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Abstract

Tomographic methods have the potential for useful applica-
tion in beam diagnostics. The tomographic reconstruction
of transverse phase space density from turn-by-turn profile
data has been studied with particular attention to the ef-
fects of dispersion and chromaticity. It is shown that the
modified Algebraic Reconstruction Technique (ART) that
deals successfully with the problem of non-linear motion
in the longitudinal plane cannot, in general, be extended to
cover the transverse case. Instead, an approach is proposed
in which the effect of dispersion is deconvoluted from the
measured profiles before the phase space picture is recon-
structed using either the modified ART algorithm or the in-
verse Radon Transform. This requires an accurate knowl-
edge of the momentum distribution of the beam and the
modified ART reconstruction of longitudinal phase space
density yields just such information. The method has been
tested extensively with simulated data.

1 TOMOGRAPHY ALGORITHMS

1.1 The Inverse Radon Transform

The idea of tomography is to reconstruct a distribution from
a large number of projections taken at different angles.
There are many algorithms for tomographic reconstruction.

The (2D) Radon transform [1]r(s, θ) of a distribution
ρ(x, y) is defined as

r(s, θ) =
∫ ∞

−∞
ρ(s cos θ − u sin θ, s sin θ + u cos θ) du,

(1)
where0 < θ < π. For a givenθ it gives the projection of
ρ(x, y) onto a line through the origin at an angleθ. The
inverse of the Radon transform is

ρ(x, y) =
∫ π

0

r̃(x cos θ + y sin θ, θ) dθ, (2)

wherer̃(s, θ) can be written in terms of the Fourier trans-
form R(ξ, θ) of r(s, θ) as

r̃(s, θ) =
∫ ∞

−∞
|ξ| R(ξ, θ) ei2πξs dξ (3)

which is justr filtered with a filter whose frequency re-
sponse is|ξ|. If a number of projectionsr(si, θj) are
known from measurements, an approximation ofρ(x, y)
can be made using a discrete version of (2). However, since
|ξ| → ∞ in (3), high frequency noise is strongly amplified
and thus, in practice, an additional low-pass filter is needed.
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1.2 The Algebraic Reconstruction Technique

Algebraic Reconstruction Technique (ART) [2] is an itera-
tive method. It exploits the fact that each point in a projec-
tion corresponds to a line in the reconstructed picture. The
projections are thus “back-projected” in such a way that
the value at each point in a projection is distributed along
the corresponding line in the picture. This yields a crude
approximation. The approximation is then projected down
again, and each projection of the approximation is com-
pared to the original projection. The difference between
the two is back-projected again. In this way, the approxi-
mation is improved until it converges, and the iteration is
terminated.

2 TOMOGRAPHY OF TRANSVERSE
PHASE SPACE

2.1 The Problem of Dispersion

If higher order effects are neglected, transverse phase space
density performs a rigid rotation in phase space for each
turn in a circular machine. This is manifest in normalised
phase space, where all particles follow circular trajectories,
rotating at the betatron frequency. Thus, performing a to-
mographic reconstruction from a number of transverse pro-
files where the dispersion is zero is trivial. With a non-zero
dispersion, it is not as obvious. Two possible solutions have
been tested and the results are summarised below.

2.2 Modified ART with Dispersion

Recently, a modified ART algorithm has been used with
great success to reconstruct particle density in longitudi-
nal phase space [3], even when the motion is strongly non-
linear. The algorithm is based on the tracking of test par-
ticles. By changing the tracking routine, the code was
adapted to tackle the transverse case with dispersion. Dis-
persion was included by giving the test particles an extra
degree of freedom (momentum) with a statistical distribu-
tion given by the beam momentum spread, which was as-
sumed to be Gaussian. It was found, however, that this
approach does not work. An ART reconstruction that in-
cludes dispersion in the tracking code cannot resolve de-
tails blurred by dispersion.

2.3 Deconvolution of Dispersive Effects

The dispersive blurring effect can be removed directly from
the individual profiles, knowing that the physical beam pro-
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file is given by the convolution

ρσ(x) =
∫

ρβ(z) · ρD(x − z) dz, (4)

whereρβ(x) is the pure betatronic profile,ρD(x) is the dis-
persive spread andρσ(x) the measured profile. Since the
profiles are measured in discrete points, the discrete equa-
tion

ρσ(xi) =
∑

j

δD(xi−j) · ρβ(xj) (5)

applies, which can be written in matrix form as

ρσ = H · ρβ (6)

whereH is a band matrix constructed fromρD(x). Thus,
the betatronic profileρβ(x) can be recovered by inverting
the matrixH . However, band matrices are known to be nu-
merically ill-conditioned. Therefore, measurement errors
and noise will be strongly amplified. In order to achieve a
useful result, (6) has to be regularized in some way to make
it numerically stable. Several schemes exist. The scheme
which has been mainly used in this work is the so-called
Hunt regularization method [4]. It is an extension of the
well known least squares fit, where an extra term is added
in the minimization function to control the second deriva-
tive of the result. Ifρ̃σ denotes the noisy measured profile,
the deconvolution result is the vectorρ̃β that minimizes the
functional

Jα(ρβ) = (ρ̃σ−H̃ ·ρβ)T (ρ̃σ−H̃ ·ρβ)+α(C ·ρβ)T (C ·ρβ)
(7)

for α > 0. The parameterα is the regularization constant
and the regularization functionC is the matrix of the nu-
meric second derivative

C =




−2 1 0 · · ·
1 −2 1
0 1 −2
...

. . .


 . (8)

The solution to the minimization problem can be written as

ρ̃β = (H̃T · H̃ + αCT · C)−1 · HT · ρ̃σ. (9)

The result is dependent of the value ofα. As a rule of
thumb, its value should be chosen so that

(ρ̃σ−H̃ ·ρ̃β)T (ρ̃σ−H̃ ·ρ̃β) = (ρ̃σ−ρσ)T (ρ̃σ−ρσ), (10)

where the right hand side of the equation is just the rms
error of the measured profiles, which can be estimated.

The Hunt regularization scheme is not the only possible
one. An approximate solution of (6) can also be obtained
for example by using singular value decomposition (SVD)
techniques. The idea is to eliminate very small singular
values from the matrixH before solving the equation by
means of the least squares fit.

When the profiles have been deconvoluted, transverse
phase space can be reconstructed using either ART or the
inverse Radon transform.

2.4 How to Measure the Dispersive Spread?

In order to deconvolute the dispersive effect from the mea-
sured beam profiles, a very accurate measurement of the
momentum distribution is needed. Attempts to use an as-
sumed distribution (ie Gaussian or parabolic) with the right
measured rms width have been made with little success due
to the strong error amplification. However, using tomo-
graphic methods in the longitudinal plane an accurate pic-
ture of the longitudinal phase plane can be obtained. Pro-
jecting onto the energy axis gives the momentum spread.
The expected accuracy, estimated from simulations, is bet-
ter than 1%. The momentum distribution then has to be
scaled by the dispersion at the transverse profile monitor
to obtain the dispersive spread. This has to be done for
each transverse profile, since in particular the dispersion
can vary significantly between the first few turns after in-
jection into a circular machine.

3 SIMULATION RESULTS

3.1 Simulation and Reconstruction Codes

Several pieces of code have been written to test the method.
A simple4D tracking code has been implemented, which
produces both longitudinal and transverse mountain range
data for the reconstructions.

For the longitudinal reconstruction, the code was readily
available and tested [5].

The Hunt deconvolution has been implemented inMath-
ematica, as well as the inverse Radon transform for trans-
verse reconstruction. A modified version of the longitudi-
nal reconstruction code has been produced, which can han-
dle the ART reconstruction in the transverse plane.

It was found that the inverse Radon transform and the
ART code give similar results. However, the results from
the inverse Radon transform tend to be noisier. Therefore,
the ART code has been used mainly, with occasional cross-
checks using the inverse Radon transform. ART also has
the additional advantage that nonlinear transverse beam dy-
namics can be treated, although this has not been done here.

3.2 Reconstructions

For the simulations presented here, a parabolic energy-
phase distribution was used. The momentum spread (2σ)
was roughly1.2 × 10−3, and the dispersion at the profile
measurement device3.0m.

In the transverse plane, a test distribution with a dough-
nut shape was used to check the resolving power of the
method. The distribution is shown in Fig. 1. To simulate
noise and cut the simulation time, an insufficient number
of test particles was used. Ideally, a larger number of parti-
cles should be tracked and noise added afterwards, but for
a proof-of-principle this was considered sufficient.

To show the importance of handling the dispersion prob-
lem, a reconstruction of transverse phase space without
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Figure 1: The test distribution in transverse phase space.
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Figure 2: Reconstruction with ART, using no dispersion
correction.

preceding deconvolution of the measured profiles is shown
in Fig. 2.

With deconvolution of the dispersion effect, the picture
is much more like the original (Fig. 3). Deconvolution us-
ing SVD also works and yields a very similar picture for
the tested distribution.

4 CONCLUDING REMARKS

It has been shown that the transverse phase space distribu-
tion can be reconstructed using tomographic methods, even
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Figure 3: Reconstruction with ART, using dispersion cor-
rection.

in the presence of dispersion. The deconvolution of the dis-
persive effect requires very accurate input data, since any
noise is strongly amplified. The final result depends on the
momentum spread, the dispersion, and the accuracy of the
measurement.

Tests of the method with measured data will be done in
1999, using a SEM-grid in the CERN PS and an OTR (Op-
tical Transition Radiation) screen in the SPS for the acqui-
sition of transverse profiles.
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