe-

gIn QED, the sum of all the self-energy and ladder corrections depicted in Fig. 9.a simply vanishes to
the order of interest [20]; cf. the discussion after eq. (2.7).
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nomena like Debye screening or Landau damping (possibly modified by the effects of the

collisions), and also transport phenomena, which are made possible by the collision term;

the exemple of the colour conductivity will be discussed in the next section.

In order to look for Debye screening, it is enough to consider static fields, that

is, colour field configurations which are described by time-independent vector potentials

Aµ
a(x). In this case, the ultrasoft amplitudes reduce to the usual Debye mass term m2

D =

g2NT 2/3 for electrostatic fields, as obtained from the HTL’s. In order to see this, it is

convenient to decompose the functions W a(x,v) as follows [1] :

W a(x,v) ≡ −Aa
0(x) + Aa(x,v). (3.19)

From qs. (2.19) and (3.19), the following equation is obtained (recall that Ei
a = Di

abA
0
b −

∂0Ai
a) :

(v ·Dx)
abAb(x,v) = ∂0(v · Aa) − γ

{
Aa(x,v) − 〈Aa(x,v)〉

}
, (3.20)

while eq. (3.3) shows that the current can be rewritten as:

jµ
a (x) = − δµ0 m2

DAa
0(x) + m2

D

∫
dΩ

4π
vµAa(x,v). (3.21)

In obtaining eq. (3.20), we have also used the fact that:

A0
a(x) − 〈A0

a(x)〉 = 0 , (3.22)

since the collision term vanishes for any function which is independent of v.

In eq. (3.20), the time derivative of the vector potentials (i.e., the term ∂0(v ·A)) acts

as a source for the functions Aa(x,v). Since we are looking here for solutions which vanish

in the absence of sources, it follows that Aa(x,v) = 0 (and therefore W a(x,v) = −Aa
0(x))

when the gauge potentials are time-independent. Then, eq. (3.21) reduces to:

ja
µ(x) = − δµ0 m2

DAa
0(x) , (3.23)

which is the same expression as in the HTL approximation [1]. That is, for static external

legs, all the ultrasoft vertices with n ≥ 3 external lines vanish, while Πµν(ω = 0,p) =

−δµ0δν0 m2
D.

Eq. (3.23) shows, in particular, that the value of the Debye mass is not modified by

the collisions among the hard particles. An alternative derivation of this result has been

recently given in Ref. [31] (see also Sec. 4.2 below). This is not unexpected since we know

[40] that the first correction to m2
D, of O(g3T 2 ln(1/g)), comes out from the interactions

between soft and ultrasoft fields.
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For time-dependent fields, however, the collisions among the hard particles do play

a role, and, at very soft momenta P <∼ g2T (by which we mean that both the frequency

P 0 ≡ ω, and the spatial momentum p = |p|, are of order g2T or less), they can even

dominate over the mean field effects. This may be seen by considering the formal solution

of the Boltzmann equation (2.19) obtained by iterations. There are several ways to

organize the iteration. For instance, we may iterate the whole collison term in the r.h.s. of

eq. (2.19), similarly to what we have done in the previous subsection. Since the collision

term is proportional to γ, the resulting solution is a formal expansion in powers of γ.

Specifically, we write W = W (0) + W (1) + W (2) + . . ., where W (0)
a (x,v) satisfies the

transport equation in the mean field approximation (or Vlasov equation)

(v ·Dx)
abW

(0)
b (x,v) = v · Ea(x), (3.24)

while the Nth order correction W (N)
a (x,v) is proportional to γN . The (retarded) solution

to eq. (3.24) involves the eikonal propagator ∆R(x, y;v), as defined in eq. (3.11). Thus,

in compact notations:

W (0) =
v ·E
v ·D ,

W (1) = − γ

v ·D

{
v ·E
v ·D −

〈
v ·E
v ·D

〉}
,

W (N) = − γ

v ·D
{
W (N−1) −

〈
W (N−1)

〉}
. (3.25)

This expansion maintains explicit gauge symmetry at each order in γ: indeed, since

both pieces of the collision term (i.e. the local piece −γW a(x,v) and the non-local one

γ〈W a(x,v)〉) are treated on the same footing, the current conservation law (3.4) is verified

at each step in this iteration. Then, e.g., the polarization tensor Π(N)
µν constructed in the

Nth iteration is guaranteed to be transverse.

The discussion in the previous subsection provides us with the diagramatic inter-

pretation of the expansion (3.25). The zeroth order solution W (0) corresponds obviously

to the mean field, or HTL, approximation (cf. eqs. (3.9) and (3.13), and Figs. 4 and 5).

The first order iteration W (1) corresponds to the diagrams in Figs. 7 or 8. Specifically,

the expression of W (1) in eq. (3.25) involves two pieces within the braces in its r.h.s.: the

first piece corresponds to the sum of the self-energy and vertex corrections depicted in

Figs. 7.a and b (or, equivalently, in Figs. 8.a and b); similarly, the second piece in W (1)

corresponds to the sum of the two diagrams in Figs. 7.c and d. But it is only the set of the

four diagrams in Fig. 7 which is globally gauge invariant and provides a transverse contri-

bution Π(1)
µν to the polarization tensor [32] (see also Sec. 4.1 below, especially eq. (4.19)).

Note that, for ultrasoft gradients Dx ∼ g2T ∼ γ, the expansion (3.25) is a formal one:

indeed, all the terms are equally important.
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A different expansion is obtained by choosing only the second piece of the collision

term, namely γ〈W a(x,v)〉, as the perturbation. To do this, we move the term −γW a(x,v)

to the l.h.s. of the Boltzmann equation, and define the “dressed” eikonal propagator:

∆́ab
R (x, y;v) = θ(t) δ(3) (x− y− vt) e−γt Uab(x, y) ≡

〈
x, a

∣∣∣ i

i(v ·D) + iγ

∣∣∣y, b
〉
. (3.26)

This operation looks naively like a resummation of the damping rate γ in the propagator

of the hard particles, but in reality it is the combined effect of a self-energy and a vertex

resummation (recall the discussion after eq. (2.9), and also the diagrams in Figs. 9.a and

b); the resummation of the self-energy alone would have given an attenuation factor 2γ.

The corresponding iterative solution reads then:

W (0) =
v · E

v ·D + γ
,

W (1) =
γ

v ·D + γ

〈
v · E

v ·D + γ

〉
,

W (N) =
γ

v ·D + γ

〈
W (N−1)

〉
, (3.27)

and suggests that, for very soft colour mean fields, the damping rate γ ∼ g2T ln(1/g) may

act as an effective IR cutoff. That is, for gradients Dx
<∼ g2T , we can even neglect the

drift term v ·D as compared to γ (at least, to leading logarithmic accuracy; cf. Sec. 3.4

below), in which case the expansion (3.27) may be resummed into an exact solution (cf.

Sec. 4.2).

Diagramatically, the zeroth order solution W (0) in eq. (3.27) corresponds to Fig. 9.b,

i.e., to the sum of all the ladder diagrams in Fig. 9. (Incidentally, this is also equivalent

to the relaxation time approximation, eq. (1.6).) This is not a gauge-invariant subset of

diagrams, and, indeed, it is quite obvious that the expansion eq. (3.27) violates gauge

symmetry at any finite order (since it treats the two pieces of the collision term on a

different footing); see also the discussion at the end of Sec. 4.1.

3.4 The leading-logarithmic approximation

The previous applications of the Boltzmann equation (2.15) [2, 3, 31, 32] have been mostly

limited to the leading-logarithmic approximation (LLA) that we shall describe now.

Recall first that, for colour excitations at the scale g2T , the collision term in

eq. (2.15) is known, strictly speaking, only to logarithmic accuracy, that is, up to correc-

tions of O(1/ ln(1/g)) . This limitation has two sources: i) the IR problem of the damping

rate [18, 20, 21, 22], and ii) the gradient expansion in the presence of long range interac-

tions [4] (i.e., the expansion in powers of ∂x/q; cf. Sec. 3.2). Because of that, it has been
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previously argued that the Boltzmann equation should be further simplified, for consis-

tency, so as to preserve only the terms which are enhanced by a logarithm. Specifically,

this involves two approximations:

a) In eq. (2.17) for the collision integral Φ(v · v′) one has retained only the singular

piece of the magnetic propagator, namely [22]:

|∗Dt(q0 � q)|2 ' 1

q4 + (πm2
Dq0/4q)2

−→q→0
4

m2
D

δ(q0)

q
. (3.28)

This allows one to isolate the IR singular piece of eq. (2.17), which reads [2] :

Φ(v · v′) ' Φ0(v · v′) ≡
2

π2m2
D

(v · v′)2√
1− (v · v′)2

ln
1

g
, (3.29)

where the logarithm ln(1/g) in the r.h.s. has been generated via the following integral:∫ mD

µ

dq

q
= ln

mD

µ
' ln

1

g
. (3.30)

In this equation, the upper cutoff mD is given by the screening effects at the scale gT (as

included in ∗Dt, eq. (3.28)), while the IR cutoff µ is either the non-perturbative “magnetic

mass” [17] (in which case µ ∼ g2T ), or — in the framework of the effective theory for

ultrasoft fields [2] —, the intermediate scale µ ' g2T ln(1/g) separating ultrasoft from soft

momenta. In both cases, the estimate (3.30) holds to leading-log accuracy. By inserting

the approximation (3.29) into eq. (2.18), we get the damping rate to the same accuracy

(α = g2/4π) :

γ ' γ0 ≡ αNT ln
1

g
. (3.31)

In fact, the expression of γ obtained by evaluating exactly the integrals in eqs. (2.17) and

(2.18) with a sharp IR momentum cutoff µ (see Appendix B in the last paper of Ref. [22])

is:

γ = αNT ln
mD

µ
, (3.32)

up to corrections of orderh µ/mD.

b) The covariant gradient operator, or drift term, v · Dx ∼ g2T in the l.h.s. of

eq. (2.15) has been neglected next to the collision term ∝ γ in the r.h.s.

After these simplifications, eq. (2.15) reduces to:

v · Ea(x) = γ0

{
W a(x,v) − 〈W a(x,v)〉0

}
, (3.33)

hActually, numerical studies of eqs. (2.17) and (2.18) show that the error is even smaller, of order
(µ/mD)2 [38].
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where the subscript 0 refers to the LLA, cf. eqs. (3.29) and (3.31) (e.g., the angular

average 〈W a(x,v)〉0 is given by eq. (2.20) with Φ → Φ0).

Eq. (3.33) can be easily solved by iterations, as in eq. (3.27): the first iteration

yields W (0) = v · E/γ0, and all the higher order iterations vanish (W (N) = 0 for N ≥ 1)

since W (0) is an odd function of v, while Φ0(v · v′) is even (cf. eq. (3.29)). Thus,

W a(v) ' v · Ea

γ0
, (3.34)

which, as already mentioned in the Introduction, is formally equivalent to the relaxation

time approximation (1.6), and generates a colour current ja = σ0E
a , with the colour

conductivity in the LLA σ0 = m2
D/3γ0 [2, 3].

However, the approximation (b) above is insufficient for several reasons:

i) It is incorrect in the electric sector, where it fails to provide Debye screening [31]. Indeed,

eq. (3.34) yields j0
a = 0, to be contrasted with the correct result (3.23): j0

a = −m2
DAa

0(x).

This is so since, for static fields, W a(x,v) = −Aa
0(x) is an exact solution of eq. (2.15),

for which the collision term vanishes (cf. eq. (3.22)); in this case, it is not legitimate to

neglect the drift term.

ii) In some specific kinematical situations (essentially, for fields which are arbitrarily weak

and slowly varying), the linearized Boltzmann equation can be solved to a higher accuracy

than in the LLA, leading to a formula for the transverse colour conductivity valid beyond

the LLA. This will be explained in Sec. 4.2 below.

iii) In order to study the non-local structure of the ultrasoft amplitudes, one has to retain

the drift term in the Boltzmann equation. Then, both pieces of the collision term (local or

non-local in v, cf. eq. (2.15)) play a role, as required by gauge symmetry (cf. eq. (3.4)).

This will be further explained on the example of the polarization tensor, in the next

section.

4 The polarization tensor

In this section we shall discuss in more detail the polarization tensor Πµν(P ) for ultrasoft

(P <∼ g2T ) fields, as determined by the solution to the Boltzmann equation. The polariza-

tion tensor typifies the non-local structure of all the ultrasoft amplitudes: as in the HTL

approximation, all the n-point vertices with n ≥ 3 follow from it as a consequence of the

non-Abelian gauge symmetry (these vertices are generated by the covariant derivative in

the l.h.s. of the Boltzmann equation (2.15)).
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4.1 Tensorial structure and iterative solutions

According to eq. (3.6), in order to construct the polarization tensor it is enough to consider

a linearized version of the Boltzmann equation (2.19), namely:

(v · ∂x)W
a(x,v) = v · Ea(x)− γ

{
W a(x,v) − 〈W a(x,v)〉

}
, (4.1)

where Ei
a(x) ≡ ∂iA0

a − ∂0Ai
a denotes only the “Abelian” piece of the electric mean field.

It is then useful to go to the momentum representation, where eq. (4.1) becomes

(v · P )W (P,v) = iv · E(P ) − iγ
{
W (P,v) − 〈W (P,v)〉

}
, (4.2)

with P µ = (ω,p), Ei(P ) = i(ωAi(P )−piA0(P )), and the colour indices have been omitted

since trivial: the linearized equations (4.1) or (4.2) are indeed diagonal in colour.

Even though linear, eq. (4.2) is still difficult to solve in general, since the term

γ〈W a(x,v)〉 is non-local in v (cf. eq. (2.20)). Below, we shall consider an iterative

solution, following the procedure explained at the end of Sec. 3.3. But before doing that,

we shall derive from eq. (4.2) some general properties of Πµν(P ).

First, the solution W (P,v) can be written in the form:

W (P,v) = i W i(P,v)Ei(P ), (4.3)

with the new functions W i(P,v) satisfying:

(v · P )W i(P,v) = vi − iγ
{
W i(P,v) − 〈W i(P,v)〉

}
. (4.4)

The corresponding colour current can then be written as:

jµ(P ) ≡ m2
D

∫
dΩ

4π
vµ W (P,v) = σµi(P )Ei(P ), (4.5)

with the following conductivity tensor:

σµi(P ) ≡ im2
D

∫
dΩ

4π
vµ W i(P,v). (4.6)

The polarization tensor is then defined by jµ(P ) ≡ Πµν(P )Aν(P ), which implies:

Πµ0(P ) = −ipjσµj(P ), Πµi(P ) = −iωσµi(P ). (4.7)

By using eq. (4.4), one can verify that the resulting polarization tensor is transverse,

PµΠµν = 0, and symmetric, Πµν = Πνµ. These properties, however, are not manifest on

eqs. (4.6) and (4.7).
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The transversality property reflects the conservation of the (linearized) current

(Pµjµ = 0) and has been already proven in a more general context in Sec. 3.1 (re-

call eq. (3.7)). Here, it immediately follows from eq. (4.4), which implies (compare to

eq. (3.5)): ∫
dΩ

4π
(v · P )W i(P,v) = 0, (4.8)

so that Pµσ
µi = 0, and hence PµΠµν = 0. For what follows, it is useful to decompose

W i(P,v) into its longitudinal and transverse components with respect to p, by writing

(with p̂i = pi/p and p = |p|) :

W i(P,v) = WL(P,v)p̂i + W i
T (P,v), WL ≡ p̂ ·W, p ·WT = 0, (4.9)

and note that eq. (4.8) entails a constraint on the longitudinal component alone:∫ dΩ

4π
(ω − v · p)WL(P,v) = 0. (4.10)

By using this constraint, together with the properties of the angular integration, we shall

now verify the symmetry property Πµν = Πνµ. Eqs. (4.6) and (4.7) imply, e.g.,

Π0i(P ) = ωm2
D

∫
dΩ

4π
W i(P,v), Πi0(P ) = pm2

D

∫
dΩ

4π
vi WL(P,v). (4.11)

These two expressions are indeed identical because:

Πi0(P ) = p̂i m2
D

∫
dΩ

4π
(v · p)WL = p̂i ωm2

D

∫
dΩ

4π
WL = Π0i(P ). (4.12)

In writing the first equality above, we have used the fact that p̂ is the only remaining

vector after performing the integral over v; then, eq. (4.10) has been used to obtain the

second equality. It can be similarly shown that Πij = Πji.

The above properties fix the tensor structure of Πµν : as in the HTL approximation,

Πµν is determined by two independent scalar functions ΠL(ω, p) and ΠT (ω, p), which we

choose as:

ΠL(ω, p) ≡ −Π00(P ) = −pm2
D

∫ dΩ

4π
WL(P,v),

ΠT (ω, p) ≡ 1

2
(δij − p̂ip̂j)Π

ij(P ) =
1

2
ωm2

D

∫ dΩ

4π
v ·WT (P,v). (4.13)

In terms of these functions, the components of Πµν read:

Π00(P ) = −ΠL(ω, p), Π0i(p) = − ωpi

p2
ΠL(ω, p), (4.14)

Πij(P ) = (δij − p̂ip̂j)ΠT (ω, p)− p̂ip̂j ω2

p2
ΠL(ω, p) .
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As p → 0, there is no privileged direction, and, since ΠT (ω, p = 0) is non-zero (e.g.,

ΠT (ω, p = 0) = m2
D/3 ≡ ω2

pl in the HTL approximation [17]), the above expression for Πij

requires ΠL(ω, p → 0) to vanish in the following way:

ΠL(ω, p → 0) ≈ − p2

ω2
ΠT (ω, p = 0). (4.15)

The longitudinal and transverse components of the conductivity tensor will be also needed

later. Writing ji = p̂ijL + ji
T and Ei = p̂iEL + Ei

T (with EL = i(ωAL − pA0) and

Ei
T = iωAi

T ), and defining σL and σT such that jL = σLEL and ji
T = σT Ei

T , we get:

σL(ω, p) = −i
ω

p2
ΠL(ω, p), σT (ω, p) =

i

ω
ΠT (ω, p). (4.16)

We now turn to a discussion of the iterative solution to eq. (4.4), following the

considerations at the end of Sec. 3.3. If we treat the whole collision term as a perturbation,

then the first two iterations read (cf. eq. (3.25)):

W
(0)
i =

vi

v · P , W
(1)
i = −i

γ

v · P

{
vi

v · P −
〈

vi

v · P

〉}
. (4.17)

The first term above yields the well known HTL approximation for the (retarded) polar-

ization tensor [16, 17], namely:

Π(0)
µν (ω,p) = m2

D

{
−δ0

µδ
0
ν + ω

∫ dΩ

4π

vµ vν

ω − v · p + iε

}
. (4.18)

The second term in eq. (4.17) gives then a correction to the HTL result which can be

written in the following form:

Π(1)
µν (P ) = −iγωm2

D

∫
dΩ

4π

vµ

v · P

{
vν

v · P −
〈

vν

v · P

〉}
= −iωm4

D

g2NT

2

∫ dΩ

4π

∫ dΩ′

4π
Φ(v · v′) vµ

v · P

{
vν

v · P − v′ν
v′ · P

}
, (4.19)

where in the second line we have used the definition (2.20) of the angular averaging

together with eq. (2.18) for γ. Higher order iterations Π(N)
µν can be written down similarly,

in a straightforward way.

With the leading logarithmic approximation (3.29) for Φ(v · v′), eq. (4.19) coincides

with the expression recently obtained by Bödeker in Ref. [32] by diagrammatic calcula-

tions. From the discussion in Sec. 3.2, one easily associates the first term within the

braces in eq. (4.19) with the two diagrams in Figs. 8.a and b, and the second term, which

is non-local in v, to the diagram with two hard loops in Fig. 8.c (the two unit vectors v

and v′ correspond to the velocities of the hard particles running around these two loops).

The higher-order iterations Π(N)
µν with N ≥ 2 would similarly correspond to the diagrams

illustrated in Fig. 10.
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For P ∼ g2T , however, the contribution in eq. (4.19) is actually of the same order

in g as the HTL (4.18), and even dominates over the latter by a logarithm ln(1/g). This

reflects the fact, already emphasized in Sec. 3.3, that the iterative expansion is generally

not appropriate for the problem at hand, and it makes a priori no sense to try and evaluate

Πµν from just a finite number of terms in this expansion. In the next subsection, we shall

rather construct exact solutions to the equation (4.4) in specific kinematical limits.

Consider finally the second iterative solution, as described in eq. (3.27). In Sec. 3.4,

this proved to be useful in obtaining the leading-logarithmic estimate in eq. (3.34). In

general, however, this expansion must be used with caution since, as advertised at the end

of Sec. 3.3, it violates gauge symmetry at every finite order. For instance, if we restrict

ourself to the zeroth order iteration, we obtain (cf. eqs. (4.4) and (3.27)) :

W
(0)
i =

vi

v · P + iγ
, (4.20)

which then leads to a polarization tensor which is neither symmetric, nor transverse. For

instance, the conductivity tensor σij built out of (4.20) reads:

σ
(0)
ij (ω,p) = im2

D

∫
dΩ

4π

vivj

ω − v · p + iγ
, (4.21)

which is not transverse in the static limit: piσ
(0)
ij (ω = 0,p) 6= 0.

4.2 Colour conductivities

We now study the behaviour of the polarization tensor Πµν(ω,p) at very small energy

and momentum, ω, p � γ. This is interesting since the gradient expansion, which is only

marginally justified for inhomogeneities at the scale g2T , becomes more and more accurate

as the inhomogeneity becomes softer and softer. (Strictly speaking, colour inhomogeneities

cannot be unambiguously defined at extremely soft scales p � g2T , for the reasons

explained in the Introduction. The forthcoming discussion is nevertheless interesting since

it applies also for momenta p ∼ g2T , at least within an expansion in powers of 1/ ln(1/g).)

By solving exactly the (linearized) Boltzmann equations (4.1) or (4.4) in this kinematical

limit, we shall recover the previous result about Debye screening (cf. eq. (3.23)), and

compute the longitudinal and transverse colour conductivities defined in eq. (4.16). By

“exact solutions” we mean here solutions which are obtained without using the leading

logarithmic approximation (3.29) for Φ(v · v′), and which are known up to corrections of

O(p/γ). Of course, these solutions account only for the contributions of the hard and soft

modes, with q > µ, to the corresponding conductivities. But they are still interesting as

they allow for the matching with the corresponding contributions of the ultrasoft modes,

to be computed non-perturbatively (see eq. (4.36) below, and the discussion after it).
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We shall study the two following situations: (i) ω � p � γ (this includes the static

case ω = 0 as a particular limit), and (ii) p � ω <∼ γ. Since, generally, the electric and

magnetic sectors behave differently in these limits, it is useful to project the Boltzmann

equation (4.4) for W i(P,v) onto longitudinal and tranverse components (cf. eq. (4.9)):

(v · P )WL(P,v) = v · p̂ − iγ
{
WL(P,v) − 〈WL(P,v)〉

}
(v · P )W i

T (P,v) = vi
T − iγ

{
W i

T (P,v) − 〈W i
T (P,v)〉

}
. (4.22)

(i) Consider first the static limit ω → 0, where the longitudinal sector should provide

Debye screening, as shown in Sec. 3.3. And, indeed, for ω = 0, the above equation for

WL reduces to:

(v · p̂)(1 + pWL) = iγ
{
WL(p,v) − 〈WL(p,v)〉

}
, (4.23)

with the obvious solutioni WL(ω = 0, p,v) = −1/p. Note that the collision term in

eq. (4.23) vanish identically for this solution, which is therefore independent of γ (and thus

the same as in the HTL approximation). Since, moreover, W (ω = 0) = pWL(ω = 0)A0(p)

for static fields (cf. eq. (4.3)), this solution is clearly equivalent to W (ω = 0,p,v) =

−A0(p), as expected from the discussion in Sec. 3.3. When inserted into eq. (4.13), it

yields:

ΠL(ω = 0, p) = m2
D, (4.24)

which, together with the first equation (4.16), gives the behaviour of the longitudinal

conductivity σL at small ω (and for arbitrary p):

σL(ω → 0, p) → −iω
m2

D

p2
. (4.25)

The results (4.24) and (4.25) are the same as in the HTL approximation [16]: at small

frequencies, the electric sector is not affected by the collision effects (see also Ref. [31]).

In the same limit, however, important modifications occur in the magnetic sector.

Consider, indeed, eq. (4.22) for WT at ω = 0:

(v · p)W i
T = − vi

T + iγ
{
W i

T (p,v) − 〈W i
T (p,v)〉

}
. (4.26)

In the absence of the collision term (that is, to zeroth order in the iteration (4.17)), this

equation would imply W
i (0)
T = −vi

T /(v · p− iε) (where the iε stays for retarded boundary

iThis solution can be obtained also from the iteration (4.17), when written for WL and ω = 0: then,
the zeroth order term reads W

(0)
L (ω = 0) = −1/p, which, being independent of v, makes all the higher

order corrections to vanish: W
(N)
L (ω = 0) for N ≥ 1 (cf. the discussion prior to eq. (3.22)).
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conditions, as in eq.(3.11)), which would then generate the small frequency limit of the

HTL magnetic polarization tensor [16, 17] :

Π
(0)
T (ω � p) ' −i

π

2
ωm2

D

∫
dΩ

4π
vi(δij − p̂ip̂j)v

j δ(v · p) = −i
π

2

ω

p
m2

D , (4.27)

thus yielding σ
(0)
T (ω � p) ' (π/2)(m2

D/p). These expressions, which are formally singular

as p → 0, are correct only as long as p � γ. For ultrasoft momenta p <∼ γ, they are

modified by the collision terms, as we discuss now.

Note first that, unlike in the electric sector where WL(ω = 0) = −1/p is independent

of v, here W i
T (p,v) is a non-trivial function of v already in the zeroth order iteration.

For such a function, the collision term in the r.h.s. of eq. (4.26) cannot vanish; it is thus

a quantity of order γ, with respect to which the drift term in the l.h.s. of (4.26) can be

neglected in the longwavelength limit p � γ. In this limit, the equation for WT reduces

to:

vi
T = iγ

{
W i

T (v) − 〈W i
T (v)〉

}
. (4.28)

This is a simple equation which can be solved exactly. Specifically, since vi
T is the only

vector left in the problem, we can write: W i
T (v) = (C/iγ)vi

T with some coefficient C.

Then,

〈W i
T (v)〉 = (C/iγ)〈vi

T 〉 = κ(C/iγ)vi
T , (4.29)

where we have denoted κvi ≡ 〈vi〉, so that (cf. eq. (2.20)) :

κ =

∫ dΩ′
4π

Φ(v · v′) (v · v′)∫ dΩ′
4π

Φ(v · v′)
. (4.30)

Physically, κ = 〈cos α〉, where α is the angle made by the velocities v and v′ of the

colliding particles, and the brackets denote averaging with respect to the scattering cross

section, cf. eq. (2.20); obviously, |κ| < 1. Then, eq. (4.28) fixes the coefficient C as

C = 1/(1− κ). To conclude:

W i
T (v) = − i

γ

vi
T

1− κ
= −i

vi
T

γ − δ
, (4.31)

with (recall eq. (2.18)):

δ ≡ γκ = m2
D

g2NT

2

∫
dΩ′

4π
Φ(v · v′) (v · v′). (4.32)

With the leading logarithmic approximation (3.29) for Φ(v · v′) in eq. (4.32), the angular

integral over v′ vanishes by parity. Thus, δ is a finite quantity of O(g2T ), which is

completely determined by the present approximation. Its explicit evaluation, however,
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requires the full expression (2.17) for Φ(v · v′). We write δ ≡ αNT δ̄, and obtain δ̄ by

numerical integration of eq. (4.32). The result is δ̄ = −0.20305024... .

With W i
T (v) from eq. (4.31), it is finally straightforward to estimate the transverse

conductivity, or polarization tensor, in the present kinematical limit (cf. eqs. (4.13) and

(4.16)) :

σT (ω = 0, p → 0) =
i

2
m2

D

∫
dΩ

4π
v ·WT (v) ' m2

D

3(γ − δ)
=

ω2
pl

γ − δ
,

ΠT (ω � p � g2T ) ' −iω2
pl

ω

γ − δ
, (4.33)

where ωpl ≡ mD/
√

3 is the plasma frequency, that is, the frequency of the longwavelength

(p → 0) collective excitations [16, 17]. Strictly speaking, eqs. (4.33) hold only for very low

momenta p � g2T ; indeed, in their derivation above, we have neglected the drift term in

the l.h.s. of (4.26), but we have kept the term δ ∼ g2T coming from the collision integral.

In the limit where ln(1/g) is large, one can further expand these expressions in powers of

δ/γ ∼ 1/ ln(1/g) and get, to linear order,

σT (ω = 0) '
ω2

pl

γ

(
1 +

δ

γ

)
, (4.34)

where the neglected terms are down by, at least, two inverse powers of ln(1/g). Re-

markably, it turns out that, within the same accuracy, eq. (4.34) holds also for momenta

p ∼ g2T , which is a case of physical interestj . Indeed, since p/γ ∼ 1/ ln(1/g) as well, one

can solve eq. (4.26) by iterations, as a formal expansion in powers of ln−1 ≡ 1/ ln(1/g).

This yields (compare to eq. (4.31))

W i
T (p,v) = −i

vi
T

γ

[
1 +

δ

γ
− i

v · p
γ

+ O
(
ln−2

)]
, (4.35)

which shows that p ∼ g2T and δ enter on the same footing in W i
T . But when constructing

the colour conductivity, as in eqs. (4.13) and (4.16), the term in eq. (4.35) which involves

v · p vanishes after angular integration, so we are left with the same expression for σT as

above, eq. (4.34). By using eq. (3.32) for γ, together with the numerical estimate for δ

given above, we can rewrite eq. (4.34) in the following form:

σ−1
T (ω � p ∼ g2T ) =

αNT

ω2
pl

[
ln

mD

µ
− δ̄ + O

(
ln−2

)]
. (4.36)

This expression, which represents the contribution of the hard and soft modes (with

momenta k >∼ µ) to the colour conductivity at the scale g2T , turns out to be useful for

the matching with the corresponding contribution of the ultrasoft modes [39].

jWe thank Larry Yaffe for this remark.
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Eq. (4.36), which holds to leading and next-to-leading order in an expansion in pow-

ers of ln−1, extends the solution to the Boltzmann equation for σT (ω � p ∼ g2T ) beyond

the LLA of Sec. 3.4. Note that, even to this order, the transverse colour conductivity

remains local (i.e., independent of the momentum p), as in the LLA. But this is only

true within the accuracy indicated in eq. (4.36): the first corrections to this equation, of

O(ln−2), involve p2/γ2 and thus are non-local.

The expressions in eq. (4.33) should be also compared to the HTL result in eq. (4.27):

this shows that it is essentially the damping rate γ which cuts off the divergence of ΠT ,

or σT , as p → 0. This is in line with Drude’s picture of the electric conductivity, and it

is interesting to pursue this comparison even further, so as to emphasize the difference

between colour and electric conductivity (see also Ref. [3] for a discussion on this point).

The colour fluctuation induced by a uniform, and transverse, colour mean field Ea
T , as

determined by the solution above (cf. eqs. (4.31) and (4.3)) :

W (p � γ,v) ' v · ET

γ
≡ τcol v · ET , with τcol ∼

1

γ
∼ 1

g2T ln(1/g)
, (4.37)

should be compared with the charge fluctuation induced by an electric field, in the relax-

ation time approximation [12] (below, αem = e2/4π, with e the electric charge):

Wel(p) = τel(p)v · ET , with τel(p) ∼ p

αem ln(1/αem)T 2
∼ 1

e4T ln(1/e)
. (4.38)

Besides the loss of two powers of the coupling constant in the denominator (τcol ∼ 1/g2,

as compared to τel ∼ 1/e4), the colour relaxation time appears to be independent of the

momentum of the hard particles (unlike τel, which is proportional to p). Thus, the present

approximation for colour transport is formally similar to the relaxation time approxima-

tion for electric charge, but with a shorter, and momentum independent, relaxation timek.

We emphasize, however, that in the case of colour this is a property of the exact solution

of the corresponding Boltzmann equation, and not a consequence of the “relaxation time

approximation”.

(ii) Another interesting limit where the (linearized) Boltzmann equation (4.4) can be

solved exactly is the longwavelength, or zero momentum, limit, p → 0, at fixed frequency

ω (with ω <∼ γ, for the present approximations to apply). Once again, an exact solution

can be found because, once p is neglected, the vector fluctuation W i(v) is necessarily

proportional to vi. Moreover, if the momentum p is strictly zero, one cannot distinguish

between longitudinal and transverse polarizations, so that W i(ω, p = 0,v) = C(ω)vi must

be the solution to (cf. eq. (4.4)) :

ωW i(ω,v) = vi − iγ
{
W i(ω,v) − 〈W i(ω,v)〉

}
. (4.39)

kWe thank Henning Heiselberg for a clarifying discussion on this point.
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This is similar to the previous eq. (4.28), so that the corresponding solution reads (compare

to eq. (4.31)):

W i(ω, p = 0,v) =
vi

ω + i(γ − δ)
, (4.40)

which yields the following, isotropic, conductivity tensor:

σij(ω, p = 0) = iδij ω2
pl

ω + i(γ − δ)
≡ δij σ(ω, p = 0). (4.41)

In particular, as ω � γ, we obtain

σ(p = 0, ω � γ) '
ω2

pl

γ − δ
, (4.42)

which is formally the same result as in the static case (cf. eq. (4.33)) except that it applies

now to both the longitudinal, and the transverse, conductivities: σL(p = 0) = σT (p =

0) = σ(p = 0). This should be compared with the previous results in eqs. (4.25) and

(4.33): unlike the longitudinal conductivity, the transverse one appears to be continuous

in the double limit ω → 0 and p → 0 (in the sense that the two limits give identical

results).

5 Conclusions

In this paper, we have used the Boltzmann equation describing the relaxation of colour

fluctuations in order to generate a set of gauge-invariant amplitudes for the ultrasoft

fields, i.e., the fields with momenta <∼ g2T . These amplitudes determine the response of

the hard quasiparticles to longwavelength (λ ≥ 1/g2T ) colour mean fields. They define

an effective theory for the ultrasoft fields, resulting from integrating out the modes with

momenta larger than g2T in perturbation theory.

The strategy which has been used in this paper, namely the use of the kinetic theory

in order to construct effective amplitudes for the soft fields, is reminiscent of our previous

construction of the hard thermal loops from collisionless kinetic equations [1]. The new

element here is the inclusion of the effects of the collisions, which is essential since these

are leading order effects for the colour excitations at the scale g2T . This results in two

important differences with respect to the previous analysis of the HTL’s: a) At a techni-

cal level, kinetic theory appears to be the only workable approach toward the systematic

construction of the ultrasoft amplitudes. Indeed, unlike the HTL’s, which are one-loop

amplitudes and have been originally obtained in a diagrammatic approach [18, 19], the

ultrasoft amplitudes correspond to an infinite series of Feynman graphs which are conve-

niently resummed, to the order of interest, by the solution of the Boltzmann equation.
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b) As for their physical content, the main new ingredient in the ultrasoft amplitudes is

the effect of dissipation as a consequence of collisions. In the leading logarithmic ap-

proximation, and also in the next-to-leading order (NLO) approximation as defined in

eq. (4.36), the dissipation is simply encoded in a local colour conductivity. In general,

this is described by the (non-local) imaginary parts of the ultrasoft amplitudes (as, e.g.,

in eq. (4.19)).

By studying the Boltzmann equation, we have been able to obtain a few exact

results about the ultrasoft amplitudes, in particular, the Ward identities they satisfy

(cf. eq. (3.7)), the static limit of the induced current (cf. eq. (3.23)), and the colour

conductivity beyond the leading logarithmic approximation (cf. eqs. (4.33), (4.36) and

(4.41)). More generally, by using formal solutions obtained by iterations, we have studied

the non-local structure of the ultrasoft amplitudes (cf. eq. (4.19)), and established their

diagrammatic interpretation (cf. Sec. 3.2).

As already emphasized, the dynamics of the ultrasoft colour fields described by

the Boltzmann equation is dissipative: any initial colour excitation will die away after

a typical time τcol ∼ 1/(g2T ln(1/g)). (This should be contrasted with the collisionless

dynamics in the HTL approximation, which is conservative [1], and even Hamiltonian

[41, 27].) This dissipative description is appropriate to study the relaxation of given

initial off-equilibrium deviations in the average colour density, as, e.g., in the calculation

of the colour conductivity, in Sec. 3.2.

For many other applications — for instance, in studies of the baryon number viola-

tion in the hot electroweak plasma —, one is interested in colour excitations at the scale

g2T which are generated by thermal fluctuations in the plasma. The most convenient

strategy to deal with such non-perturbative fluctuations is to treat them as classical fields

at finite temperature, which can then be simulated on a lattice [26, 25, 28, 27, 2, 29]. In

such a framework, one has to be able to also generate the correct thermal correlations

of the ultrasoft fields, at least in the classical approximation. In practice, and especially

for numerical simulations, it is convenient to use a Langevin description of the fluctua-

tions, that is, to simulate the thermal correlations with an appropriate “noise” term. The

“noise” is a random source with zero expectation value but non-trivial correlators which

are chosen so as to induce, via the equations of motion, the proper thermal correlations

of the ultrasoft fields.

For the effective theory at the scale g2T , the appropriate noise term has been con-

structed by Bödeker [2]. This term does not appear naturally in the derivation of the

Boltzmann equation from quantum field theory [4], where one focuses on the distribution

function of the hard particles, rather than on the dynamics of the soft fields. Still, to the

order of interest, the structure of the noise can be reconstructed from the known structure
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of the collision term, by using the fluctuation dissipation theorem. This construction will

be presented somewhere else [42].
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and Larry Yaffe for useful discussions and comments on the manuscript. Many of these

discussions took place during our stay at the Institute for Nuclear Theory, Washington

University, which we thank for hospitality and support. Finally we are grateful to Tony

Rebhan for his help with the numerical evaluation of δ̄.

References

[1] J.P. Blaizot and E. Iancu, Nucl. Phys. B390 (1993) 589; Phys. Rev. Lett. 70 (1993)

3376; Nucl. Phys. B417 (1994) 608; B421 (1994) 565; ibid. B434 (1995) 662.
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