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We use the threshold expansion and non-relativistic effective theory to determine
the bottom quark mass from moments of the bb̄ production cross section at next-
to-next-to-leading order in the (resummed) perturbative expansion, and including
a summation of logarithms. For the MS mass mb, we find mb(mb) = (4.26 ±
0.12) GeV.

1 Introduction

In this talk we report on a determination of the bottom quark mass at next-to-
next-to-leading order (NNLO) based on dispersion relations for e+e− → bb̄X .
This idea dates back to Ref. 1 and relies on the relation

12π2

n!

dn

d(q2)n
Π(q2)∣

∣q2=0
=

∫ ∞

0

ds

sn+1
Rbb̄(s), (1)

between the two-point function of the bottom vector current and the inclusive
bottom quark cross section mediated by a virtual photon, which is valid up to
a small correction from bb̄ radiation from light quarks. The left hand side can
be computed in perturbation theory; the right hand side from data.

The parameters of the lowest Υ(nS) resonances are well-measured, but the
continuum cross section above the threshold is not. Hence the experimental er-
ror of the right hand side decreases with increasing n, because higher moments
weight lower s. When the integral over s is saturated by the threshold region,
the bottom quarks are non-relativistic, and 2mb/

√
n and mb/n appear as new

momentum scales in the problem, related to the typical momentum mbv and

aTalk presented at RADCOR98, Barcelona, September, 1998. The numerical result of this
version supersedes the version printed in the proceedings volume, which was affected by a
program error.
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non-relativistic energy mbv
2 of the bottom quarks, respectively. When n is

large enough such that v ∼ αs, ordinary perturbation theory breaks down, be-
cause there are terms of the form (αs/v)

k to all orders in perturbation theory.
Even when v is only small, but not as small as αs, one may want to resum
those enhanced terms systematically.

Defining v = (1− 4m2
b/s)

1/2, where mb is the b quark pole mass, the cross
section e+e− → bb̄X for s ≈ 4m2

b can be expanded in a double series in αs and
v:

Rbb̄ = v
∑

k=0

∑

l=−k

ckl α
k
s v

l × logs of v. (2)

In the resummed perturbative expansion, a NpLO calculation has to account
for all terms with k + l ≤ p. Such a rearranged expansion has first been
considered in this context in Ref. 2 to LO accuracy and in Ref. 3 to NLO
accuracy. The step to NNLO accuracy implies new difficulties, because at this
order the naive relativistic or non-relativistic approximations lead separately
to divergent integrals. One has to be more precise about factorizing the two
momentum regimes.

Powers of v in (2) arise from ratios of momentum scales. We have to dis-
entangle the contributions from the different scales in order to be sure that for
a high-order loop graph, which cannot be calculated exactly, we have taken
into account all terms with k + l ≤ 2. In Ref. 4 we described how to expand
a Feynman integral in v to any given order, without calculating the exact
result. The expansion procedure is based on decomposing the loop integral
into contributions from different loop momentum regions and has a transpar-
ent interpretation in terms of effective theories. The present application, the
perturbative calculation of Rbb̄ in the threshold region, has much in common
with a QED bound state calculation done with non-relativistic QED 5,6. The
main difference is that we perform factorization in dimensional regularization,
rather than using momentum space cut-offs and a photon mass as infrared
regulator, and take advantage of the fact that scaleless integrals vanish in di-
mensional regularization. The absence of any explicit cut-off scale leads to
a homogeneous expansion in v, manifest power counting and makes analytic
calculations much easier at two loops. The unfamiliar dimensional renormal-
ization of the Schrödinger problem is a negligible price to pay in comparison
to these advantages, because it is not necessary to obtain the Green function
exactly in d dimensions.

In the following we summarize the calculation of e+e− → bb̄X at NNLO
using these methods7,8 and we determine the bottom quark mass by calculating
the moment integral (1). In addition to the NNLO terms in the sense of (2),
we also sum all logarithms of v of the form (αs ln v)k and αs (αs ln v)k. A
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subset of NNLO logarithms of the form α2
s (αs ln v)k can easily be summed

as well, but a complete summation requires another difficult calculation to
be done. This write-up concentrates on necessary formulae. A more general
perspective on the problem, and a more complete list of references related to
the subject can be found in Ref. 9. While we were preparing this work, other
NNLO calculations appeared 10,11,12. A brief comparison with these results is
given at the end.

2 Heavy quark production cross section near threshold

2.1 Classification of momentum regions

The expansion (2) can be constructed by decomposing each Feynman integral
that contributes to the vacuum polarization Π(q2) into contributions from the
following momentum regions 4:

hard (h): l0 ∼ mb, ~l ∼ mb,

soft (s): l0 ∼ mbv, ~l ∼ mbv,

potential (p): l0 ∼ mbv
2, ~l ∼ mbv, (3)

ultrasoft (us): l0 ∼ mbv
2, ~l ∼ mbv

2,

assuming a frame where ~q = 0. In dimensional regularization, the factorization
of the different momentum regions is achieved by appropriate expansions of
the Feynman integrands, without the need for explicit cut-offs, so that one can
integrate over the whole integration domain in each region. As a consequence
of this expansion, all terms have a definite homogeneous scaling behaviour in
v.

In the following, we integrate out first the hard, relativistic modes. This
defines the NRQCD Lagrangian in dimensional regularization. In a second
step, we also integrate out soft modes and potential gluon modes to arrive at
another effective theory, ‘potential NRQCD’ (PNRQCD), the QCD analogue
of PNRQED, introduced in Ref. 13. The final result is obtained by computing
the vacuum polarization in PNRQCD perturbation theory, with the Coulomb
interaction treated non-perturbatively.

2.2 Relativistic corrections

At tree-level relativistic corrections arise from the anti-particle pole of the
heavy quark propagator and the anti-particle components of the heavy quark
four-spinor field. Beyond tree level, the hard loop momentum regions induce
further terms in the non-relativistic effective theory.
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The heavy quark current correlation function Π(q2) contains 1PI, hard
subgraphs which (a) do not connect to the virtual photon vertex, (b) connect
to one of the virtual photon vertices and (c) connect to both virtual photon
vertices. The last possibility is of no interest, since it cannot contribute to the
discontinuity of Π(q2) and hence is irrelevant for the computation of (1).

Accounting for the hard subgraphs (a) leads to the familiar NRQCD La-
grangian 14,15. At NNLO, the following terms are needed:

LNRQCD = ψ†

(

iD0 +
~D2

2mb

)

ψ +
1

8m3
b

ψ† ~D4ψ − d1 gs

2mb
ψ†~σ · ~Bψ

+
d2 gs

8m2
b

ψ†
(

~D · ~E − ~E · ~D
)

ψ +
d3 igs

8m2
b

ψ†~σ ·
(

~D × ~E − ~E × ~D
)

ψ

+ antiquark terms + Llight. (4)

Since we work in dimensional regularization, ǫijk should be defined carefully.
As long as we are only interested in Π(q2), we can avoid the problem by
writing the Lagrangian in terms of anti-commutators of Pauli-matrices. Hence
~σ · ~B must be interpreted as i/4 [σi, σj ]Gij . A similar interpretation holds
for the spin-orbit interaction. The scaling of the interaction terms relative to
ψ†iD0ψ depends on whether the quark and gluons fields are considered as soft,
potential or (in the case of gluons) ultrasoft. For potential quarks, ~D2/(2mb) is
a leading order term, so its coefficient would be needed to order α2

s. However,
since the coefficient is 1 to all orders in PT, there is nothing to calculate. The
chromomagnetic interaction is suppressed by only one power of v for a soft
gluon and by two powers of v for an ultrasoft gluon. However, since one needs
at least two chromomagnetic insertions to obtain a non-vanishing contribution
to Π(q2), it is sufficient to know d1 at tree level. Since, for the time being, we
sum logarithms of v only at NLO and not at NNLO, we have d1 = d2 = d3 = 1.

Accounting for the hard subgraphs (b) leads to the effective non-relativistic
γ⋆bb̄ coupling

Q̄γiQ = c1 ψ
†σiχ− c2

6m2
b

ψ†σi(i ~D)2χ+ . . . , (5)

where the ellipsis refers to terms not needed for Π(q2) and at NNLO. At NNLO,
we can use c2 = 1, while c1 is needed at order α2

s. The required matching
calculation has been done in Refs. 16,17. The result is

c1(µ) = 1 +

[

c
(1)
1

αs(mb)

4π
+ δ1

(

αs(mb)

4π
− αs(µ)

4π

)]

+ c
(2)
1

(

αs(mb)

4π

)2

, (6)
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where

c
(1)
1 = −32

3
, δ1 = −1120π2

54b0
,

c
(2)
1 = −712

27
− 2044π2

81
− 224π2

9
ln 2 − 2000ζ(3)

9
+

176

27
nf (7)

and b0 = 11 − 2nf/3. The term proportional to δ1 sums all next-to-leading
logarithms of the form αs(αs ln v)k. There are no leading logarithms and this
term is the only source of next-to-leading logarithms in the problem.

2.3 Instantaneous interactions

The loop diagrams constructed from the NRQCD Lagrangian contain soft,
potential and ultrasoft modes. We now integrate out the soft modes and
potential gluons. As discussed in 4,13, these modes give rise to instantaneous
interactions. At NNLO, it is sufficient to match the (on-shell) quark-antiquark
scattering amplitude to the required order. We do this order by order in αs,
and, except for a2 below, we have checked that the resulting potentials are the
same whether we use Coulomb gauge or a general covariant gauge. The terms
in the effective PNRQCD Lagrangian, which we need at NNLO, are given by

LPNRQCD = ψ†

(

i∂0 +
~∂2

2mb
+

~∂4

8m3
b

)

ψ + χ†

(

i∂0 −
~∂2

2mb
−

~∂4

8m3
b

)

χ

+

∫

d3~r
[

ψ†TAψ
]

(~r )
(

−αs

r

)

[

χ†TAχ
]

(0) + Lfree
light (8)

+

∫

d3~r
[

ψ†ψ
]

ij;ab
(~r ) δVijkl,abcd(r)

[

χ†χ
]

kl;cd
(0),

where we indicated the spin and colour indices. In general, the PNRQCD La-
grangian contains local interactions of potential quarks and ultrasoft gluons,
which give rise to retardation effects, but they contribute only at N3LO, pro-
vided one counts αs(mbv

2) as v, as one does for αs(mbv) and αs(mb). Power
counting confirms the well known fact that for r ∼ 1/(mbv) and αs ∼ v,
the leading order Coulomb interaction is not suppressed relative to the free
heavy quark Lagrangian. The instantaneous interaction in the third line can
be treated perturbatively. At NNLO, we need all potentials of the form α2,3

s /r,
α2

s/r
2 and αs/r

3, counting δ(3)(r) as 1/r3. To compute Π(q2), only the colour
singlet and spin-1 projection is needed. The result, obtained from matching
the quark-antiquark scattering amplitude, is, in momentum space,

δṼijkl,abcd(~p, ~q) = δijδklδabδcd · 16παs

−3~q 2
·
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[

αs

4π

(

a1 − b0 ln
~q 2

µ2

)

+
(αs

4π

)2
(

a2 − (2a1b0 + b1) ln
~q 2

µ2
+ b20 ln2 ~q

2

µ2

)

+
αs

4π

π2 |~q |
mb

(

~q 2

µ2

)−ǫ (
7

3
+ ǫ

(

−5

3
+

14

3
ln 2

))

+
~p 2

m2
b

(9)

− ~q 2

m2
b

(

d2
1

(

1

6
+

5ǫ

18

)

+
1

4
(1 + d2)

)

]

,

where b1 = 102 − 38nf/3 and a1 and a2 denote the one-loop and two-loop 18

radiative corrections to the Coulomb potential, respectively. The potentials
more singular than 1/r lead to ultraviolet divergent integrals in PNRQCD
perturbation theory. These divergences cancel with divergences that arise in
the calculation of c1 at the two-loop order. To obtain the correct finite terms,
it is necessary to compute the potentials that lead to divergent insertions to
order ǫ, where d = 4 − 2ǫ is the number of space-time dimensions.

2.4 Perturbation theory with potential NRQCD

The heavy quark current correlation function is now obtained from the two-
point functions of the effective currents (5), computed with the PNRQCD
Lagrangian. Because the unperturbed PNRQCD Lagrangian contains the
Coulomb interaction, the propagator for a bb̄ pair is the Coulomb Green func-
tion Gc(~x, ~y;E), where E =

√

q2 − 2mb. At LO in PNRQCD perturbation
theory, one finds

Π(q2) =
3

2m2
b

Gc(0, 0;E). (10)

The Green function at the origin is ultraviolet divergent. We need its value
in dimensional regularization, with MS subtractions. To this end we write all
integrals first in momentum space and note that all divergences can be removed
by counterterms that involve only a finite number of loops. In the case of
Gc(0, 0;E), for example, all diagrams with two or more gluons exchanged are
finite. The result in the MS scheme is

Gc(0, 0;E) = −m
2
bαs

3π

[

1

2λ
+

1

2
ln

−4mbE

µ2
− 1

2
+ γE + ψ(1 − λ)

]

, (11)

where λ = 2αs/(3
√

−E/mb). The constant −1/2 is scheme-dependent. Since
the cross section requires only the discontinuity of Π, the subtraction procedure
is irrelevant for the moments. However, essentially the same procedure can be
used to obtain more complicated integrals in dimensional regularization, which
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are needed at NNLO. In particular, the pole parts of the divergent potential
insertions are all proportional to Gc(0, 0;E) as they have to be in order that
the µ dependence that comes from (6) cancels at NNLO.

To obtain the final result at NNLO one has to compute: (i) a single in-

sertion of the kinetic energy correction ~∂4/(8m3
b) to the quark propagator; (b)

the single and double insertion of the terms in δV (~p, ~q), which are suppressed
by one power of v ∼ αs compared to the LO Coulomb potential; (c) the sin-
gle insertion of all terms in δV (~p, ~q), which are suppressed by two powers of
v ∼ αs. The result is an expression for Rbb̄ that can be cast into the form

Rbb̄ = αs

{

f0(λ, l) + αs f1(λ, l) + α2
s f2(λ, l)

}

, (12)

where l = ln(−4mbE/µ
2). One can then compute the integral (1) and compare

it with its experimental value. Note that Rbb̄ contains a continuum starting at
4m2

b and an infinite series of bb̄ bound state poles, which are included in the
integral. In (12) the denominators of the bound state pole contribution are
expanded around the LO pole position. Before we turn to a numerical analysis
of the moments of (12), we have to discuss the issue of mass renormalization.

We also mention the following checks we performed on (12). We re-
expanded (12) to order α2

s and found agreement with the cross section near
threshold computed to this order in Ref.17. We also obtain the bound state pole
position and its residue in analytic form and confirm the result of Ref.12. Both
together are strong checks that the factorization in dimensional regularization
has been done correctly. Conversely, our calculation provides an independent
check of the result of Ref. 17, which has been used in the other NNLO cal-
culations 10,11,12, which followed the ‘direct matching’ procedure suggested in
Ref. 19, rather than factorization in dimensional regularization.

3 Potential subtracted quark mass

The heavy quark production cross section near threshold is conventionally
expressed in terms of the quark pole mass. If one uses another mass renor-
malization convention that differs from the pole mass by δm, one finds terms
of the form (δm/E)k, which modify the structure of (2), and which seem to
complicate the resummation. However, the pole mass is known 20,21 to be
more infrared sensitive than the heavy quark production cross section itself
and one therefore expects that a badly convergent series expansion for Rbb̄,
when expressed in terms of mb, would prevent us from extracting mb accu-
rately. The convergence should be improved, when Rbb̄ is expressed in terms
of a less IR sensitive mass parameter. To implement this observation in the
calculation, we make use of a systematic cancellation of infrared contributions

7



to the pole mass and the Coulomb potential in coordinate space22,23 and define
the potential-subtracted (PS) quark mass mb,PS(µf ) by 22

mb = mb,PS(µf ) − 1

2

∫

|~q |<µf

d3~q

(2π)3
Ṽ (q)

= mb,PS(µf ) +
4αs

3π
µf

[

1 +
αs

4π
δm1 +

(αs

4π

)2

δm2 + . . .

]

. (13)

Explicit expressions for δm1,2 can be found in Ref.22. Note thatmb−mb,PS(µf )
is proportional to a subtraction scale µf , which must be chosen to be smaller
than mbv. We insert (13) into (12) and expand the small correction terms
involving δm1,2. However, the term ∆ = 4αsµf/(3π) is not expanded, when
mb is replaced in E, λ or l, because ∆, which counts as order mbv

2, is of the
same order as E =

√

q2 − 2mb. The result is an expression of the same form
as (12), but with mb,PS(µf ) as input parameter. If our expectation is correct,
the expansion (12) should be more convergent in this new variable. We then
extract mb,PS(µf ) from comparison with the data, and finally use the known
2-loop relation between the pole mass and the MS mass 24 to convert to the
MS mass mb(mb).

4 Results and discussion

There are restrictions on the value of n that can be chosen for the moments
(1). Comparison of the NNLO threshold approximation of the cross section up
to order α2

s with the ‘exact’ result 25 shows that the threshold approximation
provides a reasonable approximation as long as one is less than 2 GeV away
from threshold. This restricts n ≥ 6, conservatively. Requiring that all scales
of the problem are larger than ΛQCD restricts n ≤ 10.

The experimental moments are obtained from the known masses and decay
constants of the Υ resonances below the open bb̄ threshold. The continuum
cross section is parametrized by the constant value 0.4± 0.2. (The asymptotic
value for E → ∞ is 1/3.) For n = 8 the continuum cross section contributes
only about 10% to the experimental moment integral.

In Fig. 1, we show the result for the 8th moment as a function of the quark
mass. In the upper figure, the result is plotted as a function of the pole mass
mb, in the lower figure as a function of the PS mass mb,PS(2 GeV). For a given
moment n, the integral (1) implies the characteristic energy scale E ∼ mb/n.
The logarithms that appear in the PNRQCD integrals then suggest that the
scale µ is chosen as 2mb/

√
n. This choice is shown as the solid line in the

figure, together with variations by a factor 1/2, 2/3, 3/2, 2. In case of the pole

8



Figure 1: The 8th moment (in GeV−16) as function of the bottom quark pole mass (in
GeV) (upper figure) and the bottom quark PS mass (lower figure) at µf = 2GeV. The solid

curve is for the scale µ̂ = 2mb/
√

8, the outer (dash-dotted) curves show the result, when the
scale is varied by a factor of 2 in both directions. The inner (dotted) curves correspond to
2µ̂/3 and 3µ̂/2. The experimental moment is given by the grey bar.
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mb mb(mb) Remarks

This work 4.97 ± 0.17 4.26 ± 0.12 Sum rules

PP98 10 4.80 ± 0.06 – Sum rules

H98 11 4.88 ± 0.10 4.25 ± 0.09 Sum rules

MY98 12 – 4.20 ± 0.10 Sum rules

JP97/98 26,27 4.60 ± 0.02 4.19 ± 0.06 Sum rules, no resummation

PY98 28 5.00+0.10
−0.07 4.44+0.03

−0.04 Υ(1S) mass

MS98 29 – 4.41 ± 0.11 lattice HQET

Table 1: Bottom quark mass values (in GeV) obtained from NNLO calculations.

mass as an input parameter, the scale dependence is very large. Including a
(small in comparison) error due to the variation of αs(MZ) = 0.118±0.003, we
determine mb = (4.97 ± 0.17)GeV, where the scale error is estimated from a
variation between 2 GeV and 2µ̂. The scale dependence is somewhat reduced,
but still large, with the PS mass as input. Our result is

mb,PS(2 GeV) = (4.60 ± 0.125(scale) ± 0.03(αs) ± 0.03(exp.))GeV, (14)

which translates into

mb(mb) = (4.26 ± 0.12)GeV (15)

for the MS mass. We have included an estimate of (40 ± 40)MeV for the
unknown 3- and 4-loop terms in the relation between the PS and the MS
mass, which are needed here, because the sum rule determines the PS mass
with a parametric accuracy of order mbα

4
s. The central value is stable against

variations of the order of the moments. The large remaining scale dependence
can be traced to the scale dependence of the theoretical prediction of the first
bound state residue. This is discussed in more detail in Ref. 8.

In Tab. 1 we compare our result to other bottom quark mass results,
choosing only NNLO calculations (although NNLO may not imply a NNLO
resummation in some cases). The first four entries all refer to the sum rule
method with NNLO resummation. There are several differences between the

10



present and previous implementations of the NNLO moments. The summation
of NLO logarithms of v, which has not been done in Refs. 10,11,12, turns out
to be a small effect; leaving it out would increase our result by up to 10 MeV.
Refs. 10,11 use the ‘old’ value of a2

30, which is most likely incorrect 18. Again,
the corrected value for a2 shifts the extracted quark mass downwards by only 15
MeV. More significant differences arise in the treatment of the short-distance
factor and the bound state pole δ-functions. For a detailed discussion we refer
to Ref. 8.

The sum rule calculation of Refs. 26,27 does not include a non-relativistic
resummation. It leaves out, in particular, the contribution from the Coulomb
poles. This seems to be the main reason why the bottom masses of JP97/98
come out small. The large moments used in Refs. 26,27 are completely domi-
nated by the Coulomb pole contribution to (12). For the 8th moment, we find
that our pole quark mass would decrease by roughly 400 MeV, if we left out
the Coulomb pole contribution.

The last two entries in the table come from other methods. Ref.28 uses the
NNLO result for the Coulomb pole position and compares it with the Υ(1S)
mass. The error quoted in Ref. 28 is probably underestimated, because the
scale µ2 is allowed to vary only by ±25% rather than a factor of 2. The origin
of the large value of the MS quark mass in Ref. 28 will be explained in Ref. 8.
The last entry refers to the first complete NNLO quark mass determination
from the lattice, based on the B meson mass and the lattice measurement of
the static energy of a heavy quark.
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