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Abstract

The lateral and longitudinal pro�les of hadronic showers detected by a prototype

of the ATLAS Iron-Scintillator Tile Hadron Calorimeter have been investigated. This

calorimeter uses a unique longitudinal con�guration of scintillator tiles. Using a �ne-

grained pion beam scan at 100 GeV, a detailed picture of transverse shower behavior

is obtained. The underlying radial energy densities for four depth segments and for

the entire calorimeter have been reconstructed. A three-dimensional hadronic shower

parametrization has been developed. The results presented here are useful for under-

standing the performance of iron-scintillator calorimeters, for developing fast simula-

tions of hadronic showers, for many calorimetry problems requiring the integration of

a shower energy deposition in a volume and for future calorimeter design.

Keywords: Calorimetry; Computer data analysis.
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1 Introduction

We report on an experimental study of hadronic shower pro�les detected by the prototype of
the ATLAS Barrel Tile Hadron Calorimeter (Tile calorimeter) [1], [2]. The innovative design
of this calorimeter, using longitudinal segmentation of active and passive layers (see Fig. 1),
provides an interesting system for the measurement of hadronic shower pro�les. Speci�cally,
we have studied the transverse development of hadronic showers using 100 GeV pion beams
and longitudinal development of hadronic showers using 20 { 300 GeV pion beams.

Characteristics of shower development in hadron calorimeters have been published for
some time. However, a complete quantitative description of transverse and longitudinal
properties of hadronic showers does not exist [3]. The transverse pro�les are usually expressed
as a function of transverse coordinates, not the radius, and are integrated over the other
coordinate [4]. The three-dimensional parametrization of hadronic showers described here
could be a useful starting point for fast simulations, which can be faster than full simulations
at the microscopic level by several orders of magnitude [5], [6], [7].

The paper is organised as follows. In Section 2, the calorimeter and the test beam
setup are brie
y described. In Section 3, the mathematical procedures for extracting the
underling radial energy density of hadronic showers are developed. The obtained results on
the transverse and longitudinal pro�les, the radial energy densities and the radial contain-
ment of hadronic shower are presented in Sections 4 { 7. Section 8 and 9 investigate the
three-dimensional parametrization and electromagnetic fraction of hadronic shower. Finally
Section 10 contains a summary and the conclusions.

2 The Calorimeter

The prototype Tile Calorimeter used for this study is composed of �ve modules stacked in
the Y direction, as shown in Fig. 2. Each module spans 2�=64 in the azimuthal angle, 100
cm in the Z direction, 180 cm in the X direction (about 9 interaction lengths, �I , or about
80 e�ective radiation lengths, X0), and has a front face of 100 � 20 cm2 [8]. The absorber
structure of each module consists of 57 repeated \periods". Each period is 18 mm thick and
consists of four layers. The �rst and third layers are formed by large trapezoidal steel plates
(master plates) and span the full longitudinal dimension of the module. In the second and
fourth layers, smaller trapezoidal steel plates (spacer plates) and scintillator tiles alternate
along the X direction. These layers consist of 18 di�erent trapezoids of steel or scintillator,
each of 100 mm in depth. The master plates, spacer plates and scintillator tiles are 5 mm,
4 mm and 3 mm thick, respectively. The iron to scintillator ratio is 4:67 : 1 by volume. The
calorimeter thickness along the beam direction at the incidence angle (the angle between
the incident particle direction and the normal to the calorimeter front face) of � = 10Æ

corresponds to 1.49 m of iron equivalent [9].
Wavelength shifting �bers collect scintillation light from the tiles at both of their open

(azimuthal) edges and bring it to photo-multipliers (PMTs) at the periphery of the calorime-
ter. Each PMT views a speci�c group of tiles through the corresponding bundle of �bers.
The modules are divided into �ve segments along Z. They are also longitudinally segmented
(along X) into four depth segments. The readout cells have a lateral dimensions of 200
mm along Z, and longitudinal dimensions of 300, 400, 500, 600 mm for depth segments 1
{ 4, corresponding to 1.5, 2, 2.5 and 3 �I at � = 0Æ respectively. Along Y , the cell sizes
vary between about 200 and 370 mm depending on the X (depth) coordinate. We recorded
energies for 100 di�erent cells for each event [8].

The calorimeter was placed on a scanning table that allowed movement in any direction.
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Upstream of the calorimeter, a trigger counter telescope (S1 { S3) was installed, de�ning a
beam spot approximately 20 mm in diameter. Two delay-line wire chambers (BC1 { BC2),
each with (Z; Y ) readout, allowed the impact point of beam particles on the calorimeter face
to be reconstructed to better than �1 mm [10]. \Muon walls" were placed behind (800�800
mm2) and on the positive Z side (400�1150 mm2) of the calorimeter modules to measure
longitudinal and lateral hadronic shower leakage [11].

We used the TILEMON program [12] to convert the raw calorimeter data into PAW
Ntuples [13] containing calibrated cell energies and other information used in this study.

The data used for the study of lateral pro�les were collected in 1995 during a special
Z-scan run at the CERN SPS test beam. The calorimeter was exposed to 100 GeV negative
pions at a 10Æ angle with varying impact points in the Z-range from �360 to +200 mm. A
total of > 300,000 events have been analysed; for the lateral pro�le study only events without
lateral leakage were used. The uniformity of the calorimeter's response for this Z-scan is
estimated to be 1% [14].

The data used for the study of longitudinal pro�les were obtained using 20 { 300 GeV
negative pions at a 20Æ angle and were also taken in 1995 during the same test beam run.

3 Extracting the Underlying Radial Energy Density

In this investigation we use a coordinate system based on the incident particle direction.
The impact point of the incident particle at the calorimeter front face de�nes the origin of
coordinate system. The incident particle direction forms the x axis, while the y axis is in the
same direction as Y de�ned in Section 2. The normal to the xy surface de�nes the z axis.

We measure the energy deposition in each calorimeter cell for every event. In the ijk-cell
of the calorimeter with the volume Vijk and cell center coordinates (xc; yc; zc), the energy
deposition Eijk is

Eijk(xc; yc; zc) =
Z

Vijk

f(x; y; z) dxdydz; (1)

where f(x; y; z) is the three-dimensional hadronic shower energy density function. Due to
the azimuthal symmetry of shower pro�les, the density f(x; y; z) is only a function of the
radius r =

p
y2 + z2 from the shower axis and the longitudinal coordinate x. Then

Eijk(xc; yc; zc) =
Z

Vijk

	(x; r) rdrd�dx; (2)

where � is the azimuthal angle and 	(x; r) has the form of a joint probability density function
(p.d.f.) [15]. The joint p.d.f. can be further decomposed as a product of the marginal p.d.f.,
dE(x)=dx, and the conditional p.d.f., �(x; r),

	(x; r) =
dE(x)

dx
� �(x; r): (3)

The longitudinal density dE=dx is de�ned as

dE(x)

dx
=

1Z
�1

1Z
�1

f(x; y; z) dydz: (4)

Finally, the radial density function �(r) for a given depth segment is

�(r) = E0 �(x; r); (5)
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where E0 is the total shower energy deposition into the depth segment for �xed x.
There are several methods for extracting the radial density �(r) from the measured

distributions of energy depositions. One method is to unfold �(r) using expression (2). This
method was used in the analysis of the data from the lead-scintillating �ber calorimeter
[16]. Several analytic forms of �(r) were tried, but the simplest that describes the energy
deposition in cells was a combination of an exponential and a Gaussian:

�(r) =
b1
r
e
� r
�1 +

b2
r
e
�( r

�2
)2
; (6)

where bi and �i are the free parameters.
Another method for extracting the radial density is to use the marginal density function

f(z) =

1Z
�1

x2Z
x1

f(x; y; z) dxdy: (7)

which is related to the radial density �(r)

f(z) = 2

1Z
jzj

�(r) rdrp
r2 � z2

: (8)

This method was used [17] for extracting the electron shower transverse pro�le from the
GAMS-2000 electromagnetic calorimeter data [18]. The above integral equation (8) can be
reduced to an Abelian equation by replacing variables [19]. In [20], the following solution to
equation (8) was obtained

�(r) = � 1

�

d

dr2

1Z
r2

f(z) dz2p
z2 � r2

: (9)

For our study, we used the sum of three exponential functions to parameterize f(z) as

f(z) =
E0

2B

3X
i=1

ai e
�

jzj
�i ; (10)

where z is the transverse coordinate, E0; ai; �i are free parameters,B =
P3

i=1 ai�i,
P3

i=1 ai =
1 and

R+1
�1 f(z)dz = E0. In this case, the radial density function, obtained by integration

and di�erentiation of equation (9), is

�(r) =
E0

2�B

3X
i=1

ai
�i

K0

�
r

�i

�
; (11)

where K0 is the modi�ed Bessel function. This function goes to 1 as r ! 0 and goes to
zero as r!1.

We de�ne a column of �ve cells in a depth segment as a tower. Using the parametrization
shown in equation (10), we can show that the energy deposition in a tower [21], E(z) =R z+h=2
z�h=2 f(z)dz, can be written as

E(z) = E0 � E0

B

3P
i=1

ai�i cosh(
jzj
�i
) e

� h
2�i ; for jzj � h

2
; (12)

E(z) = E0

B

3P
i=1

ai�i sinh(
h
2�i

) e
�

jzj
�i ; for jzj > h

2
; (13)
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where h is the size of the front face of the tower along the z axis. Note that as h ! 0, we
get E(z)=h! f(z). As h!1, we �nd that E(0)! E0.

The full width at half maximum (FWHM) of an energy deposition pro�le for small values
of (FWHM � h)=h can be approximated by

FWHM = h +
2E(h=2) � E(0)

E0

B

3P
i=1

ai sinh(
h
2�i

) e
� h

2�i

: (14)

We will show below that this approximation agrees well with our data.
A cumulative function may be derived from the density function as

F (z) =

zZ
�1

f(z) dz: (15)

For our parametrization in equation (10), the cumulative function becomes

F (z) = E0

2B

3P
i=1

ai �i e
z
�i ; for z � 0; (16)

F (z) = E0 � E0

2B

3P
i=1

ai �i e
� z
�i ; for z > 0; (17)

where z is the position of the edge of a tower along the z axis. Note that the cumulative
function does not depend on the cell size h. We can construct the cumulative function and
deconvolute the density f(z) from it for any size calorimeter cell. Note also that cumulative
function is well behaved at the key points: F (�1) = 0, F (0) = E0=2, and F (1) = E0.

The radial containment of a shower as a function of r is given by

I(r) =

rZ
0

2�Z
0

�(r) rdrd� = E0 � E0r

B

3X
i=1

ai K1

�
r

�i

�
; (18)

where K1 is the modi�ed Bessel function. As r!1, the function rK1(r) tends to zero and
we get I(1) = E0, as expected.

We use two methods to extract the radial density function �(r). One method is to unfold
�(r) from (2). Another method is to use the expression (9) after we have obtained the
marginal density function f(z). There are three ways to extract f(z): by �tting the energy
deposition E(z) [21], by �tting the cumulative function F (z) and by directly extracting f(z)
by numerical di�erentiation of the cumulative function. The e�ectiveness of these various
methods depend on the scope and quality of the experimental data.

4 Transverse Behaviour of Hadronic Showers

Figure 3 shows the energy depositions in towers for depth segments 1 { 4 as a function of the
z coordinate of the center of the tower. Figure 4 shows the same for the entire calorimeter
(the sum of the histograms presented in Fig. 3).

These Figures are pro�le histograms [13] and give the energy deposited in any tower for
all analysed events in bins of the z coordinate. Here the coordinate system is linked to the
incident particle direction where z = 0 is the coordinate of the beam impact points at the
calorimeter front face. Figure 5 schematically shows a top view of the experimental setup
and indicates the z coordinate of each tower. The z1, z2, z3 and z4 are the distances between
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the centre of towers (for the four depth segments) and the direction of beam particle. The
values of the z-coordinate of the tower centers are negative to the left of the beam, positive
to the right of the beam and range from �750 mm to +600 mm. To avoid edge e�ects, we
present tower energy depositions in the range from �650 mm to +500 mm. Note that the
total tower height (about 1.0 m at the front face, and about 1.8 m at the back) is suÆcient
for shower measurements without signi�cant leakage in the vertical direction.

As mentioned earlier, events with signi�cant lateral leakage (identi�ed by a clear minimum-
ionising signal in the lateral muon wall) were discarded. The resulting left-right asymmetries
in the distributions of Figures 3 and 4 are very small.

As will be shown later (Section 6), the 99% containment radius is less than 500 mm.
The �ne-grained z-scan provided many di�erent beam impact locations within the ca-

lorimeter. Due to this, we obtained a detailed picture of the transverse shower behaviour
in the calorimeter. The tower energy depositions shown in Figures 3 and 4 span a range
of about three orders of magnitude. The plateau for jzj < 100 mm (h=2) and the fall-o�
at large jzj are apparent. Similar behaviour of the transverse pro�les was observed in other
calorimeters as well [16], [21].

We used the distributions in Figs. 3 and 4 to extract the underlying marginal densities
function for four depth segments of the calorimeter and for the entire calorimeter. The
solid curves in these �gures are the results of the �t with equations (12) and (13). The �ts
typically di�er from the experimental distribution by less than 5%.

In comparison with [21] and [22], where the transverse pro�les exist only for distances less
than 250 mm, our more extended pro�les (up to 650 mm) require that the third exponential
term be introduced. The parameters ai and �i, obtained by �tting, are listed in Table 1. The
values of the parameter E0, the average energy shower deposition in a given depth segment,
are listed in Table 4.

We have compared our values of �1 and �2 with the ones from the conventional iron-
scintillator calorimeter described in [22]. At 100 GeV, our results for the entire calorimeter
are 23 � 1 mm and 58 � 4 mm for �1 and �2 respectively. They agree well with the ones
from [22], which are 18 � 3 mm and 57 � 4 mm.

We determined the FWHM of energy deposition pro�les (Figs. 3 and 4) using formula
(14). The characteristic FWHM are found to be approximately equal to transverse tower
size. The relative di�erence of FWHM from transverse tower size, (FWHM�h)=h, amount
to 2% for depth segment 1, depth segment 2 and for the entire calorimeter, 7% for depth
segment 3 and 15% for depth segment 4.

Figure 6 shows the calculated marginal density function f(z) and the energy deposition
function, E(z)=h, at various transverse sizes of tower h = 50; 200; 300 and 800 mm using
the obtained parameters for the entire calorimeter. As a result of the volume integration, the
sharp f(z) is transformed to the wide function E(z)=h, which clearly shows its relationship
to the transverse width of a tower. The values of FWHM are 40 mm for f(z) and 204 mm
for E(z)=h at h = 200 mm. Note that the transverse dimensions of a tower vary from 300
mm to 800 mm for the di�erent depth segments in �nal ATLAS Tile calorimeter design. The
di�erence between f(0) and E(0)=h becomes less then 5% only at h less then 6 mm.

The parameters ai and �i as a function of x (in units of �Fe� ) are displayed in Figs. 7
and 8. Here �Fe� = 207 mm is the nuclear interaction length for pions in iron [20]. In these
calculations, the e�ect of the 10Æ incidence beam angle has been corrected. As can be seen
from Figs. 7 and 8, the value of a1 decreases and the values of the remaining parameters,
a2; a3 and �i, increase as the shower develops. This is a re
ection of the fact that as the
hadronic shower propagates into the calorimeter it becomes broader. Note also that the ai
and �i parameters demonstrate linear behaviour as a function of x. The lines shown are �ts
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to the linear equations
ai(x) = �i + �ix (19)

and
�i(x) = 
i + Æix: (20)

The values of the parameters �i, �i, 
i and Æi are presented in Table 2. It is interesting to
note that the linear behaviour of the slope exponential was also observed for the low-density
�ne-grained 
ash chamber calorimeter [4]. However, some non-linear behaviour of the slope
of the halo component was demonstrated for the uranium-scintillator ZEUS calorimeter at
interaction lengths more than 5 �I [23].

Similar results were obtained for the cumulative function distributions. The cumulative
function F (z) is given by

F (z) =
4X

k=1

F k(z); (21)

where F k(z) is the cumulative function for depth segment k. For each event, F k(z) is

F k(z) =
imaxX
i=1

5X
j=1

Eijk; (22)

where imax = 1; : : : ; 5 is the last tower number in the sum.
Figures 9 and 10 present the cumulative functions for four depth segments and for the

entire calorimeter. The curves are �ts of equations (16) and (17) to the data. Systematic
and statistical errors are again added in quadrature. The results of the cumulative function
�ts are less reliable and in what follows we use the results from energy depositions in a tower.

However, the marginal density functions determined by the two methods (by using the
energy deposition spectrum and the cumulative function) are in reasonable agreement.

5 Radial Hadronic Shower Energy Density

Using formula (11) and the values of the parameters ai, �i, given in Table 1, we have
determined the underlying radial hadronic shower energy density functions, �(r). The results
are shown in Figure 11 for depth segments 1 { 4 and in Figure 12 for the entire calorimeter.
The contributions of the three terms of �(r) are also shown.

The functions �(r) for separate depth segments of a calorimeter are given in this paper for
the �rst time. The function �(r) for the entire calorimeter was previously given for a Lead-
scintillating �ber calorimeter [16]; it is given here for the �rst time for an Iron-scintillator
calorimeter. The analytical functions giving the radial energy density for di�erent depth
segments allow to easily obtain the shower energy deposition in any calorimeter cell, shower
containment fractions and the cylinder radii for any given shower containment fraction.

The function �(r) for the entire calorimeter has been compared with the one for the lead-
scintillating �ber calorimeter of ref. [16], that has about the same e�ective nuclear interaction
length for pions (namely 251 mm for the tile and 244 mm for the �ber calorimeter [20]).
The two radial density functions are rather similar as seen in Fig. 13. The lead-scintillating
�ber calorimeter density function �(r), which was obtained from a 80 GeV �� grid scan at
an angle of 2Æ with respect to the �ber direction, was parametrized using formula (6) with
b1 = 0:169 pC/mm, b2 = 0:677 pC/mm, �1 = 140 mm and �2 = 42:4 mm. For the sake of
comparing the radial density functions of the two calorimeters, the distribution from [16] was
normalised to the �(r) of the Tile calorimeter. Precise agreement between these functions
should not be expected because of the e�ect of the di�erent absorber materials used in the
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two detectors (e. g. the radiation/interaction length ratio for the Tile calorimeter is three
times larger than for lead-scintillating �ber calorimeter [20]), the values of e=h are di�erent,
as is hadronic activity of showers because fewer neutrons are produced in iron than in lead
[24], [25]).

6 Radial Containment

An other issue on which new results are presented here is the longitudinal development of
shower transverse dimensions. The parametrization of the radial density function, �(r),
was integrated to yield the shower containment as a function of the radius, I(r). Figure 14
shows the transverse containment of the pion shower, I(r), as a function of r for four depth
segments and for the entire calorimeter.

In Table 3 and Fig. 15 the radii of cylinders for the given shower containment (90%,
95% and 99%) extracted from Fig. 14 as a function of depth are shown. The centers of
depth segments, x, are given in units of �Fe� . Solid lines are the linear �ts to the data:
r(90%) = (85�6)+(37�3)x, r(95%) = (134�9)+(45�3)x, r(99%) = (349�7)+(22�2)x
(mm). As can be seen, these containment radii increase linearly with depth. Such a linear
increase of 95% lateral shower containment with depth is also observed in an other iron-
scintillator calorimeter at 50 and 140 GeV [26]. It is interesting to note that the shower
radius for 95% radial containment for the entire calorimeter is equal to �eff� = 251 mm [20]
which justi�es the frequently encountered statement that r(95%) � �I [24], where �I is �eff�

in our case. For the entire Tile calorimeter the 99% containment radius is equal to 1:7� 0:1
�eff� .

Based on our study, we believe that it is a poor approximation to regard the values ob-
tained from the marginal density function or the energy depositions in strips as the measure
of the transverse shower containment, as was done in [4]. In that paper the value of 1:1 �eff�

was obtained for 99% containment at 100 GeV, and the conclusion was drawn that their
\result is consistent with the rule of thumb that a shower is contained within a cylinder of
radius equal to the interaction length of a calorimeter material". However Tile calorimeter
measurements show that the cylinder radius for 99% shower containment is about two in-
teraction lengths. If we extract the lateral shower containment dimension using instead the
integrated function F (z), given in Fig. 10, we obtain the value of 300 mm or 1:2 �eff� , which
agrees with [4].

7 Longitudinal Pro�le

We have examined the di�erential deposition of energy �E=�x as a function of x, the
distance along the shower axis. Table 4 lists the centers in x of the depth segments, x,
and the lengths along x of the depth segments, �x, in units of �Fe� , the average shower
energy depositions in various depth segments, E0, and the energy depositions per interaction
length �Fe� , �E=�x. Note that the values of E0 have been obtained taking into account the
longitudinal energy leakage which amounts to 1.8 GeV for 100 GeV [14].

Our values of �E=�x together with the data of [27] and Monte Carlo predictions
(GEANT-FLUKA + MICAP) [28] are shown in Fig. 16. The longitudinal energy depo-
sition for our calorimeter using longitudinal orientation of the scintillating tiles is in good
agreement with that of a conventional iron-scintillator calorimeter.

The longitudinal pro�le, �E=�x, may be approximated using two parametrizations. The
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�rst form is
dE(x)

dx
=

Ef �
�+1

�(� + 1)
x� e��x (23)

where Ef = Ebeam, and � and � are free parameters. Our data at 100 GeV and those of Ref.
[27] at 100 GeV were jointly �t to this expression; the �t is shown in Fig. 16.

The second form is the analytical representation of the longitudinal shower pro�le from
the front of the calorimeter

dE(x)

dx
= N

(
w X0

a

�
x

X0

�a
e
�b x

X0 1F1

�
1; a+ 1;

�
b� X0

�I

�
x

X0

�

+
(1 �w) �I

a

�
x

�I

�a
e
�d x

�I 1F1

�
1; a+ 1; (d� 1)

x

�I

�)
; (24)

where 1F1 is the con
uent hypergeometric function [29]. Here the depth variable, x, is the
depth in equivalent Fe, X0 is the radiation length in Fe and in this case �I is �Fe� . The
normalisation factor, N , is given by

N = Ebeam

� 1Z
0

dE(x)

dx
dx =

Ebeam

�I �(a) (w X0 b�a + (1 � w) �I d�a)
: (25)

This form was suggested in [30] and derived by integration over the shower vertex positions
of the longitudinal shower development from the shower origin

dE(x)

dx
=

xZ
0

dEs(x� xv)

dx
e
�xv
�I dxv; (26)

where xv is the coordinate of the shower vertex. (This is necessary because with the Tile
calorimeter longitudinal segmentation the shower vertex is not measured). For the parame-
trization of longitudinal shower development, the well known parametrization suggested by
Bock et al. [5] has been used

dEs(x)

dx
= N

(
w
�
x

X0

�a�1
e
�b x

X0 + (1� w)
�
x

�I

�a�1
e
�d x

�I

)
; (27)

where a; b; d; w are parameters.
We compare the form (24) to the experimental points at 100 GeV using the parameters

calculated in Refs. [5] and [27]. Note that now we are not performing a �t but checking
how well the general form (24) together with two sets of parameters for iron-scintillator
calorimeters describe our data. As shown in Fig. 16, both sets of parameters work rather
well in describing the 100 GeV data.

Turning next to the longitudinal shower development at di�erent energies, in Fig. 17 our
values of �E=�x for 20 { 300 GeV together with the data from [27] are shown. The solid
and dashed lines are calculations with function (24) using parameters from [27] and [5], re-
spectively. Again, we observe reasonable agreement between our data and the corresponding
data for conventional iron-scintillator calorimeter on one hand, and between data and the
parametrizations described above. Note that the �t in [27] has been performed in the energy
range from 10 to 140 GeV; hence the curves for 200 and 300 GeV should be considered as
extrapolations. It is not too surprising that at these energies the agreement is signi�cantly
worse, particularly at 300 GeV. In contrast, the parameters of [5] were derived from data
spanning the range 15 { 400 GeV, and are in much closer agreement with our data.
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8 The parametrization of Hadronic Showers

The three-dimensional parametrization for spatial hadronic shower development is

	(x; r) =
dE(x)

dx
�

3P
i=1

ai(x)
�i(x)

K0(
r

�i(x)
)

2�
3P

i=1
ai(x)�i(x)

; (28)

where dE(x)=dx, de�ned by equation (24), is the longitudinal energy deposition, the func-
tions ai(x) and �i(x) are given by equations (19) and (20), and K0 is the modi�ed Bessel
function.

This explicit three dimensional parametrization can be used as a convenient tool for many
calorimetry problems requiring the integration of a shower energy deposition in a volume
and the reconstruction of the shower coordinates.

9 Electromagnetic Fraction of Hadronic Showers

One of the important issues in the understanding of hadronic showers is the electromagnetic
component of the shower, i. e. the fraction of energy going into �0 production and its depen-
dence on radial and longitudinal coordinates, f�0(r; x). Following [16], we assume that the
electromagnetic part of a hadronic shower is the prominent central core, which in our case is
the �rst term in the expression (11) for the radial energy density function, �(r). Integrating
f�0 over r we get

f�0 =
a1�1
3P

i=1
ai�i

: (29)

For the entire Tile calorimeter this value is (53 � 3)% at 100 GeV.
The observed �0 fraction, f�0 , is related to the intrinsic actual fraction, f 0�0 , by the

equation

f�0(E) =
e E0

em

e E0
em + h E0

h

=
e=h � f 0�0(E)

(e=h� 1) � f 0�0(E) + 1
; (30)

where E0
em and E0

h are the intrinsic electromagnetic and hadronic parts of shower energy,
e and h are the coeÆcients of conversion of intrinsic electromagnetic and hadronic energies
into observable signals, f 0�0 = E0

em=(E
0
em + E0

h).
There are two analytic forms for the intrinsic �0 fraction suggested by Groom [31]

f 0�0(E) = 1 �
�
E

E0
0

�m�1

(31)

and Wigmans [32]

f 0�0(E) = k � ln
�
E

E0
0

�
; (32)

where E0
0 = 1 GeV, m = 0:85 and k = 0:11. We calculated f�0 using the value e=h =

1:34 � 0:03 for our calorimeter [2], [33] and obtained the curves shown in Fig. 18.
Our result at 100 GeV is compared in Fig. 18 to the modi�ed Groom and Wigmans

parametrizations and to results from the Monte Carlo codes CALOR [25], GEANT-GEISHA
[28] and GEANT-CALOR [34] (the latter code is an implementation of CALOR89 di�ering
from GEANT-FLUKA only for hadronic interactions below 10 GeV). Note that the Monte
Carlo calculations were performed for the intrinsic �0 fraction, f 0�0(E), and therefore the
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results were modi�ed by us according to (30). As can be seen from Fig. 18, our calculated
value of f�0 is about one standard deviation lower than two of the Monte Carlo results and
the Groom and Wigmans parametrizations.

Figure 19 shows the fractions f�0(r) as a function of r. As can be seen, the fractions
f�0(r) for the entire calorimeter and for depth segments 1 { 3 amount to about 90% as r! 0
and decrease to about 1% as r ! �eff� . However for depth segment 4 the value of f�0(r)
amounts to only 50% as r! 0 and decreases slowly to about 10% as r ! �eff� .

Figure 20 shows the values of f�0(x) as a function of x, as well as the linear �t which
gives f�0(x) = (75� 2) � (8:4 � 0:4)x (%).

Using the values of f�0(x) and energy depositions for various depth segments, we obtained
the contributions from the electromagnetic and hadronic parts of hadronic showers in Fig.
16. The curves represent a �t to the electromagnetic and hadronic components of the shower
using equation (23). Ef is set equal to f�0Ebeam for the electromagnetic fraction and (1 �
f�0)Ebeam for the hadronic fraction. The electromagnetic component of a hadronic shower
rise and decrease more rapidly than the hadronic one (�em = 1:4�0:1, �h = 1:1�0:1, �em =
1:12�0:04, �h = 0:65�0:05). The shower maximum position (xmax = (�=�) �eff� ) occurs at
a shorter distance from the calorimeter front face (xemmax = 1:23 �eff� , xhmax = 1:85 �eff� ). At
depth segments greater than 4 �eff� , the hadronic fraction of the shower begins to dominate.
This is natural since the energy of the secondary hadrons is too low to permit signi�cant
pion production.

10 Summary and Conclusions

We have investigated the lateral development of hadronic showers using 100 GeV pion beam
data at an incidence angle of � = 10Æ for impact points z in the range from �360 to 200
mm and the longitudinal development of hadronic showers using 20 { 300 GeV pion beams
at an incidence angle of � = 20Æ.

Some useful formulae for the investigation of lateral pro�les have been derived using a
three-exponential form of the marginal density function f(z).

We have obtained for four depth segments and for the entire calorimeter: energy deposi-
tions in towers, E(z); cumulative functions, F (z); underlying radial energy densities, �(r);
the contained fraction of a shower as a function of radius, I(r); the radii of cylinders for a
given shower containment fraction; the fractions of the electromagnetic and hadronic parts
of a shower; di�erential longitudinal energy deposition �E=�x; and a three-dimensional
hadronic shower parametrization.

We have compared our data with those from a conventional iron-scintillator calorimeter,
those from a lead-scintillator �ber calorimeter, and with Monte Carlo calculations. We have
found that there is general reasonable agreement in the behaviour of the Tile calorimeter
radial density functions and those of the lead-scintillating �ber calorimeter; that the longi-
tudinal pro�le agrees with that of a conventional iron-scintillator calorimeter and the Monte
Carlo predictions; that the value at 100 GeV of the calculated fraction of energy going into �0

production in a hadronic shower, f�0 , agrees with the Groom and Wigmans parametrizations
and with some of the Monte Carlo predictions.

The three-dimensional parametrization of hadronic showers that we obtained allows direct
use in any application that requires volume integration of shower energy depositions and
position reconstruction. The experimental data on the transverse and longitudinal pro�les,
the radial energy densities and the three-dimensional hadronic shower parametrization are
useful for understanding the performance of the Tile calorimeter, but might �nd broader
application in Monte Carlo modeling of hadronic showers, in particular in fast simulations,
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and for future calorimeter design.
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Table 1: The parameters ai and �i obtained by �tting the transverse shower pro�les for
four depth segments and the entire calorimeter at 100 GeV.

Depth x (�Fe� ) a1 �1 (mm) a2 �2 (mm) a3 �3 (mm)

1 0.6 0:88 � 0:07 17 � 2 0:12 � 0:07 48 � 14 0:004 � 0:002 430 � 240
2 2.0 0:79 � 0:06 25 � 2 0:20 � 0:06 52 � 6 0:014 � 0:006 220 � 40
3 3.8 0:69 � 0:03 32 � 8 0:28 � 0:03 71 � 13 0:029 � 0:005 280 � 30
4 6.0 0:41 � 0:05 51 � 10 0:52 � 0:06 73 � 18 0:07� 0:03 380 � 140

all four 0:78 � 0:08 23 � 1 0:20 � 0:08 58 � 4 0:015 � 0:004 290 � 40

Table 2: The values of the parameters �i, �i, 
i and Æi.

�i �i (1=��) 
i (mm) Æi (mm=��)

a1 0:99 � 0:06 �0:088 � 0:015 �1 13 � 2 6 � 1
a2 0:04 � 0:06 0:071 � 0:015 �2 42 � 10 6 � 4
a3 �0:001� 0:002 0:008 � 0:002 �3 170 � 80 29 � 23
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Table 3: The radii of cylinders for the given shower containment at 100 GeV.

x (�Fe� ) r (�eff� )
90% 95% 99%

0.6 0.44 0.64 1.43
2.0 0.60 0.88 1.55
3.8 0.92 1.27 1.75
6.0 1.24 1.55 1.87

all four 0.72 1.04 1.67

Table 4: Average energy shower depositions at various depth segments at 100 GeV.

x (�Fe� ) �x (�Fe� ) E0 (GeV) �E=�x (GeV/�Fe� )

0.6 1.2 25.0�0.3 20.8�0.3
2.0 1.6 42.8�0.2 26.8�0.1
3.8 2.0 22.0�0.1 11.0�0.1
6.0 2.4 8.4�0.5 3.4�0.2
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Figure 1: Conceptual design of a Tile calorimeter module.
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Figure 2: Schematic layout of the experimental setup. S1 { S3 are beam trigger scintillators,
and BC1 { BC2 are (Z,Y) proportional chambers.
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Figure 3: Energy depositions of 100 GeV pions in towers of depth segments 1 { 4 as a
function of the z coordinate: top left is for depth segment 1, top right is for depth segment
2, bottom left is for depth segment 3, bottom right is for depth segment 4. Only statistical
errors are shown. Curves are �ts of equations (12) and (13) to the data.
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Figure 4: Energy depositions in towers, summed over all calorimeter depth segments, as a
function of the z coordinate. Only statistical errors are shown. The curve is the result of
the �t by formulas (12) and (13).
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Figure 5: Schematic layout (top view) of Tile calorimeter experimental setup. z1 { z4 are
the distances between the centre of towers (for the four depth segments) and the direction
of the beam particle.
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Figure 6: The calculated marginal density function f(z) (the solid line) and the energy depo-
sition function, E(z)=h, for various transverse sizes of a tower (h) : 50 mm (the dash-dotted
line), 200 mm (the dashed line), 300 mm (the thick dotted line), 800 mm (the thin dotted
line). The parameters for the entire calorimeter (see Table 1) are used in the calculations.
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Figure 8: X dependences of the parameters �i: the triangles are the �1 parameter, the
diamonds are the �2, the squares are the �3.
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Figure 9: Cumulative functions F (z) for depth segments 1 { 4 as a function of the z
coordinate: top left is for depth segment 1, top right is for depth segment 2, bottom left is
for depth segment 3, bottom right is for depth segment 4. Statistical and systematic errors,
summed in quadrature, are shown. Curves are �ts of equations (16) and (17) to the data.
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Figure 10: The cumulative function F (z) for the entire calorimeter as a function of the z
coordinate. Only statistical errors are shown. Curves are �ts of equations (16) and (17) to
the data.
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Figure 11: Radial energy density, �(r), as a function of r for Tile calorimeter for depth
segments 1 { 4: top left is for depth segment 1, top right is for depth segment 2, bottom left
is for depth segment 3, bottom right is for depth segment 4. The solid lines are the energy
densities �(r), the dashed lines are the contribution from the �rst term from equation (11),
the dash-dotted lines are the contribution from the second term, the dotted lines are the
contribution from the third term.
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Figure 12: The radial energy density as a function of r (in units of �eff� ) for Tile calorimeter
(the solid line), the contribution to �(r) from the �rst term in equation (11) (the dashed
line), the contribution to �(r) from the second term (the dash-dotted line), the contribution
to �(r) from the third term (the dotted line).
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Figure 13: Comparison of the radial energy densities as a function of r (in units of �eff� )
for Tile calorimeter (the solid line) and lead-scintillating �ber calorimeter (the dash-dotted
line).
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Figure 14: Containment of shower I(r) (the solid line) as a function of radius for the entire
Tile calorimeter. The dash-dotted line is the contribution from the �rst depth segment, the
dashed line is the contribution from the second depth segment, the thin dotted line is the
contribution from the third depth segment, the thick dotted line is the contribution from
the fourth depth segment.
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Figure 15: The radii of cylinders for the given shower containment as a function of depths:
the black circles are 90% of containment, the black squares are 95%, the black triangles are
99%.
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Figure 16: The longitudinal pro�le (circles) of the hadronic shower at 100 GeV as a function
of the longitudinal coordinate x in units of �Fe� . Open triangles are data from the calorimeter
of Ref. [27], diamonds are the Monte Carlo (GEANT-FLUKA) predictions. The dash-dotted
line is the �t by function (23), the solid line is calculated with function (24) with parameters
from Ref. [27], the dashed line is calculated with function (24) with parameters from Ref. [5].
The electromagnetic and hadronic components of the shower (crosses and squares), together
with their �ts using (23), are discussed in Section 9.
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Figure 17: Longitudinal pro�les of the hadronic showers from 20 GeV (open stars), 50 GeV
(open squares) and 100 GeV (open circles) pions as a function of the longitudinal coordinate
x in units of �I for a conventional iron-scintillator calorimeter [27] and of 20 GeV (black
stars), 50 GeV (black squares), 100 GeV (black circles), 150 GeV (black up triangles), 200
GeV (asterisks), 300 GeV (black down triangles) for pions at 20Æ and of 100 GeV (black
circles) for pions at 10Æ for Tile iron-scintillator calorimeter. The solid lines are calculated
with function (24) with parameters from [27]. The dashed lines are calculated with function
(24) with parameters from [5].
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Figure 18: The fraction f�0 in hadronic showers versus the beam energy. The star is our data,
the solid curve is the Groom parametrization, the dashed curve is the Wigmans parametriza-
tion, squares are the GEANT-CALOR predictions, circles are the GEANT-GHEISHA pre-
dictions and crosses are the CALOR predictions.
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Figure 19: The f�0 fractions of hadronic showers as a function of radius. The solid line
is the f�0(r) for the entire Tile calorimeter. The dash-dotted line is the f�0(r) for the �rst
depth segment, the dashed line is the f�0(r) for the second depth segment, the thin dotted
line is the f�0(r) for the third depth segment, the thick dotted line is the f�0(r) for the fourth
depth segment.
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Figure 20: The f�0(x) fractions of hadronic showers as a function of x.
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