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The electrical characteristics of silicon detectors (standard planar 
oat zone and MESA detectors) as a function
of the particle 
uence can be extracted by the application of a model describing the transport of charge carriers
generated in the detectors by ionizing particles. The current pulse response induced by � and � particles in
non-irradiated detectors and detectors irradiated up to 
uences � � 3 � 1014 particles/cm2 is reproduced via this
model: i) by adding a small n-type region 15 �m deep on the p+ side for the detectors at 
uences beyond the n
to p-type inversion and ii) for the MESA detectors, by considering one additional dead layer of 14 �m (observed
experimentally) on each side of the detector, and introducing a second (delayed) component to the current pulse
response. For both types of detectors, the model gives mobilities decreasing linearily up to 
uences of about 5�1013

particles/cm2 and converging, beyond, to saturation values of about 1050 cm2/Vs and 450 cm2/Vs for electrons
and holes, respectively. At a 
uence � � 1014 particles/cm2 (corresponding to about ten years of operation at
the CERN-LHC), charge collection de�cits of about 14% for � particles, 25% for � particles incident on the front
and 35% for � particles incident on the back of the detector are found for both type of detectors.

Introduction

The signal response induced by the transport of
the carriers of the charge generated by an incident
particle in a silicon detector is governed by a set
of basic equations. Solving this set of equations, a
model is obtained from which the electrical char-
acteristics of non-irradiated and irradiated silicon
detectors can be extracted. The model is used
to �t the experimental signal-current pulse re-
sponses (measured as a function of the collection
time) induced by � and � particles in p+�n�n+
silicon detectors. The electrical characteristics
of a p+ � n � n+ detector extracted that way
are the e�ective impurity or dopant concentration
(Neff ), the electron (�e) and hole (�h) mobilities,
and the charge carrier lifetimes (�te, �th).

1. The charge transport model

The electrical characteristics are extracted
from a system of �ve partial di�erential equa-
tions: the current continuity equations for elec-
trons and holes, the Poisson equation (which
determines the electric �eld and considers the
plasma e�ect) and two equations relating the con-

centration of trapped to the untrapped charges.
As no analytical solution can be obtained, the
equations are discretized using Gummel's decou-
pling scheme [1] to obtain a numerical solution [2].
The observed signal (V (t)) is a convolution of the
current (I(t) obtained from Ramo's theorem [3])
produced by all the individual charge carriers and
the response from the system, which is simply an
RC circuit. The response of the system is Gaus-
sian with a characteristic time constant � = RaC,
where C is the capacitance of the detector and
Ra = 50 
 the input impedance of the ampli�er:

I(t) =
18Dat+ r20

wr20
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where n and p are the concentration of electrons
and holes, E the electric �eld, Da the ambipo-
lar di�usion constant, G = 1000 the gain of the
ampli�er, r0 the initial radius of the column of
deposited charge and w the thickness of the de-
tectors. The fact that the drift velocity of the
charge carrier reaches a saturation value vs for
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Table 1
Characteristics of the detectors. The detectors were irradiated by step of 
uence up to 9:92 � 1013 n/cm2

for M4, 7:48 �1013 p/cm2 for M18, M25, M35, and up to 28:7 �1013 p/cm2 for P44, P86, P88, P135, P189,
P300 and P304. Detectors M49, M50 and M53 were not irradiated

Detector Process Current Thickness Neff (� = 0) Resistivity Maximum
pulse source (�m) (1011 cm�3) k
� cm 
uence (cm�2)

M4 SPFZ � 317 -3.4 12.2 9:92 � 1013 n
M18 SPFZ �,� 309 -4.1 11. 7:48 � 1013 p
M25 SPFZ �,� 308 -2.1 23. 7:48 � 1013 p
M35 SPFZ � 508 -1.7 24. 7:48 � 1013 p
M49 SPFZ � 301 -4.7 8.9 -
M50 SPFZ � 471 -1.8 22.8 -
M53 SPFZ � 223 -5.4 7.7 -
P44 MESA �,� 306 -18 2. 28:7 � 1013 p
P86 SPFZ �,� 290 -21 2.5 28:7 � 1013 p
P88 SPFZ �,� 290 -19 2.5 28:7 � 1013 p
P135 MESA �,� 308 -17 2. 28:7 � 1013 p
P189 SPFZ �,� 294 -21 2.5 28:7 � 1013 p
P300 MESA �,� 303 -6 6. 28:7 � 1013 p
P304 SPFZ �,� 320 -6 6. 28:7 � 1013 p

electric �eld values around 104 V/cm has been
taken into account [2], as well as the dependence
on the temperature and dopant concentrations
via the empirical equation:

�(T;Neff ) = �min +
�0
�

T
300

�� � �min

1 +
�

T
300

�� �Neff

Nref

�� (3)

where the values used for the electrons (holes) are:
�min = 55.24 (49.7) cm2/Vs, Nref = 1:072 � 1017
(1:606 � 1017) dopants/cm3, � = -2.3 (-2.2), � =
-3.8 (-3.7), � = 0.73 (0.70), T is the temperature
in Kelvin and �0 is the mobility at T = 300 K.
The quantities of interest are extracted by us-

ing the code MINUIT [4] to minimize the �2 ob-
tained from �tting the numerical solutions found
for V(t) to the measured current pulse response
induced by � and � particles.
The current pulses were induced by electrons

from a 106Ru source with an energy > 2 MeV,
selected by an external trigger, and � particles
from a 241Am source with an energy of 5.49 MeV.
The current pulses are detected by a fast current
ampli�er and recorded by a digital oscilloscope
used in averaging mode, to improve the signal-
to-noise ratio. The detectors used in the present

work are listed in Table 1 with their thickness and
resistivity before irradiation.

2. Non-irradiated detectors

Figure 1 gives a representation of a standard
planar 
oat zone (SPFZ) detector. The p+ and
n+ regions are neglected. Fits of the charge trans-
port model to the current pulses induced by � and
�-particles in non-irradiated SPFZ detectors are
shown in Fig. 2. The model reproduces well the
shape of the measured current pulses.

n+ p+n
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e
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X

Figure 1. Schematic representation of a SPFZ
detector.

The schematic representation of a MESA de-
tector is shown in Fig. 3. We start with a MESA
detector of thickness w, of which a thickness xdead
is considered dead on each side, thus the active
thickness of the detector is w0 = w � 2 � xdead.



3

-12

-10

-8

-6

-4

-2

0

0 2 4 6 8 10 12 14 16

Time (ns)

S
ig

na
l (

10
E

-1
 V

ol
t)

-6

-5

-4

-3

-2

-1

0

0 5 10 15 20 25

Time (ns)

S
ig

na
l (

10
E

-1
 V

ol
t)

-25

-20

-15

-10

-5

0

0 5 10 15 20 25 30 35

Time (ns)

S
ig

na
l (

10
E

-3
 V

ol
t)

a) b)

c)

h

e

e

h

h

e

Figure 2. Fits (full line) of the charge transport
model to the current pulse response induced at
� = 0 by � particles incident on the front side
(a), on the back side (b) of detector M25 and by
relativistic electrons on detector M50 (c); A bias
voltage Vb = 160 V is applied in all cases. Elec-
trons (e) and holes (h) contributions are shown.

Indeed, studies of MESA detectors have shown
that a layer of � 14 �m on each side of the
detectors acts as a dead layer [5]. The initial
distribution of charge carriers at time t = 0
over the total thickness w is the same as for a
SPFZ detector, even though only the active re-
gion xdead < x < w � xdead will generate the
signal in a MESA detector.
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X00’ w’

Xdead w-X dead
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Figure 3. Schematic representation of a MESA
detector.

Figure 4a shows that for MESA detectors, the
inclusion of a dead layer (observed experimen-
taly) 14 �m deep on each side of the detector
alone is not enough for the model to reproduce
the current-pulse. The problem is solved by con-
sidering that a fraction (f) of the electron-hole
pairs created in the dead zones becomes active

only at a later time Tlate which gives a second
component (line 2 in Fig. 4b). For � particles
incident on the front (back) side of the detector,
some electrons (holes) will be released near the
front (back), while for � particles a combination
of both cases happens. A very good description of
the measured current-pulse of a MESA detector
is obtained by adding the two components (line 3
in Fig. 4b).
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Figure 4. Current pulse response induced by �

particles incident on the back of a MESA detec-
tor, before (line 1) and after (line 3) the addition
of a second (delayed) component (line 2) at � = 0
and applied voltage Vb = 200 Volts.

Table 2
Mobilities at � = 0 of the SPFZ and MESA de-
tectors as obtained from the model

Detector Process �h �e
(cm2/Vs) (cm2/Vs)

M4 SPFZ 504 � 2 1278 � 15
M18 SPFZ 474 � 2 1236 � 15
M25 SPFZ 476 � 2 1308 � 28
M35 SPFZ 472 � 3 1272 � 5
M49 SPFZ 546 � 11 1266 � 24
M50 SPFZ 529 � 13 1272 � 20
M53 SPFZ 478 � 12 1350 � 20
P44 MESA 455 � 15 1422 � 24
P88 SPFZ 459 � 4 1222 � 20
P135 MESA 472 � 9 1310 � 23
P189 SPFZ 480 � 20 1340 � 27
P300 MESA 469 � 12 1298 � 18
P304 SPFZ 495 � 3 1124 � 22

Table 2 shows the initial mobilities (at � = 0)
of the SPFZ and MESA detectors obtained from
the model. The average mobilities achieved for
electrons and holes are: �e = 1284� 21 cm2/Vs
and �h = 482� 10 cm2/Vs, respectively.
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Figure 5. Fits (full line) of the current pulse response induced by � particles incident on the front side
(�rst row), back side (second row) or from particles � (third row) on the detector M25 for successive
levels of 
uence � from 0 up to 7:48 � 1013 p/cm2 (� in 1013 p/cm2, Vb is the applied voltage in volts).

3. Irradiated detectors

The irradiations of the detectors were per-
formed either at the CERN-PSAIF with � 1 MeV
neutrons, up to a 
uence of 9:92 � 1013 n/cm2 or
at the CERN-PS with 24 GeV/c protons, up to a

uence of 2:87 �1014 p/cm2 (column 7 in Table 1).
As described in [2], in order to �t the data and

to account for the evolution of the electrical char-
acteristic of the detectors with 
uence beyond the
n to p-type inversion, the electric �eld is modi�ed
after inversion by introducing a 15 �m n-type re-
gion near the p+ contact. This concept of double
junction can be also found in [6] and in other ref-
erences contemporary with the present work [7,8].
The evolution of the current pulse response of

a SPFZ detector (M25) with 
uence, as described
by the model, is shown in Fig. 5.

The evolution as a function of 
uence of a
MESA detector (P44) current pulse response ob-
tained by considering one dead layer 14 �m deep
on each side and introducing a second (delayed)
component to the current pulse is shown in Fig. 6.
As it can be seen from Fig.7, the mobilities ob-

tained for SPFZ and MESA detectors are found
to be in very good agreement. For both type
of detectors, the mobility tends, after an initial
decrease, towards the saturation values �sat;e �
1050 cm2/Vs and �sat;h � 450 cm2/Vs for the
electrons and holes for � > 5 �1013 particles/cm2,
respectively. This �gure also shows that the mo-
bility values obtained using either � or � particles
data are in agreement, which provides a consis-
tency check of the model.
The results of the charge transport model �ts

to the experimental data permit the extraction of
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Figure 6. Fits (full line) of the current pulse
response induced by � particles incident on the
front side (a), on the back side (b) and for � par-
ticles (c-f) of MESA detector P44 for successive
levels of 
uence � from 0 up to 2:87 � 1014 p/cm2

(� is in units of 1013 p/cm2, Vb is the applied
voltage in volts).

the value of Neff as a function of the 
uence:

Neff = �Nd exp(�c�) + Na + b�; (4)

where Nd and Na are the concentration of don-
nors and acceptors at � = 0, respectively; b and
c are the acceptor creation and donnor removal
parameters, respectively. By using Eq. (4) to de-
scribe the evolution of Ne� with 
uence, one ob-
tains the results shown in Fig. 8 for the detectors
P44, P88, P189 and P304.
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Figure 7. Evolution of the hole (a) and electron
(b) mobility of SPFZ and MESA detectors as a
function of 
uence, as extracted from the model
using � (front and back) and � particles data.

4. Charge collection e�ciency

A comparison between the results obtained us-
ing the trapping lifetime extracted at a certain

uence, with those obtained if no trapping had
occured, allows the calculation of the charge col-
lection e�ciency (CCE). As it can be seen from
Fig 9a, 9b, for neutron (proton) irradiated SPFZ
detectors, a charge collection de�cit around 12 %
(25 %) is calculated for � particles incident on the
front side and about 18 % (35 %) for � particles
incident on the back side of the detector, for a

uence of � 1014 particles/cm2 . Direct measure-
ments [9] of CCE using � particles from a Th C'
source with an energy of 8.78 MeV on detectors
irradiated up to a 
uence of � 1014 protons/cm2

show a smaller de�cit (� 5 % on the front side
and � 10 % on the back side). Those discrep-
ancies can be explained. First, an � particle of
5 (8.78) MeV has a range of � 25 (57) microns
in silicon, most of the energy being deposited to-
ward the end of the path. We can assume that
most electron-hole pairs are created around 20
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Figure 8. Evolution of the e�ective concentration
of dopants as a function of 
uence for the MESA
detector P44 and the SPFZ detectors P88, P189
and P304.

(50) microns from the surface. Thus, for a typical
detector of 300 microns, the charge carriers gen-
erated by � particles from an 241Am source will
experience more trapping as they spend � 15%
more time in the detector than those generated
by � particles from a Th C' source. Secondly,
the setup used with the Th C' source in ref. [9]
had a shaping time (1 �s) larger than the shap-
ing time (100 ns) used with the present 241Am
source setup. A large shaping time means that
the trapped charges are more likely to untrap and
thus reduce the observed charge collection de�cit.
For � particles on SPFZ detectors, a collection

de�cit of about 15 % is calculated (Fig. 9c) for a

uence of � 1014 particles/cm2 . For MESA de-
tectors, a collection de�cit of about 13 % and 17
% are calculated (Fig. 9d) for 
uences of � 1 and
3 � 1014 particles/cm2 , respectively. Those results
are in agreement with the 12% de�cit obtained
from direct charge collection e�ciency measure-
ments made with � particles (shaping time of 100
ns) [10] for SPFZ detectors irradiated at 
uences
� 1014 particles/cm2 .

Conclusions

The model describing the transport of the car-
riers of charge generated in silicon detectors by
ionizing particles allows one to reproduce the cur-
rent pulse response of non-irradiated and irradi-
ated SPFZ and MESA detectors induced by �

and � particles up to 
uences around n to p-type
inversion using a simple p+�n�n+ detector. Be-
yond inversion a small n-type region 15 �m deep
is introduced on the p+ side of the detector. The

75

80

85

90

95

100

0 20 40 60 80 100

M4 (n)

M18 (p)

M25 (p)

Φ (1012 particles cm-2)

C
C

E
 (

%
) 

α 
fr

on
t (

S
P

F
Z

)

60

65

70

75

80

85

90

95

100

0 20 40 60 80 100

M4 (n)

M18 (p)

M25 (p)

Φ (1012 particles cm-2)

C
C

E
 (

%
) 

α 
ba

ck
 (

S
P

F
Z

)

80

85

90

95

100

0 20 40 60 80 100

M4 (n)

M18 (p)

M25 (p)

Φ (1012 particles cm-2)

C
C

E
 (

%
) 

β 
(S

P
F

Z
)

80

85

90

95

100

0 10 20 30

P44

P135

P300

Φ (1013 p cm-2)

C
C

E
 (

%
) 

β 
(M

E
S

A
)

a) b)

c) d)

Figure 9. Charge collection e�ciency as a func-
tion of 
uence using: a) � particles incident on
the front (SPFZ), b) � particles incident on the
back (SPFZ), c) � particles (SPFZ) and d) � par-
ticles (MESA).

introduction of this region modi�es the electric
�eld after inversion and permits the charge carri-
ers transport model to reproduce the experimen-
tal data up to 
uences of 3 � 1014 particles/cm2.
For MESA detector, a dead layer of 14 �m (ob-
served experimentaly) on each side of the detector
is introduced, and a second (delayed) component
is added to the current pulse response.
This model gives mobilities for SPFZ and

MESA detectors in good agreement. The mo-
bilities are found to be decreasing linearily up to

uences of around 5 � 1013 particles/cm2 and be-
yond, converging to saturation values of about
1050 cm2/Vs and 450 cm2/Vs for electrons and
holes, respectively.
At a 
uence � � 1014 particles/cm2 , the charge

carrier lifetime degradation due to trapping with
increased 
uence is responsible for a charge col-
lection de�cit of about 14% for � particles, 25 %
for � particles incident on the front side and 35 %
for � particles incident on the back side of SPFZ
and MESA detectors, which is in agreement with
direct measurements.
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