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1. Introduction

It is commonly believed that the Universe underwent an early era of cosmological

inflation [1]. The flatness and the horizon problems of the standard big bang cos-

mology are indeed elegantly solved if, during the evolution of the early Universe, the

energy density happens to be dominated by the vacuum energy of a scalar field —

the inflaton — and comoving scales grow quasi-exponentially.

At the end of inflation the Universe was in a cold, low-entropy state with few

degrees of freedom, very much unlike the present hot, high-entropy Universe. At

this stage, the Universe does not contain any matter and therefore it looks perfectly

baryon symmetric. However, considerations about how the light element abundances

were formed when the Universe was about 1 MeV hot lead us to conclude that

nB/s = (2–9) × 10−11. Here nB/s is the difference between the number density of
baryons and that of antibaryons, normalized to the entropy density of the Universe.

Until now, several mechanisms for the generation of the baryon (B) asymmetry

have been proposed [2]. Grand Unified Theories (GUTs) unify the strong with the

electroweak forces and predict baryon-number violating interactions at tree level.

In these theories, the out-of-equilibrium decay of heavy Higgs particles can indeed
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explain the observed baryon asymmetry. In the theory of electroweak baryogenesis,

baryon number violation takes place at the quantum level, caused by unsuppressed

baryon-number violating sphaleron transitions in the hot plasma [3].

Since B and L — where L is the lepton number — are reprocessed by sphaleron

transitions, while the anomaly-free linear combination B − L is left unchanged, the
baryon asymmetry may be generated from a lepton asymmetry [4]. Indeed, once

the lepton number is produced, thermal scatterings redistribute the charges and

convert (a fraction of) L into baryon number. In the high-temperature phase of the

standard model, the asymmetries of baryon number B and of B − L are therefore
proportional [5]:

B = a(B − L), a ≡
(
8ng + 4nH
22ng + 13nH

)
, (1.1)

where nH is the number of Higgs doublets and ng is the number of fermion genera-

tions.

In the standard model as well as in its unified extension based on the group

SU(5), B − L is conserved and no asymmetry in B − L can be generated. However,
adding massive right-handed Majorana neutrinos to the standard model breaks B−L
and the primordial lepton asymmetry may be generated by their out-of-equilibrium

decay. This simple extension of the standard model can be embedded into GUTs, as

in the case of SO(10). Heavy right-handed Majorana neutrinos are the key ingredient

to explain the smallness of the light neutrino masses via the see-saw mechanism [6].

The presence of neutrino masses and mixings seems to be the most natural explana-

tion of the recent reports from the Super-Kamiokande [7] and other [8] collaborations

indicating the existence of neutrino oscillations. In light of these considerations, the

generation of the baryon asymmetry through leptogenesis looks particularly attrac-

tive.

The leptogenesis scenario depends crucially on the mechanism that was responsi-

ble for populating the early Universe with right-handed neutrinos, and consequently

on the thermal history of the Universe, and on the fine details of the reheating process

after inflation. One goal of this paper is to discuss several production mechanisms

of heavy right-handed neutrinos in the Universe, to compare them and to identify

the regions of the appropriate parameter space where the production mechanism is

efficient enough to explain the observed baryon asymmetry.

The simplest way to envision the reheating process after inflation is to assume

that the comoving energy density in the zero mode of the inflaton decays perturba-

tively into ordinary particles, which then scatter to form a thermal background [9].

It is usually assumed that the decay width of this process is the same as the decay

width of a free inflaton field. Of particular interest is a quantity known as the reheat

temperature, denoted as TRH . This is calculated by assuming an instantaneous con-

version of the energy density in the inflaton field into radiation when the decay width
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of the inflaton Γφ is equal to H , the expansion rate of the Universe. This yields

TRH '
√
ΓφMP , (1.2)

where MP is the Planck mass. The commonly-accepted assumption is that the heavy

right-handed neutrinos with mass MN were as abundant as photons at very high

temperatures. This assumption requires not only that TRH &MN , but also that the
heavy neutrinos are abundantly produced by thermal scatterings during the reheating

stage. This condition, as we will discuss in sect. 3.1, significantly limits the allowed

range of neutrino masses compatible with leptogenesis.

There might be one more problem associated with the hypothesis that TRH & MN
in the old theory of reheating, and that is the problem of relic gravitinos [10]. If one

has to invoke supersymmetry to preserve the flatness of the inflaton potential, it is

mandatory to consider the cosmological implications of the gravitino — the spin-3/2

partner of the graviton which appears in the extension of global supersymmetry to

supergravity. The slow gravitino decay rate leads to a cosmological problem because

the decay products of the gravitino destroy light nuclei by photodissociation and

hadronic showers, thus ruining the successful predictions of nucleosynthesis. The

requirement that not too many gravitinos are produced after inflation provides an

upper bound on the reheating temperature TRH of about 10
8–1010 GeV, depending on

the value of the gravitino mass [11]. In the following, TRH will be therefore intended

as the largest temperature allowed after inflation from considerations of the gravitino

problem.

In order to relax the limit on MN imposed by the gravitino problem, we will

consider the possibility that the heavy neutrinos are produced directly through the

inflaton decay process [12]. This is kinematically accessible whenever

MN < mφ , (1.3)

where mφ is the inflaton mass. In the case of chaotic inflation with quadratic po-

tential, the density and temperature fluctuations observed in the present Universe

determine mφ and require MN to be smaller than about 10
13 GeV.

The outlook for leptogenesis might be brightened even further with the real-

ization that reheating may differ significantly from the simple picture described

above [13, 14, 15, 16, 17]. In the first stage of reheating, called preheating [13],

nonlinear quantum effects may lead to extremely effective dissipative dynamics and

explosive particle production, even when single particle decay is kinematically for-

bidden. In this picture, particles can be produced in a regime of broad parametric

resonance, and it is possible that a significant fraction of the energy stored in the

form of coherent inflaton oscillations at the end of inflation is released after only a

dozen or so oscillation periods of the inflaton. The preheating stage occurs because,

for some parameter ranges, there are new non-perturbative decay channels. In the
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case of bosonic particle production, coherent oscillations of the inflaton field induce

stimulated particle emissions into energy bands with large occupancy numbers [13].

The modes in these bands behave like classical waves [14].

A crucial observation for GUT baryogenesis induced by the decay of very heavy

Higgs bosons is that particles with masses larger than that of the inflaton may be

easily produced during preheating [13, 18, 15, 16, 19, 20]. Indeed, for coupling

constants of order unity one would have copious production of boson particles as

heavy as 1015 GeV, i.e. 100 times greater than the inflaton mass. This is a major

departure from the old constraint of reheating.

In this paper we wish to provide a complete calculation of the inflaton decay

into heavy fermions during preheating, including back-reaction effects. Contrary to

the boson case where the phase space density of created particles can grow exponen-

tially and become very large, the phase space density of fermions is Pauli-blocked

and cannot exceed unity. However, even relatively small abundances of fermions

generated at preheating can be crucial if the fermions are superheavy since even the

gravitational production of superheavy particles may provide the critical density in

the Universe [21, 22].

The importance of fermionic production at preheating was first emphasized

in [23, 24]. Recently a mechanism of instant preheating was proposed [25], which

allows copious production of bosons and fermions with masses up to 1018 GeV. This

mechanism is very efficient, but production of fermions in its simplest version pro-

ceeds through two different stages: first some bosonic field is generated when the am-

plitude of the inflaton field passes through zero; subsequently — when the amplitude

of the inflaton field becomes large — the just-produced bosons become temporarily

very heavy and may decay into lighter, but superheavy particles.

In this paper we will show that production of superheavy fermions is possible even

without an intermediate stage of boson production. Fermions with masses up to 1018

GeV may be very efficiently generated by a direct interaction with the inflaton field.

What makes it possible and distinguishes the production of very massive fermions and

bosons in an oscillating background is the expression for the total mass. For bosons,

the total mass can never vanish and the production reaches the maximum when the

amplitude of the inflaton goes through zero. For fermions, the total mass can vanish

for particular values of the inflaton field, rendering particle creation much easier.

We will numerically compute the density of the massive fermions produced at

the resonance stage. This is the crucial parameter for leptogenesis, when these heavy

fermions are identified with the right-handed neutrinos giving rise to the lepton asym-

metry. We want to stress that the out-of-equilibrium condition is naturally achieved

in this scenario, since the distribution function of the fermionic quanta generated at

the resonance is far from a thermal distribution. We will show that the observed

baryon asymmetry may be explained by the phenomenon of leptogenesis after pre-

heating, with a reheating temperature compatible with the gravitino problem.
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The paper is organized as follows. In sect. 2 we present our calculation, with

numerical results as well as some analytical estimates concerning the production of

massive fermions during preheating. In sect. 3 we discuss and compare the relevant

production mechanisms of right-handed neutrinos in the early Universe, identifying

the appropriate neutrino-mass parameters where these mechanisms are the most

efficient, as far as the generation of the baryon asymmetry is concerned.

2. Heavy fermion production at preheating

In this section we describe the basic physics underlying the mechanism of heavy

fermion generation during the preheating stage, perform the relevant numerical cal-

culations and present some analytical estimates. In the following we will focus on

the model of chaotic inflation, with a massive inflaton φ having quadratic potential

V (φ) = 1
2
m2φφ

2. Here mφ ∼ 1013 GeV is fixed by the COBE normalization of the
cosmic microwave background anisotropy.

We will suppose that the inflaton field is coupled to a very massive Dirac fermion

X with bare mass mX via the Yukawa coupling
1

LY = gφX̄X . (2.1)

The total mass of the fermion X is then given by

m(t) = mX + gφ(t) . (2.2)

When we apply our results to the leptogenesis scenario, the fermion X will be iden-

tified with the lightest of the right-handed Majorana neutrinos N1. Although in this

section we will restrict our considerations to the case of Dirac particles, the treat-

ment of Majorana fermions is completely analogous. Our final results regarding the

abundances of particles (with equal amount of anti-particles being produced) are

valid for both Dirac and Majorana fermions.

2.1 The basic formalism

We start (see e.g. discussion in ref. [26]) by canonically quantizing the action of the

massive field X in curved space with Friedmann-Robertson-Walker metric. In the

system of coordinates in which the line element is given by ds2 = a2(η)(dη2 − d~x2),
1Notice that radiative corrections from the right-handed neutrinos may spoil the flateness of the

inflaton potential. As usual, one can invoke supersymmetry to preserve the flateness. If this is the

case and the starting superpotential is W = 1
2mφ

2+(M + gφ) N
2

2 , it is easy to show that radiative

corrections are negligible, being the one-loop effective potential V1 ' 1
32π2 g

2m2φ2 log g
2φ2

Λ2 , where Λ

is the renormalization scale.
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where a is the scale factor of the expanding Universe and η is the conformal time

defined as dη = dt/a, the Dirac equation becomes(
i

a
γµ∂µ + i

3

2
Hγ0 −m

)
X = 0 . (2.3)

Here H = (a′/a2) is the Hubble rate, the prime denotes derivative with respect
to conformal time, and the γ-matrices are defined in flat space-time. By defining

χ = a3/2X, eq. (2.3) can be reduced to the more familiar form

(iγµ∂µ − am)χ = 0 . (2.4)

Since a is a function of η, but not of ~x, spatial translations are symmetries of

space-time, and we can separate the variables using the decomposition

χ (x) =

∫
d3k

(2π)3/2
ei
~k·~x∑

r

[
ur(k, η)ar(k) + vr(k, η)b

†
r(−k)

]
, (2.5)

where the summation is over spin, and vr(k) = Cū
T
r (−k). We impose the canonical

anticommutation relations on the creation and annihilation operators{
ar(k), a

†
s(k
′)
}
=
{
br(k), b

†
s(k
′)
}
= δrsδ(~k − ~k′) , (2.6)

which, together with the quantization conditions, determine the normalization of the

spinors u,

u†r(k, η)us(k, η) = v
†
r(k, η)vs(k, η) = 2 δrs , u†r(k, η)vs(k, η) = 0 . (2.7)

Equations (2.7) are valid at any conformal time, since they are preserved by the

evolution.

In the representation in which γ0 =

(
1 0

0 −1
)
and with the definition u ≡(

u+
u−

)
, the equation of motion (2.4) can be written as a set of uncoupled second-

order differential equations,[
d2

dη2
+ ω2 ± i(a′m+ am′)

]
u±(k) = 0 , (2.8)

ω2 = k2 +m2a2 . (2.9)

We can now write the hamiltonian as

H (η) =
1

a

∫
d3xχ†i∂0χ =

1

a

∫
d3k

∑
r

{
Ek (η)

[
a†r(k)ar(k)− br(k)b†r(k)

]
+ (2.10)

+ Fk (η) br(−k)ar(k) + F ∗k (η) a†r(k)b†r(−k)
}
.
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By using the equations of motion, we find

Ek = k Re(u
∗
+u−)− am

(
1− u∗+u+

)
,

Fk =
k

2

(
u2+ − u2−

)− am u+u− ,
E2k + |Fk|2 = ω2 . (2.11)

Here we have chosen the momentum k along the third axis, and selected the gamma-

matrix representation in which γ3 =

(
0 1

−1 0

)
.

In order to give a “quasi-particle” interpretation, we diagonalize the hamiltonian

in eq. (2.10) with a time-dependent Bogolyubov canonical transformation, and define

the new creation and annihilation operators

â(k, η) = α(k, η)a(k) + β(k, η)b†(−k)
b̂†(k, η) = −β∗(k, η)a(k) + α∗(k, η)b†(−k) . (2.12)

Imposing canonical anticommutation relations on the operators â and b̂, we find

|α|2 + |β|2 = 1. For
α

β
=
Ek + ω

F ∗k
, |β|2 = |Fk|2

2ω(ω + Ek)
=
ω −Ek
2ω

, (2.13)

the normal-ordered hamiltonian in terms of the “quasi-particle” operators is diagonal,

H (η) =
1

a

∫
d3k

∑
r

ω (η)
[
â†r(k)âr(k) + b̂

†
r(k)b̂r(k)

]
. (2.14)

Next, we define a “quasi-particle” vacuum, such that

â|0η〉 = b̂|0η〉 = 0 . (2.15)

Similarly the initial vacum |0〉 is defined as a|0〉 = b|0〉 = 0. The total number density
of produced particles up to time η (equal to the number density of produced antipar-

ticles) is given by the vacuum expectation value of the particle number operator N

divided by the physical volume,

n(η) = 〈0|N
V
|0〉 = 1

2π2a3(η)

∫ ∞
0

dk k2 |β|2 . (2.16)

The density of produced particles is then computed by integrating the equations of

motion (2.8) with an initial condition at time η = 0 given by2

u±(0) =
√
1± ma

ω
, u′±(0) = −iku∓(0)∓ iamu±(0) . (2.17)

This boundary condition corresponds to Ek = ω, Fk = 0 at η = 0 or, in other words,

to an initial vanishing particle density.
2In practice, one has to solve only the evolution equation for u+, since u− is determined by the

equation u− = (iu′+ − amu+)/k.
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2.2 Numerical results

The equations of motion (2.8) describe oscillators with time-varying complex fre-

quency. If m is constant, the time dependence enters only through the scale factor a.

The corresponding gravitational creation of heavy fermions was studied in ref. [22].

However, of particular interest is the case in which m = m(t) is a periodic function

of time. This is realized when the scalar field φ, coupled to X as in eq. (2.1) is

homogeneous and oscillates in time with frequency V ′′(φ). It is useful to write the
equations of motion in terms of dimensionless variables. We introduce a dimension-

less time τ ≡ mφη, as well as a dimensionless field ϕ ≡ φ/φ(0), so that the scalar field
is normalized by the condition ϕ(0) = 1. We define φ(0) as the value of the inflaton

field at the moment when its oscillations begin, φ(0) ' 0.28MP [15]. With these
redefinitions, the equation of motion for the background field ϕ does not contain any

parameter, while the fermion mass is measured in units of mφ and the strength of

the fermion coupling to the external background is determined by the dimensionless

combination gφ(0)/mφ. For the sake of correspondence with the bosonic case, we

introduce the parameter

q ≡ g2φ2(0)/4m2φ . (2.18)

The production of fermions by an external oscillating background in Minkowski

space-time was studied in refs. [27, 23, 24]. The production of massless fermions in a

λφ4 inflaton model, studied in ref. [24], can be reformulated into particle production

in an expanding Universe by a simple conformal transformation. Moreover, only

the case of moderate q (q < 100) has been previously considered. The parametric

production of massive fermions in an expanding Universe has never been analyzed

before. By analogy with the bosonic case [13, 15, 16], we expect that an efficient

production of very massive fermions will require a very large value of q.

The result of our numerical integration is best summarized in fig. 1. For different

values of the fermion mass mX and of the q parameter, fig. 1 shows ρX/ρ, the fraction

of the inflaton energy density ρ which ends up in the fermionic energy density ρX .

In this simulation, we have neglected the back reaction of the produced fermions in

the evolution of the inflaton field. Its effect will be considered in sect. 2.3.

Fermion production is efficient up to a time at which ratio ρX/ρ freezes out. For

fixed q, the larger mX is, the earlier this freeze-out occurs. In particular, near the

cut-off of ρX/ρ at large mX , the production ceases just after a few oscillations of

the inflaton field. In fig. 2 we have plotted the final phase-space density of produced

fermions in comoving volume for mX = 100 mφ, q = 10
5 and q = 108. For q = 108

this distribution is reached after twenty inflaton oscillations, while for q = 105 it is

reached just after the first inflaton oscillation. In fig. 1, the curves for q = 107 and

q = 108 correspond to an evolution up to 20 inflaton oscillations. For q = 108 and

mX < 100 mφ, the freeze-out has not been reached in 20 oscillations and ρX/ρ would

have grown further, had we integrated for longer times. This explains the slope of
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Figure 1: The fraction of the energy density of produced fermions with respect to the

total energy density, as a function of the fermion mass mX in units of the inflaton mass,

for various values of q.

Figure 2: The final phase-space density of produced particles for two values of the param-

eter q. The X-fermions are taken to be 100 times heavier than the inflaton. At q = 105 the

freeze-out of the particle production was reached after the first inflaton oscillation, while

for q = 108 it required twenty oscillations.

the curves in fig. 1 at small mX for q > 10
6. In general, if we integrate up to the

freeze-out, we find that the ratio ρX/ρ is almost constant with mX up to a cut-off

value (mX)max much larger than mφ. In this regime, the number density of fermions

is inversely proportional to mX .

The time evolution of the phase-space density of produced fermions in the cases

in which more than one inflaton oscillation is required to reach the final distribution
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Figure 3: The phase-space density of produced particles after n = 1 and n = 3 inflaton

oscillations for q = 106 and for X-fermions 100 times heavier than the inflaton. The

distribution at n = 3 coincides with the final distribution.

Figure 4: The phase-space density of produced particles after n = 1 and n = 20 inflaton

oscillations for q = 108 and for X-fermions 100 times heavier than the inflaton. The

distribution at n = 20 coincides with the final distribution.

is shown in figs. 3 and 4. For the parameters shown in fig. 3, the final distribution

was reached after three inflaton oscillations, while in the case of fig. 4 the X-particle

production continues up to the twentieth oscillation.

Let us summarize our numerical results in a form suitable for the analytical

estimates we will perform in sect. 2.4. Because of the Fermi-statistics, n(k) ≡ |β|2 ≤
1. The maximum value of n(k) ∼ 1 is reached rapidly at some k = kmax. With time,
if particle creation is still efficient, kmax grows at each oscillation. We can estimate

10



J
H
E
P
0
8
(
1
9
9
9
)
0
1
4

the number density of the produced fermions as n =
∫
d3kn(k) ∝ k3max. From our

numerical results we observe that, at fixed mX , the freeze-out value of kmax scales as

kmax ∝ qα, with α slightly larger than 1/3; see figs. 1 and 2. On the other hand, kmax
has to scale as m

−1/3
X to explain why ρX/ρ is nearly independent of mX , at constant

q. We also find numerically that the cut-off value (mX)max, i.e. the maximum mass

of produced fermions, is about (mX)max ' q1/2mφ/2.

2.3 Back reaction

When the energy density in created particles is comparable to the initial inflaton

energy density, the issue of back reaction becomes relevant. From the results of the

previous section, we gather that for q & 108 the back reaction has to be considered.
In the case of bosons this can be done numerically on a lattice with full account

of all non-linear effects [14, 16]. In the fermionic case, we restrict ourselves to an

approximate treatment of the back reaction in the Hartree approximation (similar

calculations in the Bose case were done in ref. [15]).

In the Hartree approximation, the inflaton field is assumed to be homogeneous

(all of its spatial fluctuations are neglected). Correspondingly, only the average value

of the product X̄X is left in the equations of motion of the inflaton field, which takes

the form

φ̈+ 3Hφ̇+m2φφ+ g〈X̄X〉 = 0 . (2.19)

The product 〈X̄X〉 can be readily expressed through the momentum integration
of the Bogolyubov coefficients using the field decomposition in eq. (2.5). However,

a straightforward averaging leads to ultraviolet divergences, i.e. to extra powers of

k at large k in the momentum integration compared to the integral of the particle

number density, eq. (2.16). Therefore, the quantity 〈X̄X〉 needs to be regularized.
Similarly to the case of Minkowski space-time, the regularization amounts to the nor-

mal ordering or, equivalently, to the subtraction of vacuum zero-point fluctuations.

To obtain a finite result, it is necessary to express the operator X̄X in normal form

and subtract the part due to the vacuum fluctuations. Since the vacuum defined in

eq. (2.15) is different at different times, the vacuum fluctuations subtracted during

the reduction of the operator to normal form depends on time. The normally ordered

X̄X operator has the form

Nη
(
X̄X

) ≡ X̄X − 〈0η|X̄X|0η〉 . (2.20)

By its very definition, the operation of normal ordering gives X̄X only for the created

particles. The vacuum averaging in eq. (2.19) is defined as the averaging with respect

to the original vacuum state (we remind the reader that we are working in the

Heisenberg representation)

〈X̄X〉 ≡ 〈0|Nη
(
X̄X

) |0〉 . (2.21)
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Figure 5: The solid line shows the final phase-space density of produced particles for

q = 108 with back-reaction effects included in the Hartree approximation. The dotted line

shows the phase-space density if the back-reaction effects are neglected.

Figure 6: The same as fig. 5, but for q = 1010.

An explicit calculation leads to

〈X̄X〉 = 2

(2πa)3

∫
d3k

(
|u−|2 + ma

ω
− 1
)
. (2.22)

In the case of Majorana spinors the numerical factor is twice smaller. We have used

expression (2.22) when integrating the equation of motion (2.19) for the inflaton field

. We have also consistently included the contribution from 〈X̄X〉 in the equation of
state when integrating Einstein equations for the scale factor.

The resulting phase-space density, with and without back-reaction, is shown in

figs. 5 and 6 for q = 108 and q = 1010, respectively. We observe that at q = 108
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Figure 7: The time dependence of the inflaton field for q = 1010 with back-reaction effects

included in the Hartree approximation (solid line) and without back reaction (dotted line).

the spectra with and without back-reaction are identical at large k, the difference

being appreciable only at small k. Since the total number density is saturated at

large momenta, nX turns out to be only slightly different when back reaction effects

are included. For q = 108, nX is larger by 5% compared to the case without back

reaction. At smaller q, the difference is even smaller. Therefore, the results of our

calculations in the previous subsection can be trusted.

At larger q the back reaction effects become more significant. In fig. 6 we present

the results for q = 1010 and mX/mφ = 10
4. First, we note that without back reaction

nX ∝ q in accordance with the scaling law presented in fig. 1. Integrating the phase-
space over momenta, we find that the ratio ρX/ρ turns out to be approximately

50% larger than the value of the same ratio when back-reaction is not included.

Therefore, the back reaction effects change the ratio of ρX/ρ by about factor of two,

increasing it.

The time dependence of the inflaton field with and without back reaction is

shown in fig. 7. We see that when back reaction is included, the field φ does not

pass through the point at which m(t) = 0 because energy is very efficiently ex-

tracted from the inflaton field even at the first crossing. The non-zero value of

〈X̄X〉 causes a change of the potential of the inflaton field, shifting the minimum
around which the inflaton field oscillates. In particular, it changes the form of po-

tential in such a way that φ oscillates around the point m(t) = 0. Later on, 〈X̄X〉
decreases because of the expansion of the Universe. Consequently the difference be-

tween the effective potential and the tree-level potential becomes small again and

the inflaton field starts oscillations around the original minimum at φ = 0, but

with an amplitude that is smaller than in the case in which back-reaction is ne-

glected.
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To summarize we can say that, up to q ∼ 1010, the simplified calculations without
back-reaction effects provides us with a lower bound for ρX/ρ. Other effects like the

scattering of X particles, or their decay, will only help production since they remove

particles from the already occupied Fermi levels.

2.4 Analytical estimates

The goal of this section is to provide some analytical estimates that can help us to

understand the numerical results presented above.

Compared with the bosonic case, the novel feature of the fermionic production is

that much heavier particles can be generated rather efficiently during the oscillations

of the inflaton field, see fig. 1. The key difference between the Bose and Fermi cases

resides in the expression for the effective particle mass in an external oscillating

background. In the Fermi case it is given by eq. (2.2), m(t) = mX + gφ(t), while

in the Bose case we have m2(t) = m2X + g
2φ2(t). In both cases, the production of

particles with masses larger than the inflaton mass (i.e. the frequency of the inflaton

oscillations) requires large q. This, in turn, means that m(t) is typically large, and

creation of X-particles is impossible at all times, except for very short periods when

m(t) fluctuates around its minimum value. In the bosonic case m(t) can never be

smaller than mX . However, in the fermionic case, m(t) can vanish as long as the

amplitude of the inflaton field is large enough, |φ| > mX/g.
In the expanding Universe the amplitude φ0 of the oscillating inflaton field de-

creases with time. It is reasonable to assume that the sharp cut-off in the particle

production at large mX that we observe in fig. 1 corresponds to a situation in which

the conditionm(t) = 0 cannot be satisfied even during the first oscillation of the infla-

ton field. To verify this assumption, let us write m(t), with the help of eq. (2.18), as

m = mX + 2
√
qmφ

φ

φ(0)
' mX +

√
qmφ

πN
cos(2πN) . (2.23)

Here we have taken into account that φ ∝ t−1, when the energy density of the
Universe is dominated by the oscillating inflaton field, and we have denoted with N

the number of oscillations of the inflaton field N = mφt/(2 π).

At large mX , the minimum of m is reached around N = 1/2. Therefore, if

mX > mφ
2

π

√
q , (2.24)

the total mass m never vanishes.3 The value of (mX)max given in eq. (2.24) is already

in good agreement with our numerical results. However, eq. (2.23) cannot be trusted

at small N . Actually, our numerical integration shows that the minimum of the

3We are considering here the case in which gφ(0) and mX have the same sign. If these two terms

have a relative minus sign, particle production can be extended to even larger values of mX .
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inflaton amplitude φ0 during the first oscillation is given by

φ0
φ(0)

' −0.25 . (2.25)

This means that the cut-off value of the mass is at

(mX)max ' mφ
√
q

2
, (2.26)

in perfect agreement with the results presented in fig. 1.

If mX < (mX)max, m(t) can vanish more than once during the inflaton oscil-

lations. In particular, in the case in which mX � mφ, one can suppose that the
production of particles continues until the amplitude of the oscillations drops below

the critical value

(φ0)crit =
mX

g
=
mX

2mφ
√
q
φ(0) . (2.27)

At later times, when φ0 < (φ0)crit, the ratio ρX/ρ is frozen, since particle production

has stopped. Let us now estimate analytically the final value of ρX/ρ. During

the inflaton oscillations, the Fermi distribution function is rapidly saturated up to

some maximum value of the momentum k, i.e. |β(k)|2 ' 1 for k . kmax and it is
zero otherwise. The value of kmax increases at each inflaton oscillation until particle

production stops. Therefore, what is relevant for the determination of the final value

of ρX/ρ is kmax at the freeze-out, i.e. when eq. (2.27) is satisfied and particles are no

longer generated. At this moment,

ρX ' mXp
3
max

3π2
, (2.28)

where pmax is the maximum physical momentum at freeze-out, pmax = kmax/a.

We estimate pmax as the maximum value of the physical momentum above which

the evolution of the vacuum mode function is adiabatic. We choose as a trial mode

function the following expression

u+(η) =

√
1− meff

ω
× exp

(
−i
∫ η
ω dη′

)
, (2.29)

where meff = ma. Notice that this solution corresponds to a vacuum, since it gives

β(k) = 0. This trial function solves to a good approximation the equation of motion

if the following condition holds

1

2

(
1 +
meff

ω

) ∣∣∣∣∣m′′effω + 12
(
m′eff
ω

)2(
1− 5meff

ω

)∣∣∣∣∣� ω2 , (2.30)

where we have used the property ω′ = meffm′eff/ω. As we have explained above,
for large q, particle production takes place during short intervals when meff ' 0,
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or cos(mφt) ' −mX/gφ0, neglecting the expansion of the Universe during these
short periods of particle creation. Under these circumstances, the condition (2.30)

reduces to ∣∣2pmX + g2φ20 −m2X∣∣ m2φ � 4 p4 , (2.31)

where we have used ω ' k = pa. As a result, at the end of the particle production
epoch, see eq. (2.27), we get

p3max '
1

2
mXm

2
φ . (2.32)

To compare with the numerical results of sect. 2.2, it is convenient to express

eq. (2.32) in terms of the comoving momentum,

kmax =

(
2m4φ
mX
q

)1/3
. (2.33)

This reproduces the approximate scaling law kmax ∝ q1/3m−1/3X observed in the nu-

merical results of sect. 2.2. Notice that, at earlier epochs when g2φ20 � m2X , the
value of pmax is larger, but the corresponding fraction of X-particles produced at

this stage becomes subdominant (because it is red-shifted) with respect to the frac-

tion of particles generated right before the freeze-out. In terms of the parameter

qeff(t) ≡ g2φ2(t)/4m2φ, we obtain that at early times pmax ∝ q1/4eff , while at the end of
the particle production epoch pmax ∝ q1/6eff .
In ref. [24] it was conjectured — on the basis of flat space-time results — that

both pmax and (mX)max must scale like q
1/4
eff . The same scalings were found for the

bosonic case [13, 15]. While we found that at early times pmax indeed does scale like

q
1/4
eff , the scaling of pmax near freeze-out and (mX)max are different.

We can now use eqs. (2.28) and (2.32) to find that ρX ' m2Xm2φ/6π2. The
inflaton energy density at freeze-out is ρ = m2φφ

2/2 = φ2(0)m2X/8q, and therefore

the energy density fraction is

ρX
ρ
' 4

3π2
m2φ
φ2(0)

q =
1

3π2
g2 . (2.34)

This expression describes quite well the behaviour observed in fig. 1 for a large range

of q. Equation (2.34) does not depend upon mX , it is approximately proportional to

q and it gives a reasonable estimate for the overall magnitude. Indeed, for φ(0) '
0.28MP [15] and mφ/MP ' 10−6, eq. (2.34) reduces to ρX/ρ ' 2 × 10−12q, in good
agreement with our numerical results. At very large values of q the expression (2.34)

underestimates the ratio ρX/ρ; for instance at q = 10
8, it gives a value of ρX/ρ

smaller than the numerical result by about one order of magnitude.

In the next section, we will apply our results on fermionic preheating to the

case of heavy right-handed neutrinos and leptogenesis. We want to emphasize, how-

ever, that the results obtained in this section may be relevant in other cosmological

contexts, such as the generation of superheavy dark matter after inflation [21, 28, 22].
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3. Leptogenesis

The lagrangean terms relevant for leptogenesis describe the interactions between the

massive right-handed neutrinos N , the lepton doublet `L, and the Higgs doublet H ,

L = −N̄hνH`L − 1
2
N̄ cMN + h.c. (3.1)

Here the Yukawa couplings hν and the Majorana mass M are 3 × 3 matrices and
generation indices are understood. We choose to work in a field basis in which M is

diagonal with real and positive eigenvalues ordered increasingly (M1 < M2 < M3).

The mass matrix of the light, nearly left-handed, neutrinos is given by

mν = −hTνM−1hν〈H〉2 . (3.2)

The decays of the heavy neutrinos N into leptons and Higgs bosons violate lepton

number

N → H̄` ,
N → H ¯̀. (3.3)

The interference between the tree-level decay amplitude and the absorptive part of

the one-loop diagram can lead to a lepton asymmetry of the right order of magnitude

to explain the observed baryon asymmetry, as has been extensively discussed in the

literature [4, 29, 30, 31] (for reviews, see ref. [32]). The interference with the one-loop

vertex amplitude yields a CP-violating decay asymmetry for N1 equal to

εV =
1

8π
(
hνh

†
ν

)
11

∑
j=2,3

Im
[(
hνh

†
ν

)
1j

]2
f

(
M2j
M21

)
,

f(x) =
√
x

[
1− (1 + x) ln

(
1 + x

x

)]
. (3.4)

The absorptive part of the one-loop self-energy gives a contribution to the N1 asym-

metry which, in the case of only two-generation mixing, is given by

εS =
Im
[(
hνh

†
ν

)
1j

]2
(
hνh

†
ν

)
11

(
hνh

†
ν

)
22

[
(M21 −M22 )M1ΓN2
(M21 −M22 )2 +M21Γ2N2

]
. (3.5)

Here ΓNi is the total decay rate of the right-handed neutrino Ni,

ΓNi =

(
hνh

†
ν

)
ii

8π
Mi . (3.6)

The CP-violating asymmetry εS is enhanced when the mass difference between two

heavy right-handed neutrinos is small, although not smaller than the decay width.
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The total CP asymmetry ε has an involved dependence on the complete struc-

ture of the neutrino matrices hν and M . However, let us assume that the lepton

asymmetry is generated only at the decay of the lightest right-handed neutrino N1.

This hypothesis is satisfied if the N1 interactions are in equilibrium at the time of

the N2,3 decay (erasing any produced asymmetry), or if N2,3 are too heavy to be pro-

duced after inflation. As will be made clear in the following, this is a very plausible

working assumption. In this case, the dynamics of leptogenesis can be described in

terms of only 3 parameters:4 ε, M1, and

m1 ≡
(
hνh

†
ν

)
11
〈H〉2

M1
. (3.7)

The parameter m1, which determines the relevant interactions of N1, coincides with

the light neutrino mass mν1 only in the limit of small mixing angles, see eq. (3.2).

Here we will be mostly concerned with the production mechanisms of N1 in

the early cosmology. We will discuss a variety of these mechanisms and identify, in

the different ranges of M1 and m1, the size of ε required to generate the appropriate

baryon asymmetry, nB/s ∼ (2–9)×10−11. Our results can be used to check if specific
particle-physics models for neutrino mass matrices are compatible with the various

leptogenesis mechanisms.

3.1 Thermal production

We start by considering the case in which the right-handed neutrino N1 reaches

thermal equilibrium by scattering with the bath after the inflaton decay. The amount

of lepton asymmetry generated by the N decay can then be computed by integrating

the appropriate Boltzmann equations [29, 31].

A measure of the efficiency for producing the asymmetry is given by the ratio

K of the thermal average of the N1 decay rate and the Hubble parameter at the

temperature T =M1,

K ≡ ΓN1
2H

∣∣∣∣
T=M1

=
m1

2× 10−3 eV . (3.8)

Here we have expressed the N1 decay width, see eq. (3.6), in terms of the parameters

m1 and M1 as

ΓN1 =
GF

2
√
2π
m1M

2
1 . (3.9)

For m1 . 2× 10−3 eV, K is less than unity and the decay process is out of equi-
librium when N1 becomes non-relativistic. Under these conditions, the leptogenesis

4The other neutrino mass parameters come into play only for very large values of mi ≡(
hνh

†
ν

)
ii
〈H〉2/Mi (i = 2, 3), when the lepton-number violating interactions mediated by N2 or

N3 can partially erase the lepton asymmetry.

18



J
H
E
P
0
8
(
1
9
9
9
)
0
1
4

becomes very efficient. Indeed, the produced baryon asymmetry approaches its the-

oretical maximum value obtained by assuming that each N1 in thermal equilibrium

eventually generates ε baryons,(nB
s

)
max
=
135 ζ(3) a

4π4g∗
ε = 1× 10−3ε . (3.10)

Here a is defined in eq. (1.1) and g∗ counts the number of degrees of freedom (for
the standard model particle content, a = 28/79 and g∗ = 427/4).
For very small m1, K � 1 and N1 decouples when it is still relativistic. At

temperatures T below M1, the N1 contribution to the energy density red-shifts like

matter and therefore ρN1/ρtotal = (7M1)/(4g∗T ). Eventually N1 matter-dominates
the Universe at a temperature

Tdom =
7 M1
4 g∗

' 2× 10−2M1 . (3.11)

However this can happen only if N1 does not decay beforehand. Since the decay

temperature is

T∗ = 0.8g−1/4∗
√
ΓN1MP =

( m1

10−6 eV

)1/2( M1

1010 GeV

)
3× 108 GeV , (3.12)

neutrino matter-domination occurs when

m1 < 4× 10−7 eV . (3.13)

Under these conditions, the bulk of the energy of the Universe is stored in the non-

relativistic N1. At the time of decay, such energy density is converted into relativistic

degrees of freedom whose temperature coincides with T∗ given in eq. (3.12),

ρN1 =M1nN1 =
π2

30
g∗T 4∗ . (3.14)

This yields the following baryon asymmetry

nB
s
= εa

nN1
s
= εa

3T∗
4M1

=
( m1
10−6 eV

)1/2
8× 10−3ε . (3.15)

In order not to reintroduce the cosmological gravitino problem, discussed in the

introduction, one has to require that the temperature T∗ after the right-handed
neutrino decay is less than the maximum value allowed TRH . This implies

m1 <

(
TRH

M1

)2
10−3 eV . (3.16)

Therefore, the leptogenesis process is very efficient also when TRH is low enough to

suppress gravitino production.
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For K � 1, the departure from thermal equilibrium is reduced, and leptogenesis
is less efficient. Larger values of ε are now required. However, for m1 ∼ 10−2 eV,
values of ε of about 10−5 are sufficient to generate the appropriate baryon asymmetry.
Realistic neutrino mass matrices can comfortably reproduce such values of ε. Notice

that the prediction for the baryon asymmetry depends weakly on M1, as long as

m1 is not too large [31]. This is because both the production and decay thermal

rates of N1 at T = M1 depend only on m1, while the M1 dependence arises from

lepton-violating H–` scattering.

Let us now turn to discuss how primordial thermal equilibrium of N1 can be

achieved. The first necessary condition is

M1 < TRH . (3.17)

This can be quite constraining, especially in view of the bound derived from the dis-

ruptive gravitino effects on nucleosynthesis discussed mentioned in the introduction.

When the inequality (3.17) is not satisfied, one expects the number density of the

N1-particles generated during the reheating stage to be quite small, making this case

marginal, as far as the generation of baryon number is concerned. We would only

like to mention here that such a number density depends upon the fine details of the

dynamics of the reheating stage itself. In particular, the reheat temperature TRH is

not the maximum temperature obtained after inflation; the maximum temperature

is, in fact, much larger than TRH [33]. As a result, the abundance of massive parti-

cles may be suppressed only by powers of the mass over the temperature, and not

exponentially.

A second condition for N1 thermalization is derived from the requirement that

inverse decay or production processes of the kind ¯̀q(3) → N1t (mediated by Higgs-
boson exchange) are in thermal equilibrium before N1 becomes non-relativistic. This

implies

m1 & 10−3 eV . (3.18)

This condition excludes the possibility of the most efficient leptogenesis with K < 1.

However, even if m1 is somewhat smaller than the value indicated by eq. (3.18), a

sufficient number of N1 can be produced. Indeed, for m1 & 10−5 eV, values of ε &
10−5 can give rise to the observed baryon asymmetry. In the case of supersymmetric
models, the constraint can be even less stringent [34], and values ε & 10−5 are
sufficient for m1 & 10−6 eV.
The constraint on m1 from thermalization can be evaded if new interactions,

different from the ordinary Yukawa forces, bring N1 in thermal equilibrium at high

temperatures. For instance, one could use the extra U(1) gauge interactions included

in SO(10) GUTs. These interactions can produce a thermal population of N1 if, at

T = TRH ,

Γ(f̄ f → Z ′ → NN) = 169 α
2
GUT T

5

3π
. (3.19)
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This requires that the mass of the extra gauge boson MZ′ should be close to TRH
and significantly lower than the GUT scale,

MZ′ <

(
TRH

1010 GeV

)3/4
4× 1011 GeV . (3.20)

3.2 Production at reheating

Since it is very likely that the short period of preheating does not fully extract all

of the energy density from the inflaton field, the Universe will enter a long period of

matter domination after preheating where the dominant contribution to the energy

density of the Universe is provided by the residual small amplitude oscillations of

the classical inflaton field and/or by the inflaton quanta produced during the back-

reaction processes. This period will end when the age of the Universe becomes of

the order of the perturbative lifetime of the inflaton field. At this point the Universe

will go through a period of reheating with a reheat temperature TRH given by the

perturbative result in eq. (1.2).

Let us suppose that the inflaton couples to N1, either directly or through ex-

change of other particles. In this case, the inflaton decay process can generate a

right-handed neutrino primordial population [12]. The condition in eq. (3.17) is

replaced by the weaker constraint

M1 < mφ , (3.21)

where mφ is the inflaton mass.

The fate of the right-handed neutrinos produced by the inflaton decay depends

on the parameter choice. If M1 < TRH and m1 & 10−3 eV, the Yukawa couplings are
strong enough to bring N1 into thermal equilibrium, and leptogenesis can proceed as

in the usual scenario described in sect. 3.1.

Let us now assume that the Yukawa couplings are much smaller, and that the

right-handed neutrino decay temperature in eq. (3.12) satisfies T∗ < TRH , i.e. m1 <
(TRH/M1)

210−3 eV. After reheating, the N1 behave like frozen-out, non-thermal,
relativistic particles with typical energy EN1 ' mφ/2. The N1 population will become
non-relativistic at a temperature TNR = TRHM1/EN1 . At this moment, the energy

of the Universe is shared between the radiation and the N1 component, with a ratio

of the corresponding energy densities which has remained constant between TRH
and TNR,

ρN1
ρR

∣∣∣∣
T=TNR

=
ρN1
ρR

∣∣∣∣
T=TRH

ρR|T=TRH =
π2

30
g∗T 4RH , ρN1 |T=TRH = EN1nN1 =

mφ
2
Bφnφ . (3.22)
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Here nφ is the inflaton number density just before decay, obtained by requiring energy

conservation

nφ|T=TRH =
π2g∗T 4RH

30mφ(1−Bφ/2) , (3.23)

and Bφ describes the average number of N1 produced in a φ decay. Below TNR,

the N1 density red-shifts like matter and eventually dominates the Universe at a

temperature

Tdom =
Bφ

(1− Bφ/2)
(
M1

mφ

)
TRH . (3.24)

Therefore, if

m1 >

(
Bφ

1− Bφ/2
)2(

TRH
1010 GeV

)2(
1013 GeV

mφ

)2
1× 10−9 eV , (3.25)

then T∗ > Tdom andN1 decays before dominating. In this case, the baryon asymmetry
is determined to be

nB
s
= εa

nN1
s
=
3 εa Bφ TRH
4(1− Bφ/2)mφ . (3.26)

If the inequality (3.25) is not satisfied, N1 matter-dominates the Universe and we

recover the baryon asymmetry result in eq. (3.15).

A necessary condition to be satisfied is that lepton-number violating interactions

mediated by Ni (i = 1, 2, 3) exchange are out of equilibrium at the temperature of

N1 decay,

Γ∆L =
4

π3
G2Fm

2
iT
3 < H , at T = T∗, (3.27)

where T∗ is given in eq. (3.12). This implies

m1 <

(
1012 GeV

M1

)2/5
0.1 eV and m1 <

(
1012 GeV

M1

)2(
2× 10−3 eV2∑

i=2,3m
2
i

)2
2 eV .

(3.28)

Finally, we discuss the case T∗ > TRH , i.e. m1 > (TRH/M1)210−3 eV, in which
N1 decays immediately after it is produced. In this case, the baryon asymmetry

is still given by eq. (3.26), but the out-of-equilibrium condition of lepton-violating

interactions has to be imposed at T = TRH . Therefore, eq. (3.28) is replaced by

mi <

(
1010 GeV

TRH

)1/2
3 eV , i = 1, 2, 3 . (3.29)

The combination of the bounds shows that lepton-violating interactions do not give

severe constraints on the parameters.
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3.3 Production at preheating

As we have seen in sect. 2, right-handed neutrinos are efficiently produced in a non-

thermal state during the preheating stage. In our numerical studies we have tacitly

assumed that the superheavy right-handed neutrinos were stable. Of course, the

parametric resonance is affected by a nonvanishing decay width of the N1. However,

contrary to what happens for bosons where the presence of a large decay width

removes the particles from the resonance bands rendering the preheating less efficient

[19], for fermions the presence of a decay width might be even beneficial. Indeed, for

stable right-handed neutrinos the distribution function n(k) is rapidly saturated to

unity and further particle production is Pauli-blocked. However, if the decay width is

large enough, the right-handed neutrinos may be produced at each inflaton oscillation

when m(t) ' 0 and then decay right away. This will give rise to a certain amount of
lepton asymmetry at each inflaton oscillation until the condition in eq. (2.27) is met;

the lepton asymmetry would be generated in a cumulative way. Strictly speaking,

however, the numerical calculation of fermion preheating presented in sect. 2 applies

only to the case in which the right-handed neutrinos have a decay lifetime larger

than the typical time-scale of the inflaton oscillation m−1φ

ΓN1 . mφ ⇒ m1 <

(
1015 GeV

M1

)2 ( mφ

1013 GeV

)
8× 10−3 eV . (3.30)

The right-handed neutrinos produced during preheating may annihilate into in-

flaton quanta. This back-reaction will render the final right-handed neutrino abun-

dance smaller and therefore leptogenesis more difficult. Imposing that the back-

reaction is negligible requires ΓA ∼ nN1σA . mφ, where σA ∼ g4/(4πM1)2. Since
the energy spectrum of the right-handed neutrinos is dominated by the maximum

momentum generated at the last inflaton oscillation, we assume that the number

density of right-handed neutrinos is equal to the freeze-out value nN1 ' M1m2φ/6π2,
see eq. (2.34), and we obtain

ΓA < mφ ⇒ q < 1013
(

M1
1015 GeV

)1/2
. (3.31)

One should also be sure that the number density of the right-handed neutrinos

is not depleted by self-annihilations before they decay. This requires

ΓA < ΓN1 ⇒ q < 1012
( m1

10−4 eV

)1/2( M1

1015 GeV

)3/2
. (3.32)

Suppose now that the right-handed neutrinos N1 decay before the inflaton energy

density is transformed into radiation by perturbative processes. This occurs when

ΓN1 > Γφ, which implies

m1 >

(
TRH

M1

)2
1× 10−3 eV . (3.33)
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A crucial point is that, after the generation of non-thermal right-handed neutrinos

at the preheating stage, the ratio of the energy densities of N1 and inflaton quanta

remains constant: ρN1/ρφ = (ρN1/ρφ)ph, where (ρN1/ρφ)ph is the ratio generated

at the preheating stage. Since the energy density of the Universe is dominated by

inflaton oscillations, after preheating we obtain

ρN1 =

(
ρN1
ρφ

)
ph

3H2M2P
8π

. (3.34)

Our numerical results discussed in sect. 2 indicate that, for very large q and M1,(
ρN1
ρφ

)
ph

∼ 10− 11q , for M1 .
q1/2

2
mφ . (3.35)

At tN1 ∼ Γ−1N1 the right-handed neutrinos decay and the energy density ρN1 is con-
verted into a thermal bath with temperature

π2

30
g∗T̃ 4 = ρN1 , (3.36)

where ρN1 is computed at H = ΓN1. Using eqs. (3.34) and (3.35), we find

T̃ =
( q
1010

)1/4 ( m1

10−4 eV

)1/2( M1

1015 GeV

)
2× 1014 GeV . (3.37)

Before the inflaton decay, this thermal bath never dominates the energy density of

the Universe since ρN1 � ρφ at H ' ΓN1 and the energy density in the inflaton
field ρφ is red-shifted away more slowly than the radiation. Notice that at this time

the asymmetry is still in the form of lepton number since the sphalerons which are

responsible for converting the lepton asymmetry into baryon asymmetry are still out-

of-equilibrium at T = T̃ . One might be worried that, since T̃ is usually larger than

TRH , too many gravitinos are produced at the stage of thermalization of the decay

products of the right-handed neutrino. However, one can estimate the ratio n3/2/s

after reheating to be of the order of 10−15(q/1010)3/2 (TRH/1010 GeV), which is quite
safe. However, we have to require that the lepton-number violating processes within

the thermal bath at temperature T̃ are out-of-equilibrium in order not to wash out

the lepton asymmetry generated by the right-handed neutrino decays. Therefore, we

demand that

Γ∆L =
4

π3
G2Fm

2
iT
3 < H at T = T̃ . (3.38)

This implies

m1 <

(
1010

q

)3/10(
1015 GeV

M1

)2/5
1× 10−2 eV , (3.39)

m1 <

(
1010

q

)3/2(
1015 GeV

M1

)2(
2× 10−3 eV2∑

i=2,3m
2
i

)2
6× 10−5 eV . (3.40)

At H . ΓN1, the ratio nL/nφ keeps constant until the time tφ ∼ Γ−1φ when
the inflaton decays and the energy density in the inflaton field ρφ(tφ) is transferred
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to radiation. After reheating we obtain the following lepton asymmetry to entropy

density ratio
nL

s
=
3nL TRH
4ρφ(tφ)

=
3 ε TRH
4 M1

(
ρN1
ρφ

)
ph

. (3.41)

Using eq. (3.35), the baryon asymmetry can be expressed as

nB

s
= ε

(
TRH

1010GeV

)(
1015 GeV

M1

)( q
1010

)
3× 10−7 . (3.42)

The result in eq. (3.42) shows that the preheating production mechanism can lead

to a successful leptogenesis even for M1 as large as 10
15 GeV, if εq ∼ 106. Values of

q as large as 1010 correspond to a perturbative coupling between N1 and the inflaton

g2 ' 0.4 and are compatible with the constraints in eqs. (3.31) and (3.32). Values
of ε of the order of 10−4 are quite large, but can be attained with realistic neutrino
mass matrices. For values of M1 so close to the GUT scale, we expect that all

the right-handed neutrino Majorana masses are comparable in size. Moreover, the

atmospheric neutrino results, together with the requirement of perturbative Yukawa

couplings, indicate that at least one Majorana mass is less than about 8× 1015 GeV.
This situation of comparable Majorana masses and some large Yukawa couplings

naturally leads to large values of ε. Also, notice that the out-of-equilibrium condition

is automatically satisfied in the preheating scenario for all 3 right-handed neutrinos,

in a large range of parameters.

Let us finally consider the case in which N1 decays after the reheating process

and the inequality (3.33) is not satisfied. Again, it is important to establish whether

N1 dominates the Universe before decaying. Since the inflaton energy density is

converted into radiation and the N1 are non-relativistic, the temperature at which

ρN1 dominates is given by

Tdom =

(
ρN1
ρφ

)
ph

TRH . (3.43)

Therefore, for T∗ > Tdom, i.e. for

m1 >

(
TRH

M1

)2 ( q
1010

)2
10−7 eV , (3.44)

the estimate for the baryon asymmetry in eq. (3.42) is still valid. Otherwise, for

T∗ < Tdom, we obtain the result in eq. (3.15). Notice that, in this case, the constraint
T∗ < TRH is automatically satisfied.

3.4 Comparison of the different production mechanisms

We want to compare here the different mechanisms discussed in this section for lep-

togenesis from N1 decay. We summarize their most important features and estimate

the size of the CP-violating parameter ε necessary to reproduce the observed baryon

asymmetry.
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Thermal production. This is the right-handed neutrino production mechanism

usually considered in the literature for conventional leptogenesis. In the range

10−5 eV < m1 < 10−2 eV (or 10−6 eV < m1 < 10−2 eV in the case of the minimal
supersymmetric model) and forM1 < TRH , the thermal production of unstable N1 is

efficient, and values of ε in the range 10−7–10−5 can account for the present baryon
asymmetry. The boundaries of the allowed region of neutrino mass parameters are

determined as follows. For small values of m1, the N1 production rate is suppressed

and larger values of ε are required. For large m1, the Yukawa couplings maintain

the relevant processes in thermal equilibrium for longer times, partially erasing the

produced asymmetry. The values of M1 are limited by the reheat temperature after

inflation TRH , which in turn is bounded by cosmological gravitino considerations to

be below 108–1010 GeV.

Production at reheating. If N1 is directly or indirectly coupled to the inflaton,

the decay of the small amplitude oscillations of the classical inflaton field at the

time of reheating can produce a right-handed neutrino population. This production

mechanism enables us to extend the leptogenesis-allowed region to neutrino mass

parameters which correspond to non-thermal N1 populations. In particular, M1 can

be as large as mφ ' 1013 GeV. The observed baryon asymmetry is reproduced for
ε ∼ 10−6(1010 GeV/TRH)(10−1/Bφ), where Bφ is the average number of N1 produced
by a single inflaton decay.

Production at preheating. The non-perturbative decay of large inflaton oscil-

lations during the preheating stage can produce a non-thermal population of very

massive right-handed neutrinos. In this case, the range of M1 can be extended to

values close to the GUT scale, while m1 is bounded by the condition that lepton-

number violating interactions are out of equilibrium after the N1 decay, see eq. (3.40).

A successful leptogenesis requires ε ∼ 10−4(1010 GeV/TRH)(M1/1015 GeV)(1010/q),
where q is related to the initial inflaton configuration and is defined in eq. (2.18).

In conclusion, leptogenesis provides an interesting and simple way to explain

the present cosmic baryon asymmetry. The study of the different mechanisms in

which it can be realized provides us with precious information on the neutrino mass

parameters and the early history of the Universe.
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