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1 Introduction

The phenomenological interest of prompt-photon production in fixed-target experiments [1, 2, 3]
resides mainly in its use as a gluon probe in structure-function studies. Prompt-photon production
is historically our main source of information on the gluon parton density at large x (e.g. x >
0.2) [4, 5, 6, 7, 8], a region which has very little influence on the evolution of the deep-inelastic-
scattering structure functions. This same region is relevant for hadron colliders in production
phenomena at very large transverse momenta, and thus its understanding is crucial in order to
disentangle possible new physics signals from the QCD background.

For example, a particularly interesting problem has emerged in the past few years in the pro-
duction of large-transverse-energy (ET ) jets at the Tevatron. An excess over the QCD prediction
has been reported by the CDF collaboration [9], for jets with ET & 350 GeV. While the excess has
not been confirmed by the D∅ data [10], it is of interest to study the uncertainty in the high-ET

tail of the jet distribution due to the gluon density systematics, to see whether there is room
for deviations as large as those detected by CDF. For example, a suitable modification of the
gluon density at large x has been proposed (CTEQ4HJ [11]), which is consistent with the excess
observed by CDF. The study of the recent E706 prompt-photon data [2], however, suggests that
a consistent fit of the large-xT (xT ≡ 2ET /

√
S) rate is incompatible with the CTEQ4HJ gluon

density [2]. Moreover, both jet cross sections and direct-photon cross sections at high transverse
energy are affected by soft-gluon effects. These effects should be understood in both cases in order
to be able to claim a discrepancy with QCD predictions. In particular, these effects can be very
important in the direct-photon case, since the typical ET values probed are much smaller than in
the case of jet production at the Tevatron and, therefore, the size of the running coupling αs at
the relevant scales is bigger.

Comparisons between theory and prompt-photon experimental results have been carried out
recently in Refs. [5, 6, 12, 13]. The recent E706 data [2] seem to differ most from the next-
to-leading order calculation, over the whole xT range. In Refs. [2, 12, 6], an attempt is made
to fit the E706 data by introducing an intrinsic transverse momentum of the incoming partons
with 〈k2

T 〉 ≈ 1.2 ∼ 1.4 GeV2. The precise details of how the intrinsic kT is incorporated in the
calculations, however, can significantly affect the impact of these corrections, as shown by the
large variations reported in Ref. [12].

The use of an intrinsic-transverse-momentum model is sometimes motivated as a way of es-
timating the effects of soft-gluon emission. The most prominent effect of soft-gluon emission in
Drell-Yan pair production is the generation of the characteristic transverse-momentum spectrum
of the lepton pair. This can be modeled with an appropriate intrinsic transverse momentum of the
incoming partons. As a matter of fact, the formalism for soft-gluon resummation in Drell-Yan pair
production can be shown to merge, at very small transverse momenta, into some non-perturbative
intrinsic transverse momentum of the partons inside the hadron [14]. While this approach is not
unreasonable when one considers the transverse momentum of the produced pair, it can however
lead to inconsistencies for the problem of single-photon production. In fact, for example, it is
quite clear that the photon xT spectrum at large xT explores the kinematic region of x → 1 in
the parton densities, which is certainly not the case for the transverse-momentum distribution of
a Drell-Yan pair. Thus, as of now, a method for the inclusion of non-perturbative effects in the
resummed formulae for the high-xT limit of the inclusive photon cross section is not available.
Furthermore, in the opposite limit of small xT , it is the multiple emission of hard (rather than
soft) gluons that leads to a sizeable perturbative broadening of the transverse momenta of the
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incoming partons [15, 16].

In this work, we consider the effect of soft-gluon resummation in prompt-photon production
near the threshold limit, that is to say for xT → 1. The theoretical evaluation of these effects, at
the next-to-leading logarithmic accuracy, has been carried out independently in Refs. [17] and [18].
We shall review in the next section the necessary formalism, using the language of Ref. [18]. In
the rest of the paper, we will present its phenomenological applications, and we will thus discuss
its numerical implementation as well as its impact on physical cross sections.

As is well known, prompt-photon production takes place both by hard-photon emission from
initial- or final-state quarks (direct component), and by collinear radiation from final-state partons.
This last mechanism is not fully calculable in perturbation theory and, in fact, it depends upon the
photon fragmentation function. Because of the large suppression of the fragmentation function at
large momentum fractions z, it is usually believed that this contribution becomes irrelevant when
xT increases. Contrary to common wisdom, we shall instead show that the very-large-xT behaviour
of the direct and of the fragmentation production processes is the same if the incoming hadrons
do not contain valence antiquarks, as in the case of pN collisions. Under these circumstances,
resummation should therefore be performed for the fragmentation emission too. We will show,
however, that in the cases of practical interest the corrections due to the fragmentation processes
are small, and we shall limit our considerations to the hard-photon part.

The plan of the paper is as follows. In Section 2 we review the formalism for the resummation
of threshold effects, and the main formulas valid for the specific case of prompt-photon produc-
tion. There we also recall the main issues related to the inversion of the resummed expressions
from Mellin space back to the physical x space. In Section 3 we study numerically the impact of
the resummation corrections. We explore the effects both at the parton and hadron level, con-
sidering kinematical configurations and distributions of phenomenological relevance for current
experiments. In particular, we concentrate on the study of the size of the resummation correc-
tions, and of the residual dependence on the choice of renormalization and factorization scales.
Section 4 contains a comparison between our results and the data from some recent experiments.
This does not want to be a comprehensive phenomenological study, but a preliminary analysis of
the impact of our results on the comparison of theory and data. Our conclusions, and the outlook
for future progress, are given in Section 5. An Appendix collects some details of the resummation
formulas.

2 Theoretical framework and notation

2.1 Kinematics and cross section

We consider the inclusive production of a single prompt photon in hadron collisions:

H1(P1) + H2(P2) → γ(p) + X . (1)

The colliding hadrons H1 and H2 carry momenta P ν
1 and P ν

2 , respectively. We parametrize the
momenta in terms of light-cone coordinates:

P ν = (P+,PT , P−) , P± ≡ 1√
2

(P 0 ± P 3) . (2)
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In their centre-of-mass frame, using massless kinematics, the momenta of the colliding hadrons
have the following light-cone coordinates

P ν
1 =

√

S

2
(1, 0, 0) , P ν

2 =

√

S

2
(0, 0, 1) , (3)

where S = (P1 + P2)
2 is the centre-of-mass energy squared. The photon momentum p is thus

parametrized as

pν =

(

ET√
2

ey,ET ,
ET√

2
e−y

)

, (4)

where ET and y are the transverse energy and the rapidity, respectively. We also introduce the
customary scaling variable xT (0 ≤ xT ≤ 1):

xT =
2 ET√

S
. (5)

In the present paper we are mostly interested in the prompt-photon production cross section
integrated over y at fixed ET . According to perturbative QCD, the cross section is given by the
following factorization formula

dσγ(xT , ET )

dET

=
1

E3
T

∑

a,b

∫ 1

0

dx1 fa/H1
(x1, µ

2
F )

∫ 1

0

dx2 fb/H2
(x2, µ

2
F )

×
∫ 1

0

dx

{

δ

(

x − xT√
x1x2

)

σ̂ab→γ(x, αs(µ
2); E2

T , µ2, µ2
F , µ2

f) (6)

+
∑

c

∫ 1

0

dz z2 dc/γ(z, µ
2
f) δ

(

x − xT

z
√

x1x2

)

σ̂ab→c(x, αs(µ
2); E2

T , µ2, µ2
F , µ2

f)

}

.

where a, b, c denotes the parton indices (a = q, q̄, g), and fa/H1
(x1, µ

2
F ) and fb/H2

(x1, µ
2
F ) are the

parton densities of the colliding hadrons, evaluated at the factorization scale µF . The first and
the second term in the curly bracket on the right-hand side of Eq. (6) represent the direct and
the fragmentation component of the cross section, respectively. The fragmentation component
involves the parton fragmentation function dc/γ(z, µ

2
f) of the observed photon at the factorization

scale µf , which, in general, differs from the scale µF of the parton densities.

The rescaled4 partonic cross sections σ̂ab→γ and σ̂ab→c in Eq. (6) are computable in QCD
perturbation theory as power series expansions in the running coupling αs(µ

2), µ being the renor-
malization scale in the MS renormalization scheme:

σ̂ab→γ(x, αs(µ
2); E2

T , µ2, µ2
F , µ2

f) = α αs(µ
2)

[

σ̂
(0)
ab→dγ(x) +

∞
∑

n=1

αn
s (µ2) σ̂

(n)
ab→γ(x; E2

T , µ2, µ2
F , µ2

f)

]

,

(7)

σ̂ab→c(x, αs(µ
2); E2

T , µ2, µ2
F , µ2

f) = α2
s(µ

2)

[

σ̂
(0)
ab→dc(x) +

∞
∑

n=1

αn
s (µ2) σ̂

(n)
ab→c(x; E2

T , µ2, µ2
F , µ2

f)

]

. (8)

Note that the ratio between the direct and the fragmentation terms in Eqs. (7) and (8) is of the
order of α/αs, where α is the fine structure constant. This ratio is compensated by the photon-
fragmentation function dc/γ, which (at least formally) is of the order of α/αs, so that direct and
fragmentation components equally contribute to Eq. (6).

4These functions are related to the partonic differential cross sections by σ̂ab→i = E3

T
dσ̂ab→i/dET (i = γ, c).
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Figure 1: Behaviour of the LO and NLO terms σ̂
(0)
ab→dγ and σ̂

(1)
ab→γ (see Eq. (7)) of the

direct component of the prompt-photon cross-section. The contributions of the partonic
channels ab = qq̄ (left) and ab = qg (right) are rescaled by the factor (1−x2) and plotted
as a function of x. The renormalization, factorization and fragmentation scales are all set
equal to µ2 = 2E2

T , and eq = 1.

Throughout the paper we always use parton densities and parton fragmentation functions as
defined in the MS factorization scheme. In general, we consider different values for the renormal-
ization and factorization scales µ, µF , µf , although we always assume that all of them are of the
order of the photon transverse energy ET .

The LO terms σ̂
(0)
ab→dγ in Eq. (7) are due to the following parton-scattering subprocesses at the

tree-level
q + q̄ → g + γ , q + g → q + γ , q̄ + g → q̄ + γ . (9)

Using our normalization, the two independent (non-vanishing) partonic cross sections for the direct
component are:

σ̂
(0)
qq̄→gγ(x) = π e2

q

CF

Nc

x2

√
1 − x2

(

2 − x2
)

(10)

σ̂(0)
qg→qγ(x) = σ̂

(0)
q̄g→q̄γ(x) = π e2

q

1

2Nc

x2

√
1 − x2

(

1 +
x2

4

)

, (11)

where eq is the quark electric charge. Note that, having integrated over the photon pseudorapidity,
the expressions (10) and (11) are even functions of the photon transverse energy ET , i.e. they

depend on x2 rather than on x. The NLO terms σ̂
(1)
ab→γ in Eq. (7) were first computed in Ref. [20].

The partonic contributions σ̂ab→c to the fragmentation component of the cross section are
exactly equal to those of the single-hadron inclusive distribution. Note that, unlike in the case
of the direct component, all the parton-parton scattering subprocesses ab → c (i.e. including
ab = qq, gg) contribute to the fragmentation component already at LO. The explicit calculation
of σ̂ab→c up to NLO was performed in Ref. [21].

The behaviour of the LO and NLO perturbative contributions to the direct component of the
prompt-photon cross section is shown in Fig. 1.
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The LO terms σ̂
(0)
qq̄→gγ(x) and σ̂

(0)
qg→qγ(x) are both singular when x → 1:

σ̂
(0)
ab→dγ(x) ∼ 1√

1 − x2
, (x → 1) , (12)

and they both vanish in the high-energy limit x → 0. The integrable singularity in Eq. (12) is
a typical phase-space effect, while the vanishing behaviour at small-x is due to the dominance of
fermion (i.e. spin 1/2) exchange in the t-channel.

Two new dynamical features appear at NLO. Near the threshold region x → 1, the NLO
contributions are double-logarithmically enhanced,

σ̂(1)(x) ∼ σ̂(0)(x) ln2(1 − x) , (x → 1) , (13)

because the radiation of soft and, possibly, collinear partons is strongly inhibited by the kinematics.
In the high-energy limit x → 0, the partonic cross sections σ̂

(1)
ab→γ(x) approach constant values [16]:

this Regge plateau follows from the fact that at NLO single-gluon (i.e. spin 1) t-channel exchange

affects all the partonic subprocesses. The behaviour of the partonic contributions σ̂
(1)
ab→γ(x) in the

remaining intermediate region of x has no straightforward physical interpretation (e.g. σ̂
(1)
qg→γ(x)

even becomes negative) because it strongly depends on the scale-dependent corrections already
subtracted in the definition of the parton densities and parton fragmentation functions.

Higher-order perturbative QCD corrections in the small-xT regime can systematically be com-
puted by using the k⊥-factorization approach [15], which consistently takes into account the per-

turbative broadening of the transverse momenta of the incoming partons.

We are interested in this work in the behaviour of the QCD corrections near the partonic-
threshold region x → 1, i.e. when the transverse energy ET of the photon approaches the partonic
centre-of-mass energy

√
x1x2S. In this region, the singularities in Eqs. (12, 13) are enhanced

by double-logarithmic corrections due to soft-gluon radiation and the higher-order cross section
contributions in Eqs. (7, 8) behave as

σ̂(n)(x) ∼ σ̂(0)(x)
[

an,2n ln2n(1 − x) + an,2n−1 ln2n−1(1 − x) + . . .
]

. (14)

Resummation of these soft-gluon effects to all orders in perturbation theory can be important to
improve the reliability of the QCD predictions.

2.2 N-moment space

The resummation program of soft-gluon contributions has to be carried out [22, 23, 24] in the
Mellin-transform space, or N -space. Working in N -space, we can disentangle the soft-gluon ef-
fects in the parton densities from those in the partonic cross section and we can straightforwardly
implement and factorize the kinematic constraints of energy and longitudinal-momentum conser-
vation.

The latter point is particularly relevant for soft-gluon resummation in hadron collisions [19].
Indeed, all-order soft-momentum recoil cannot exactly be taken into account by directly working
in x-space and the ensuing kinematics approximation leads to (same-sign) factorially growing co-
efficients. This implies [19] that no resummed logarithmic hierarchy can consistently be defined in
x-space (the classes of leading logs ln2n(1 − x), next-to-leading logs ln2n−1(1 − x) and so forth in
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Eq. (14) are not separately summable, because they lead to divergent and not integrable contri-
butions at x = 1). On the contrary, no kinematics approximation (in the soft limit) is required in
N -space and the corresponding logarithmic hierarchy of lnN -contributions is systematically well
defined.

To work in N -space, it is convenient to consider the Mellin transform σγ, N(ET ) of the dimen-
sionless hadronic distribution E3

T dσγ(xT , ET )/dET . The N -moments with respect to x2
T and at

fixed ET are thus defined as follows:

σγ, N(ET ) ≡
∫ 1

0

dx2
T (x2

T )N−1 E3
T

dσγ(xT , ET )

dET

. (15)

In N -moment space, Eq. (6) takes a simple factorized form

σγ, N (ET ) =
∑

a,b

fa/H1, N+1(µ
2
F ) fb/H2, N+1(µ

2
F )

×
{

σ̂ab→γ, N(αs(µ
2); E2

T , µ2, µ2
F , µ2

f) (16)

+
∑

c

σ̂ab→c, N(αs(µ
2); E2

T , µ2, µ2
F , µ2

f) dc/γ, 2N+3(µ
2
f)

}

,

where we have introduced the customary N -moments fa/H, N and da/γ, N of the parton densities
and parton fragmentation functions:

fa/H, N(µ2) ≡
∫ 1

0

dx xN−1 fa/H(x, µ2) , (17)

da/γ, N(µ2) ≡
∫ 1

0

dz zN−1 da/γ(z, µ
2) . (18)

Note that the N -moments of the partonic cross sections in Eq. (16) are again defined with respect
to x2

T :

σ̂ab→γ, N(αs(µ
2); E2

T , µ2, µ2
F , µ2

f) ≡
∫ 1

0

dx2 (x2)N−1 σ̂ab→γ(x, αs(µ
2); E2

T , µ2, µ2
F , µ2

f) . (19)

The explicit expressions of the N -moments σ̂
(0)
qq̄→gγ, N , σ̂

(0)
qg→qγ, N of the LO contributions in Eqs. (10)

and (11) were obtained in Ref. [18] and are recalled in Appendix A.

Note also the pattern of moment indices in the various factors of Eq. (16), that is, fa/H, N+1

for the parton densities and dc/γ, 2N+3 for the parton fragmentation functions. This non-trivial
pattern follows from the conservation of the longitudinal and transverse momenta.

The threshold region xT → 1 corresponds to the limit N → ∞ in N -moment space. In this
limit, the soft-gluon corrections (14) to the higher-order contributions of the partonic cross sections
become

σ̂
(n)
N ∼ σ̂

(0)
N

[

cn,2n ln2n N + cn,2n−1 ln2n−1 N + . . .
]

. (20)

The resummation of the soft-gluon logarithmic corrections to all orders in perturbation theory
has been considered in Refs. [18] and [17]. In the following section we recall the main results.
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2.3 Soft-gluon resummation at high ET

In Ref. [18] soft-gluon resummation has been performed in detail for the various partonic channels
that contribute to the direct component of the prompt-photon cross section σγ, N(ET ) in Eq. (16).

We discuss first the large-N behaviour of the partonic cross sections σ̂ab→γ, N for the partonic
channels ab = qq̄, qg, q̄g that start to contribute at LO. These cross sections can be written as

σ̂ab→γ, N = σ̂
(res)
ab→γ, N [1 + O(αs/N)] , ab = qq̄, qg, q̄g , (21)

where O(αs/N) denotes terms that contribute beyond LO and are furthermore suppressed by a rel-
ative factor O(1/N) at large N . The logarithmically-enhanced soft-gluon corrections are included

in the resummed expressions σ̂
(res)
ab→γ, N and can be factorized with respect to the corresponding LO

cross sections σ̂
(0)
ab→dγ, N . The all-order resummation formulae are

σ̂
(res)
qq̄→γ, N(αs(µ

2); E2
T , µ2, µ2

F , µ2
f) = α αs(µ

2) σ̂
(0)
qq̄→gγ, N Cqq̄→γ(αs(µ

2), Q2/µ2; Q2/µ2
F )

× ∆qq̄→gγ
N+1 (αs(µ

2), Q2/µ2; Q2/µ2
F ) , (22)

σ̂
(res)
qg→γ, N(αs(µ

2); E2
T , µ2, µ2

F , µ2
f) = α αs(µ

2) σ̂
(0)
qg→qγ, N Cqg→γ(αs(µ

2), Q2/µ2; Q2/µ2
F )

× ∆qg→qγ
N+1 (αs(µ

2), Q2/µ2; Q2/µ2
F ) , (23)

σ̂
(res)
q̄g→γ, N(αs(µ

2); E2
T , µ2, µ2

F , µ2
f) = σ̂

(res)
qg→γ, N(αs(µ

2); E2
T , µ2, µ2

F , µ2
f) , (24)

where
Q2 = 2E2

T . (25)

The functions Cab→γ(αs) in Eqs. (22, 23) do not depend on N . Thus, the ln N -dependence of

the resummed cross sections is entirely embodied by the radiative factors ∆ab→dγ
N . They depend on

the flavour of the QCD partons a, b, d involved in the LO hard-scattering subprocess a+ b → d+γ
and can be expressed in an exponential form:

∆ab→dγ
N

(

αs(µ
2),

Q2

µ2
;
Q2

µ2
F

)

= exp
{

ln N g
(1)
ab (b0αs(µ

2) ln N)

+ g
(2)
ab (b0αs(µ

2) lnN, Q2/µ2; Q2/µ2
F ) + O(αs(αs lnN)k)

}

, (26)

where b0 is the first coefficient of the QCD β-function

b0 =
11CA − 4TRNf

12π
. (27)

Note that the functions g(1), g(2) and so forth in the exponent do not depend separately on αs

and ln N . They are functions of the expansion variable λ = b0αs ln N and vanish when λ = 0.
This means that the exponentiation structure in Eq. (26) is not trivial and, in particular, that
all the double logarithmic (DL) terms αn

s cn,2n ln2n N in Eq. (20) are taken into account by simply
exponentiating the lowest-order contribution αsc1,2 ln2 N . The exponentiation in Eq. (26) defines
an improved perturbative expansion in the threshold region. The function lnN g(1) resums all the
leading logarithmic (LL) contributions αn

s lnn+1 N in the exponent, g(2) contains the next-to-leading
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logarithmic (NLL) terms αn
s lnn N , and so forth. Once the functions g(k) have been computed,

we have a systematic perturbative treatment of the region of N where αs ln N ∼< 1, which is much
larger than the domain αs ln2 N ≪ 1 where the fixed-order calculation in αs is reliable.

The LL and NLL functions g(1) and g(2) in Eq. (26) have been explicitly computed in Ref. [18].
The LL functions g(1) are different for the qq̄ and qg partonic channels of Eqs. (22) and (23) but
they can be expressed in terms of parton colour factors and a single (parton-independent) function
h(1):

g
(1)
qq̄ (λ) = (2CF − CA) h(1)(λ) + CA h(1)(λ/2) ,

g(1)
qg (λ) = CA h(1)(λ) + CF h(1)(λ/2) , (28)

with

h(1)(λ) =
1

2πb0λ

[

2λ + (1 − 2λ) ln(1 − 2λ)
]

. (29)

The explicit expressions of the NLL functions g(2) are recalled in Appendix A.

Note that the LL functions g(1) do not depend on the factorization scale µF . This dependence
starts to appear only in the NLL functions g(2). Note also the mismatch between the moment
index of the radiative factor and that of σ̂

(0)
ab→dγ, N in Eqs. (22, 23): the former depends on N + 1,

like the parton densities in Eq. (16). The explicit µF -dependence of g(2) exactly matches the
scale dependence of the parton densities at large values of N . Thus, when (and only when) NLL
resummation is included, we can expect [18, 25] better stabilization of the calculation of the cross
section at large xT with respect to variations of the factorization scale µF (see Sec. 3.2).

The functions Cab→γ(αs) in Eqs. (22, 23) contain all the terms that are constant in the large-N
limit. They are produced by hard virtual contributions and by subdominant (non-logarithmic)
soft corrections to the LO hard-scattering subprocesses. These functions are computable as power
series expansions in αs

Cab→γ(αs(µ
2), Q2/µ2; Q2/µ2

F ) = 1 +

+∞
∑

n=1

(

αs(µ
2)

π

)n

C
(n)
ab→γ(Q

2/µ2; Q2/µ2
F )

= 1 +
αs(µ

2)

π
C

(1)
ab→γ(Q

2/µ2; Q2/µ2
F ) + O(α2

s) . (30)

At present, we know only the first-order constant coefficients C
(1)
qq̄→γ and C

(1)
qg→γ in Eqs. (30, 22, 23).

These coefficients can be extracted [18] from the complete NLO analytic results of Refs. [20, 26, 27].
Their values are recalled in Appendix A.

The inclusion of the N -independent function Cab→γ(αs) in the resummed formulae does not
affect the shape of the cross section near threshold, but improves the soft-gluon resummation by
fixing the overall (perturbative) normalization of the logarithmic radiative factor.

We can explicitly show [18, 25, 28] the theoretical improvement that is obtained by combin-

ing the NLL radiative factor with the first-order coefficient C
(1)
ab→γ. Expanding the resummation

formulae (22, 23) in towers of logarithmic contributions as in Eq. (20), we have

σ̂
(res)
N (αs; E

2
T , µ2, µ2

F ) = α αs σ̂
(0)
N

{

1 +

∞
∑

n=1

αn
s

[

cn,2n ln2n N + cn,2n−1(E
2
T /µ2

F ) ln2n−1 N

+cn,2n−2(E
2
T /µ2

F , E2
T /µ2) ln2n−2 N + O(ln2n−3 N)

]}

, (31)
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where αs = αs(µ
2). The dominant and next-to-dominant coefficients cn,2n and cn,2n−1 are con-

trolled by evaluating the radiative factor to NLL accuracy. When the NLL radiative factor is
supplemented with the coefficient C

(1)
ab→γ , we can correctly control also the coefficients cn,2n−2. In

particular, we can predict [18] the large-N behaviour of the next-to-next-to-leading order (NNLO)

cross sections σ̂
(2)
ab→γ in Eq. (7) up to O(ln N).

Note also that the coefficients cn,2n are scale independent and the coefficients cn,2n−1 depend
on the sole factorization scale µF . In the tower expansion (31), the first terms that explicitly
depend on the renormalization scale µ (and on µF , as well) are those controlled by cn,2n−2. Their

dependence on µ is obtained by combining that of C
(1)
ab→γ(2E

2
T /µ2

F , 2E2
T /µ2) with that of the

radiative factor at NLL order. The inclusion of the first-order constant coefficient C
(1)
ab→γ thus

theoretically stabilizes the resummed partonic cross section at large xT with respect to variations
of the renormalization scale. This scale dependence is numerically studied in Sec. 3.2.

So far we have only considered the near-threshold behaviour of the partonic cross sections
σ̂qq̄→γ, N , σ̂qg→γ, N , σ̂q̄g→γ, N in Eq. (21). The behaviour of other partonic channels ab → γ that
contribute to the direct component of the prompt-photon cross section was discussed in Ref. [18].
It turns out that the partonic channel ab = gg enters the resummed cross section only at next-
to-next-to-leading logarithmic (NNLL) accuracy and that all the other channels are relatively
suppressed in the same way as the correction O(αs/N) on the right-hand side of Eq. (21). Since
we are interested in explicitly performing soft-gluon resummation up to NLL order, we can limit
ourselves to considering the resummed expressions in Eqs. (21)–(24).

Detailed numerical studies of the resummed cross sections are presented in Sec. 3. However,
from the analytical results reviewed in this section, we may already anticipate that soft-gluon
resummation increases the perturbative QCD predictions in the large-xT region. This conclusion
can be argued by a simplified treatment within the DL approximation. To DL accuracy, the
exponent of the radiative factors in Eq. (26) has to be expanded to its first order in αs, and we
obtain

σ̂
(res)
qg→γ, N

σ̂
(0)
qg→qγ, N

≃ exp
{

[2CF + 2CA − CF ]
αs

2π
ln2 N

}

= exp
{

(CF + 2CA)
αs

2π
ln2 N

}

> 1 , (32)

σ̂
(res)
qq̄→γ, N

σ̂
(0)
qq̄→qγ, N

≃ exp
{

[2CF + 2CF − CA]
αs

2π
ln2 N

}

= exp
{

(4CF − CA)
αs

2π
ln2 N

}

> 1 , (33)

σ̂
(res)
qg→γ, N

σ̂
(res)
qq̄→γ, N

≃
σ̂

(0)
qg→qγ, N

σ̂
(0)
qq̄→qγ, N

exp
{

3(CA − CF )
αs

2π
ln2 N

}

>
σ̂

(0)
qg→qγ, N

σ̂
(0)
qq̄→qγ, N

. (34)

For the sake of completeness, in the square bracket on the right-hand side of Eqs. (32) and (33) we
have explicitly separated the positive contributions coming from the initial-state partons and the
negative contribution from the final-state recoil. From these equations we see that the resummed
partonic cross sections σ̂

(res)
qq̄→γ, N and σ̂

(res)
qg→γ, N are both enhanced with respect to their LO approxi-

mations σ̂
(0)
qq̄→gγ, N , σ̂

(0)
qg→qγ, N . Moreover, the enhancement in the qg partonic channel is larger than

that in the qq̄ channel. We refer the reader to Ref. [18] for a discussion on the physical origin of
this behaviour.
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2.4 Fragmentation component

We can now comment on the large-ET behaviour of the fragmentation component of the prompt-
photon cross section, by comparing the direct and fragmentation contributions in Eq. (16).

The partonic cross sections σ̂ab→γ, N and σ̂ab→c, N have the same large-N behaviour, but, owing
to the hard (although collinear) emission always involved in any splitting process c → γ + X, the
photon fragmentation function dc/γ, N is of the order of 1/N . Therefore, in the curly bracket on
the right-hand side of Eq. (16) the fragmentation component is formally suppressed by a factor
of 1/N with respect to the direct component. This suppression is consistent with the fact that
the resummed partonic cross sections for the direct processes (see the right-hand side of Eqs. (22)
and (23)) turn out to be independent of the photon fragmentation scale µf .

This argument shows that, in many cases, the fragmentation contributions are subdominant
near threshold and, thus, they can be neglected in resummed calculations at large xT .

The caveat ‘in many cases’ in the above conclusion regards the fact that the argument applies
to the partonic contributions in the curly bracket of Eq. (16). In other words, the argument
assumes that all the different initial-state partonic channels ab give comparable contributions to
the hadronic cross section. This is not always true once the effect of the parton densities is
included.

A relevant exception is indeed the case of prompt-photon production in proton-nucleon colli-
sions. Owing to the low antiquark content of the colliding hadrons, the hadronic cross section is
mostly due to the partonic channels ab = qg and ab = qq:

σγ, N(ET ) ∼ σqg
γ, N(ET ) + σqq

γ, N(ET ) , (pN collisions) . (35)

As for the qg initial-state contribution σqg
γ, N(ET ), we can use the above argument to conclude that

its direct component dominates at large ET . Setting all the scales equal to ET , for the sake of
simplicity, we can write:

σqg
γ, N(ET ) ∼ σ

qg (dir)
γ, N (ET ) ∼ fq, N+1(E

2
T ) fg, N+1(E

2
T ) σ̂qg→γ, N (αs(E

2
T )) . (36)

However, in the case of the qq initial state, the direct component enters only at NLO and, thus, the
cross section is dominated by the fragmentation part and, in particular, by photon fragmentation
from a final-state quark of the LO scattering subprocess q + q → q + q. We can write:

σqq
γ, N(ET ) ∼ σ

qq (frag)
γ, N (ET ) ∼ fq, N+1(E

2
T ) fq, N+1(E

2
T ) σ̂qq→q, N(αs(E

2
T )) dq/γ, 2N+3(E

2
T ) . (37)

Taking the ratio of the two initial-state contributions and replacing σ̂qq→q, N(αs) and σ̂qg→γ, N(αs)
by their LO contributions σ̂(0) in Eqs. (7, 8), we obtain

σ
qq (frag)
γ, N (ET )

σ
qg (dir)
γ, N (ET )

∼ fq, N+1(E
2
T )

fg, N+1(E2
T )

dq/γ, 2N+3(E
2
T )

αs(E
2
T )

α

σ̂
(0)
qq→qq, N

σ̂
(0)
qg→qγ, N

. (38)

The factor αs/α on the right-hand side is compensated by the behaviour of the photon fragmen-
tation function dq/γ, 2N+3 ∝ α/αs. In the large-N limit, the ratio of the LO partonic contributions
σ̂(0) is constant and, thus, the fragmentation function produces an O(1/N)-suppression factor.
Nonetheless, this suppression can be balanced by the parton density contribution fq, N+1/fg, N+1

since, at large x, the gluon density is typically softer than the quark density. As a matter of
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fact, using the Altarelli-Parisi evolution equation at LO and under reasonable assumptions on the
large-x behaviour of the parton densities at the initial evolution scale, it is easy to show that we
have the following asymptotic behaviour at very large values of N and of the evolution scale:

fg, N ∼ 1

N ln N
fq, N , (39)

dq/γ, N ∼ 1

N lnN

α

αs

. (40)

Combining these results with Eq. (38), in the large-N limit we therefore get

σ
qq (frag)
γ, N (ET )

σ
qg (dir)
γ, N (ET )

N→∞→ constant . (41)

This discussion shows that, in the case of large-xT prompt-photon production in pN colli-
sions, the contribution of the fragmentation component to the hadronic cross section can become
comparable to that of the direct component.

Although on the right-hand side of Eq. (38) we have approximated the partonic contribu-
tion σ̂qq→q, N(αs)/σ̂qg→γ, N(αs) by its LO expansion, the inclusion of higher-order terms and, in
particular, of resummation effects does not substantially modify the conclusion.

Performing soft-gluon resummation in the partonic cross sections σ̂ab→c, N of the fragmentation
component, we can write an expression that is analogous to Eq. (21):

σ̂ab→c, N = σ̂
(res)
ab→c, N [1 + O(αs/N)] . (42)

Limiting our treatment to the LL accuracy, the resummed cross section is given by [18, 17]

σ̂
(res)
ab→c, N(αs(µ

2); E2
T , µ2, µ2

F , µ2
f) ≃ α2

s(µ
2) σ̂

(0)
ab→dc, N ∆ab→dc

N+1 (αs(µ
2), Q2/µ2; Q2/µ2

F , Q2/µ2
f) . (43)

The radiative factor is

∆ab→dc
N

(

αs(µ
2),

Q2

µ2
;
Q2

µ2
F

,
Q2

µ2
f

)

= exp
{

ln N g
(1)
ab→dc(b0αs(µ

2) ln N) + O((αs lnN)k)
}

, (44)

where the LL function g
(1)
ab→dc is analogous to those in Eq. (28) and it can be expressed in terms

of the colour charges Ca (Ca = CF , if the parton a is a quark, and Ca = CA, if a is a gluon) of the
partons involved in the LO hard-scattering subprocess:

g
(1)
ab→dc(λ) = (Ca + Cb + Cc − Cd) h(1)(λ) + Cd h(1)(λ/2) . (45)

In particular, for the q + q → q + q channel we have

g(1)
qq→qq(λ) = 2CF h(1)(λ) + CF h(1)(λ/2) , (46)

which is very similar to g
(1)
qg (λ) in Eq. (28) because 2CF ≃ CA. More precisely, since 2CF =

CA(1 − 1/N2
c ), g

(1)
qq→qq(λ) is slightly smaller than g

(1)
qg (λ) as long as they are evaluated in the

perturbative region λ = b0αs ln N < 1/2.
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We can now come back to the effect of the fragmentation component in pN collisions. Using
the resummed partonic cross sections in Eqs. (23, 43) rather than their LO approximations, the
right-hand side of Eq. (38) has to be multiplied by an additional contribution, as given by the
ratio of the corresponding radiative factors, namely

∆qq→qq
N+1

∆qg→qγ
N+1

≃ exp
{

(CF + 4CF ) αs

2π
ln2 N

}

exp
{

(CF + 2CA) αs

2π
ln2 N

} . (47)

Because of the relation 4CF ≃ 2CA between the colour charges, this factor does not sizeably
differ from unity, as it can be argued by its DL approximation on the right-hand side of Eq. (47)
(see also the comment below Eq. (46)). We have thus shown that, at least at the LL level, soft-
gluon resummation does not enhance the relative importance of the fragmentation component for
prompt-photon production at large xT .

The importance of the fragmentation component in pN collisions mainly depends on the de-
tailed behaviour of the parton densities at large x and on how large are the values of ET of interest.
This issue, as well as the impact of the NLL corrections to the LL results obtained above, require
further studies that will be presented in a future work. As for the present study, we limit ourselves
to perform soft-gluon resummation in the direct component and we check that the fragmentation
component does not sizeably contribute to the hadronic cross section in the actual experimental
configurations investigated in the paper (see Sec. 4).

2.5 Resummed cross section to NLL accuracy

We use soft-gluon resummation to NLL accuracy at the parton level to introduce an improved
prompt-photon cross section σ

(res)
γ, N (ET ) as follows

σ
(res)
γ, N (ET ) =

∑

ab=qq̄, qg ,q̄g

fa/H1, N+1(µ
2
F ) fb/H2, N+1(µ

2
F )

×
[

σ̂
(res)
ab→γ, N(αs(µ

2); E2
T , µ2, µ2

F ) −
(

σ̂
(res)
ab→γ, N(αs(µ

2); E2
T , µ2, µ2

F , )
)

αα2
s

]

+ σ
(NLO)
γ, N (ET ) , (48)

where σ
(NLO)
γ, N is the prompt-photon hadronic cross section at NLO, σ̂

(res)
ab→γ, N is given in Eqs. (22)–

(24) and
(

σ̂
(res)
ab→γ, N

)

αα2
s

represents its perturbative truncation at order αα2
s (i.e. at NLO). Thus,

because of the subtraction in the square bracket on the right-hand side, Eq. (48) exactly reproduces
the NLO results and resums soft-gluon effects beyond O(αα2

s) to NLL accuracy. In general, we

evaluate σ̂
(res)
ab→γ, N using the NLL expression (26) of the radiative factors and including the O(αs)

contribution (30) of the constant factors Cab→γ(αs). This defines our NLO+NLL predictions.

The resummed formulae presented so far are given in N -moment space. To obtain cross sections
in the physical xT -space (i.e. as functions of the centre-of-mass energy), one has to perform the
inverse Mellin transformation:

E3
T

dσ
(res)
γ (xT , ET )

dET
=

1

2πi

∫ CMP+i∞

CMP−i∞

dN x−2N
T σ

(res)
γ, N (ET ) . (49)
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When the N -moments σN are evaluated at a fixed perturbative order in αs, they are analytic
functions in a right half-plane of the complex variable N . In this case, the constant CMP that
defines the integration contour in Eq. (49) has to be chosen in this half-plane, that is, on the right
of all the possible singularities of the N -moments.

An additional complication occurs when the N -moments are computed in resummed pertur-
bation theory. In this case, since the resummed functions g

(1)
ab (λ) in Eq. (28) (as well as the NLL

functions g
(2)
ab ) are singular at λ = 1/2, the soft-gluon factors ∆N (αs(µ

2)) in Eq. (26) have cut
singularities that start at the branch-point N = NL = exp(1/2b0αs). These singularities, which
are related to the divergent behaviour of the perturbative running coupling αs near the Landau
pole, signal the onset of non-perturbative phenomena at very large values of N or, equivalently,
in the region very close to threshold.

The issue of how to deal with the Landau singularity in soft-gluon resummation formulae for
hadronic collisions was discussed in detail in Ref. [19]. In the evaluation of the inverse Mellin
transformation (49) we thus use the Minimal Prescription introduced in Ref. [19]. The constant
CMP is chosen in such a way that all singularities in the integrand are to the left of the inte-
gration contour, except for the Landau singularity at N = NL, that should lie to the far right.
This prescription is consistent [19] with the perturbative content of the soft-gluon resummation
formulae because it converges asymptotically to the perturbative series and it does not introduce
(unjustified) power corrections of non-perturbative origin. These corrections are certainly present
in physical cross-sections, but their effect is not expected to be sizeable as long as ET is sufficiently
perturbative and xT is sufficiently far from the hadronic threshold. Obviously, approaching the
essentially non-perturbative regime ET ∼ 1 GeV, xT → 1, a physically motivated treatment
of non-perturbative effects has to be introduced. In the following sections, we limit ourselves
to presenting numerical and phenomenological results that do not include any non-perturbative
correction.

3 Results

We present in this section some numerical results, to provide an illustration of the size of the
effects considered and to show the improvements obtained with respect to scale variations after
the inclusion of the NLL corrections.

3.1 Parton-level results

We start by discussing the resummation effects at the level of partonic cross sections. The re-
summed partonic cross section can be obtained from Eqs. (48) and (49) by assuming parton-density
functions of the form fa/H(x) = δ(1 − x), and hence fa/H,N = 1 for all complex values of N .

We consider first the O(αα2
s) terms in the expansion of the resummed cross section, in order to

estimate to which accuracy this reproduces the exact NLO results. In Fig. 2 (left) we plot the func-

tion σ̂
(1)
qq̄→γ/E

3
T , defined in Eq. (7), as a function of η = (1−xT )/xT . The exact O(αα2

s) result [20]
is compared with three possible implementations of the resummation procedure, all equivalent at
NLL accuracy. The first case (short-dashed line) corresponds to our default resummed prediction,

as given by Eq. (22). In the second case (dot-dashed line), we set the constant C
(1)
qq̄→γ introduced
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Figure 2: Left (Right): the O(αα2
s) contribution to the partonic prompt-photon cross

section for the process qq̄ → γ+X (qg → γ+X) plotted as a function of η = (1−xT )/xT .
The solid line represents the exact NLO result of Ref. [20]; the short-dashed line is the
O(αα2

s) piece of of the resummed result defined by Eqs. (22) and (23); the dot-dashed line

is obtained from this last result by setting the constant C
(1)
qq̄→γ (C

(1)
qg→γ) to 0; the dashed

line is obtained using Eq. (50) (Eq. (51)), with A = 2. The renormalization, factorization
and fragmentation scales were all set equal to µ2 = 2E2

T , and eq = 1.

in Eq. (30) equal to 0. In the third case, we keep the contribution of the constant C
(1)
qq̄→γ, but

we modify it by a term suppressed by a factor of 1/N , in order to explore the possible effect of
contributions of order 1/N which cannot be taken into account by the soft-gluon resummation.
As a constraint on the form of these corrections, we must impose that no poles appear on the
positive real axis in the N plane (these poles would logarithmically enhance the partonic cross
section when xT → 0). We select a parametrization of the 1/N corrections that allows us to
bracket the exact result at O(αα2

s) :

C
(1)
qq̄→γ → C

(1)
qq̄→γ (1 +

A

N + A − 1
) , (50)

C(1)
qg→γ → C(1)

qg→γ (1 − A

N + A − 1
) , (51)

with A > 0. In our applications we shall consider the two cases with A = 0 (namely no correction
to the Cab→γ term) and A = 2 as a way to establish the size of subleading threshold corrections
beyond the NLL order.

As one can see from Fig. 2, the inclusion of the finite term C
(1)
qq̄→γ is essential to accurately

reproduce shape and normalization of the exact O(αα2
s) result not only near threshold, but below

it as well. The agreement deteriorates unavoidably for η ≫ 1, as, here, terms subleading in 1/N
become important.

Analogous results for the qg channel are given in the right panel of Fig. 2. Note that in both
cases the two choices A = 0 and A = 2 in Eq. (51) bracket the exact result over a large region
of η, and thus provide a good estimator of the subleading terms’ systematics. The choice A = 0,
furthermore, provides a very accurate description up to values of η of the order of 1/10.
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Figure 3: Partonic cross-section for the processes qq̄ → γX (left) and qg → γX (right)
(in pb/GeV, and for ET = 10 GeV). The dotted line is the LO result; the dashed line
is the exact NLO result; the solid (dotdashed) lines correspond to the NLO+NLL result,
with the coefficient A defined in Eq. (50) (left) and in Eq. (51) (right) equal to 0 (2). The

number of flavours Nf was set equal to 4 and we have taken Λ
(4)
QCD = 0.151 GeV.

Figure 4: Same as Fig. 3, for ET = 100 GeV.
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Figure 5: Contribution of gluon resummation at order O(αα3
s) and higher, relative

to the exact NLO result, for photon production via qq̄ (left plot) and qg (right plot)
annihilation, in pN collisions at

√
S = 31.5 GeV (Ebeam = 530 GeV). The solid (dashed)

lines correspond to A = 0 (A = 2). The three sets of curves correspond to the choice of
scale µ = µF = 2ET , ET and ET /2, in descending order, with PDF set CTEQ4M and
Nf = 5.

The fully-resummed parton-level cross sections are shown in Fig. 3 for the qq̄ and qg channels
(left and right panel, respectively), and for ET = 10 GeV (Fig. 4 collects the same results for
ET = 100 GeV). Here and in the following we shall define the resummed cross sections as in
Eq. (48), that is, we substitute their O(αα2

s) terms with the exact NLO result, using the same
choice of renormalization and factorization scales. In this way our results are exact up to (and
including) O(αα2

s), and include the NLL resummation of terms of O(αα3
s) and higher. We compare

the fixed-order results (dashed lines) with the resummed results. For these we provide both the
A = 0 and A = 2 prescriptions. Note that, even at the level of resummed cross sections, the
difference between the A = 0 and A = 2 results are rather small, in particular for the qq̄ channel.

3.2 Hadron-level results

In this section we present some results for the full hadronic cross sections. The main points we
intend to highlight are:

1. the size of the NLL corrections, relative to the NLO contributions;

2. the scale dependence at NLL order.

Our goal here is to explore the pure effects of resummation at higher orders. Therefore we
shall neglect in this section all production channels which are not improved by the resummation
corrections considered in this work. This includes all processes which first appear at O(αα2

s),
such as gg → qq̄γ and qq(′) → qq(′)γ, as well as all contributions proportional to a parton → γ
fragmentation function, as discussed in the previous section. These terms will however be included,
at fixed NLO, in our comparison with experimental data, performed in the next section.

To be more specific, we list here the classes of diagrams included at NLO, in addition to the
LO processes qq̄ → gγ and qg → qγ (the possible replacement of quarks with antiquarks in all
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Figure 6: Same as Fig. 5, for the combined production channels qg + qq̄.

these cases is understood):

qg → qgγ , qq̄ → qq̄γ , qq̄ → q′q̄′γ , qq̄ → ggγ . (52)

For the third set we only include the diagrams proportional to e2
q, since the part of the amplitude

describing the photon emission from the final-state quarks (which is by itself gauge invariant),
cannot be considered as a correction to any tree-level process.

As a default set of parton densities we shall use the CTEQ4M set described in Ref. [29]. For
the purposes of the present study, no significant change is obtained if different sets are used.

Figures 5 and 6 present the ratios:

σres
NLL, qq̄ − σNLO

qq̄

σNLO
qq̄

,
σres

NLL, qg − σNLO
qg

σNLO
qg

,
σres

NLL, (qg+qq̄) − σNLO
(qg+qq̄)

σNLO
(qg+qq̄)

, (53)

where, for simplicity, we indicated here with σ the differential distribution dσ/dET . For each
channel we present the results using both the A = 0 (solid lines) and A = 2 (dashed lines)
prescriptions. We also show the dependence on the choice of renormalization and factorization
scales, which we take equal, and varying within the set µ = µF = (ET /2, ET , 2ET ). In this section
we shall always keep the fragmentation scale µf , necessary for the factorization of the singularities
from final-state collinear photon emission, equal to ET . Note that the size of the resummation
effects is larger for the larger scales, contrary to the behaviour of the scale dependence of the
NLO cross section. This suggests that the scale dependence of the resummed cross section will be
reduced relative to that of the NLO results.

The scale dependence of the resummed cross section (qg + qq̄ contributions), compared to the
NLO one, is given in Fig. 7, for the A = 0 case. The same result for A = 2 is given in the left panel
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Figure 7: Scale dependence of dσ/dET (qg + qq̄ components) for prompt photons in
pN collisions, at ET = 5 GeV, plotted as a function of the proton-beam energy, Ebeam

(the associated values of xT are given on the top scale). The solid lines represent the
exact NLO result for different choices of µ = µF (µ = ET /2 and 2ET ), normalized to
the µ = ET result. The dashed lines represent the NLO+NLL result (with A = 0) for
different choices of µ, normalized to the NLO µ = ET result.

Figure 8: Same as Fig. 7, but with A = 2 (left panel) and with C
(1)
ab→γ = 0 (right panel).
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Channel ET (GeV) ααs αα2
s αα3

s αα4
s αα5

s αα≥6
s

qg (pb/GeV) 5 329 325 126 39 11 6

qq̄ (pb/GeV) 5 47 29 7.3 1.7 0.32 0.053

qg (fb/GeV) 10 19 31 28 20 12 13

qq̄ (fb/GeV) 10 0.83 0.73 0.36 0.15 0.05 0.02

Table 1: Contributions to the prompt-photon rate dσ/dET in pN collisions at Ebeam =
530 GeV, from higher orders in the expansion of the NLL resummed result. Results
for ET = 5 (10) GeV are shown in the first (second) two rows. The renormalization,
factorization and fragmentation scales are set equal to µ = µF = µf = ET , and the PDF
set is CTEQ4M. The αα2

s column gives the exact NLO result.

of Fig. 8. We plot the distributions as a function of the beam energy (Ebeam) for the fixed value
of ET = 5 GeV. Different values of Ebeam, therefore, probe different ranges of xT , as indicated by
the upper labels on the plots.

Note the significant reduction in scale dependence, more marked in the A = 0 case. To display
the importance of the inclusion of the constant C

(1)
ab→γ terms, we show the same scale-dependence

plot with C
(1)
ab→γ = 0 in the right panel of Fig. 8. While the scale sensitivity is slightly worse than

in the cases with C
(1)
ab→γ 6= 0, there is still an important improvement over the NLO behaviour.

Similar results, for ET = 10 GeV, are shown in Figs. 9 and 10. The general features of these
distributions are similar to those of the plots for ET = 5 GeV. Small violations of xT -scaling can
be observed between ET = 5 and 10 GeV, due to the evolution of the coupling constant and of
parton densities.

We also explored the independent renormalization- and factorization-scale dependence of our
calculations. The large size of this dependence at NLO was stressed already in Refs. [5, 13]. The
results, for pN collisions at Ebeam = 5 and 10 GeV, are shown in Figs. 11 and 12, respectively.
With the exception of the renormalization-scale dependence at 5 GeV, a significant improvement
in the stability of the results, relative to the dependence at LO and NLO, is observed in all cases.

The convergence of the higher-order corrections is displayed in Table 1. The last column
includes the sum of all contributions of order αα6

s and higher, performed using the Minimal

Prescription of Eq. (49). The fixed-order terms do not have any ambiguity due to the choice
of the contour for the Mellin transformation in Eq. (49). The contribution from the qq̄ channel
converges very rapidly. In the case of the qg channel the convergence is slower, in particular at
the larger values of xT , but even at ET = 10 GeV the size of the resummed contributions beyond
order αα6

s is only of the order of 10% of the total. This supports the validity of the Minimal

Prescription, since the truncated resummed expansion converges to it very smoothly.
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Figure 9: Scale dependence of dσ/dET (qg + qq̄ components) for prompt photons in
pN collisions, at ET = 10 GeV, plotted as a function of the proton-beam energy, Ebeam

(the associated values of xT are given on the top scale). The solid lines represent the
exact NLO result for different choices of µ = µF (µ = ET /2 and 2ET ), normalized to
the µ = ET result. The dashed lines represent the NLO+NLL result (with A = 0) for
different choices of µ, normalized to the NLO µ = ET result.

Figure 10: Same as Fig. 9, but with with A = 2 (left panel) and with C
(1)
ab→γ = 0 (right

panel).
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Figure 11: Scale dependence of the differential ET distribution in pN collisions, for
ET = 5 GeV. We compare the results at the Born and NLO level with the results of
the resummed calculation. Upper left: renormalization-scale dependence, with the fac-
torization scale fixed to µF = ET . Upper right: factorization-scale dependence, with the
renormalization scale fixed to µ = ET . Lower left: scale dependence, with the renormal-
ization and factorization scales equal.
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Figure 12: Same as Fig. 11, for ET = 10 GeV.
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4 Comparison with current data

We present in this section a comparison between our calculations and the results of the two most
recent measurements of fixed-target direct-photon production. E706 [2] studied photons produced
in pBe collisions at Ebeam = 530 GeV, covering the centre-of-mass rapidity range |y| < 0.755.
The data span the ET region between 3.5 and 11 GeV, approximately. This corresponds to
0.22 < xT < 0.70. UA6 [3] studied photons produced in p̄p collisions at Ebeam = 315 GeV, over the
rapidity range −0.1 < y < 0.9. The ET region extends between 4 and 7 GeV (0.33 < xT < 0.58),
approximately. What follows is not meant to be a systematic phenomenological study, but will
serve as a benchmark to assess the impact of the resummation effects in realistic experimental
conditions. All the calculations in this section have been done assuming µ = µF = µf . For
recent complete studies of all available data, done using the fixed-order NL calculations, see
Refs. [12, 13, 6].

To compare our resummed predictions with actual data, two additional things need to be done:
inclusion of the 1/N -suppressed contributions, and inclusion of realistic experimental cuts.

The class of processes for which we evaluated resummation corrections in section 2 provides
the dominant contribution to the production rate in realistic experimental configurations. On the
left-hand side of Fig. 13 we plot the relative contribution, evaluated at NLO, of the processes with
a qg, qq̄, qq(′) and gg initial state for the E706 experimental configuration. As one can see, the sum
of qg and qq̄ accounts for 90% of the overall rate, independently of ET . On the right-hand side of
Fig. 13 we plot the rate of the direct contributions, relative to the sum of direct and fragmentation,
for each given channel. In the case of the qq(′) and gg channels we compare the absolute values
of the rates, since the direct component is negative after the subtraction of the initial-state mass
singularities. The comparison of the two plots in Fig. 13 shows that the processes for which we are
going to include resummation corrections account at NLO for a fraction of the total rate between
70 and 90%, in the ET range 4–12 GeV. The situation is even better in p̄p collisions (see Fig. 14,
obtained for the UA6 experimental configuration), where the to-be-resummed processes account
for over 90% of the NLO rate.

We therefore expect that the neglect of the resummation corrections to the gg+qq(′) and to the
fragmentation processes is only a minor correction to the overall picture. For the present study, and
in addition to the resummed predictions for the processes listed in Eq. (52), we will therefore only
include the fixed-order NL determination of these remaining components of the direct-photon
production process. The fragmentation processes are evaluated using the NLO single-inclusive
parton ET distributions from [21], convoluted with the GRV photon fragmentation functions [30].
We found very small sensitivity to the choice of the photon fragmentation functions.

As anticipated above, the comparison of our results with actual data requires the inclusion
of realistic detector acceptance cuts. The resummation formalism discussed so far allows the
evaluation of the transverse-energy distributions integrated over the full range of rapidity for
the observed photon. This approximation is technically correct, provided the measurement is
performed within a finite range in rapidity including the value of y = 0 in the collision centre-
of-mass frame. This is because in the large-xT limit all production is concentrated at y = 0. To
include the effect of experimental rapidity cuts, which usually do include the y = 0 point, we

5In this section we shall use y to indicate the value of photon rapidity in the hadron-hadron centre-of-mass
frame.
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Figure 13: Left: relative contribution of different initial states to the ET distribution
in pN collisions at Ebeam = 530 GeV. Right: relative size of the direct contribution vs.
the sum of direct and fragmentation one, for the different channels.

Figure 14: Left: relative contribution of different initial states to the ET distribution in
p̄p collisions at Ebeam = 315 GeV. Right: relative size of the direct contribution vs. the
sum of direct and fragmentation one, for the different channels.
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Figure 15: Effect of the rapidity cuts, as a function of ET . Upper set of curves: E706.
Lower set of curves: UA6. The three curves in each set are obtained with µ = ET /2, ET

and 2ET .

therefore apply the following acceptance correction to our resummed cross sections:

σ(res)(y ∈ Y ) ≡ σ(res)(all y)
σ(NLO)(y ∈ Y )

σ(NLO)(all y)
. (54)

The experimental configuration for most experiments of practical interest is wide enough that, for
the relevant values of ET , the rapidity acceptance is very large. We show two examples in Fig. 15.

One set of curves gives the ratio σ(|y| < 0.75)/σ(all y), evaluated at NLO for the E706
experimental configuration. The three curves correspond to different choices of scale µ, and show
very small dependence on µ. We also checked that the dependence on the PDF set used is at the
level of 1-2%. The acceptance loss is of the order of 25% for ET values around 4 GeV, and becomes
totally negligible for ET & 8 GeV. The other set gives the ratio σ(−0.1 < y < 0.9)/σ(all y),
evaluated at NLO for the UA6 experimental configuration. The acceptance loss is here more
significant, due to the tight cut at negative rapidity.

We present our prediction for the E706 data in Fig. 166. Notice the significant reduction in
scale dependence obtained when going from the fixed-order NL calculation to the resummed result.
This scale reduction is particularly evident at high ET , where the resummation effects are more
important. Notice that while at low ET the band with the resummed prediction is all contained
within the NLO uncertainty band, at high ET the NLL result becomes larger relative to NLO for
all the displayed scale choices. The plot shows a reasonable agreement between data and theory
at large ET , indicating that no additional significant contribution is required in this region. The
large disagreement between data and theory already present at NLO [2] is still present, as no net
increase is obtained from the resummation contributions. Their only effect is to reduce the scale
dependence.

6The theoretical prediction for pN has been rescaled by a 1.09 factor, to account for nuclear corrections to the
pBe process [2].
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Figure 16: E706 data compared to the resummed theoretical predictions. The theory
was rescaled by a factor of 1.09 to account for nuclear corrections in the conversion from
the pBe to the pN rate [2]. For comparison, the figure includes as well the fixed-order
NL result. We used PDF set CTEQ4M, and GRV photon fragmentation functions.

A similar picture emerges from the comparison of the theory with the p̄p UA6 data. This is
shown in Fig. 17. The disagreement between data and theory at low ET is however much less
dramatic here than in the case of E706. The extent to which these low-ET discrepancies can
be removed by the inclusion of non-perturbative effects such as an intrinsic kT remains to be
understood, as the global consistency of the different data sets is not very compelling [13, 12, 6].

5 Discussion and conclusions

We presented in this paper a numerical study of the impact of resummation corrections, at the
next-to-leading logarithmic level, on the transverse energy distribution of direct photons produced
in hadronic collisions. We dealt with the resummation of the xT → 1 Sudakov logarithms studied
theoretically in Refs. [18, 17]. As a result, this work is mostly of relevance for typical fixed-target
photon production. The current prompt-photon data from the high-energy hadronic colliders
cover in fact the region xT . 0.1, where Sudakov effects are negligible.

We showed that the inclusion of higher-order Sudakov corrections improves significantly the
factorization and renormalization scale dependence, relative to what observed in the fixed-order
NL calculations. Even when the scales are varied independently, the uncertainty from scale vari-
ations is significantly reduced. As a result of the reduced scale dependence, the overall size of
the resummation contributions depends significantly on the chosen scale. In general, however,
the resummed cross sections for different scale choices have values contained within the NLO
uncertainty band for xT values up to 0.5, and exceed the upper side of the NLO band by large
factors when xT approaches 1. Still, our resummation corrections turn out to be much smaller, at
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Figure 17: UA6 p̄p data compared to the resummed theoretical predictions. For com-
parison, the figure includes as well the fixed-order NL result. We used PDF set CTEQ4M,
and GRV photon fragmentation functions.

least in the range of existing data, than the effects induced at large xT by some implementations
of intrinsic kT effects, as discussed in Refs. [2, 12, 6]. In these papers the effect of intrinsic-kT

corrections was evaluated to be as large as factors of 3 and more, for the whole ET range. We
believe that this is related to the absence in the intrinsic-kT models of the appropriate Sudakov
suppression due to the presence of the hadronic system recoiling against the photon (represented
at LL in our formalism by the negative terms in the exponents of Eqs. (32) and (33)).

In our work we did not include resummation corrections to the fragmentation processes. We
proved that, in pN collisions, the large-N behaviour of the corrections to the qq(′) → qq(′)γ
processes is formally similar to that of the corrections to the leading one, qg → qγ. These
corrections are therefore not suppressed when N increases towards larger values. Whether they
can be neglected or not, is therefore a pure matter of numerics. We showed that their contribution
is not dominant in the ET regions of experimental interest, and limited ourselves to including them
at the fixed next-to-leading order. As discussed in Sec. 2.4, we have no reasons to believe that the
resummation corrections are any larger for the fragmentation processes than for the qg channel.
A more quantitative study of these statements, and a complete phenomenological assessment of
the comparison between theory and the current sets of data in view of the results presented in
this paper, will be the subject of future work.

A Appendix: Formulae for the resummed cross section

In this Appendix we recall (see Ref. [18]) the explicit expressions of the various factors that
contribute to the resummed cross sections in Eqs. (22) and (23). We use the customary notation
for the colour factors in SU(Nc) QCD, namely, CF = (N2

c − 1)/(2Nc), CA = Nc and TR = 1/2.
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The N -moments of the LO partonic cross sections in Eqs. (10, 11) are

σ̂
(0)
qq̄→gγ, N = π e2

q

CF

Nc

Γ(1/2) Γ(N + 1)

Γ(N + 5/2)
(2 + N) , (55)

σ̂
(0)
qg→qγ, N = σ̂

(0)
q̄g→q̄γ, N = π e2

q

1

8Nc

Γ(1/2) Γ(N + 1)

Γ(N + 5/2)
(7 + 5N) , (56)

where Γ(z) is the Euler Γ-function.

The formulae for the NLL functions g(2) in the exponent of the radiative factors in Eq. (26)
are the following

g
(2)
qq̄

(

λ,
Q2

µ2
;
Q2

µ2
F

)

= (2CF − CA) h(2)(λ) + 2 CA h(2)(λ/2) (57)

+
2CF − CA

2πb0
ln 2 ln(1 − 2λ) +

CAγE − πb0

πb0
ln(1 − λ) − 2CF

πb0
λ ln

Q2

µ2
F

+

{

CF

πb0

[

2λ + ln(1 − 2λ)
]

+
CA

2πb0

[

2 ln(1 − λ) − ln(1 − 2λ)
]

}

ln
Q2

µ2
,

g(2)
qg

(

λ,
Q2

µ2
;
Q2

µ2
F

)

= CA h(2)(λ) + 2 CF h(2)(λ/2) (58)

+
CA

2πb0

ln 2 ln(1 − 2λ) +
4CF γE − 3CF

4πb0

ln(1 − λ) − CF + CA

πb0

λ ln
Q2

µ2
F

+

{

CF + CA

2πb0

[

2λ + ln(1 − 2λ)
]

+
CF

2πb0

[

2 ln(1 − λ) − ln(1 − 2λ)
]

}

ln
Q2

µ2
,

where γE = 0.5772 . . . is the Euler number and b0, b1 are the first two coefficients of the QCD
β-function

b0 =
11CA − 4TRNf

12π
, b1 =

17C2
A − 10CATRNf − 6CF TRNf

24π2
. (59)

The auxiliary function h(2) that appears in Eqs. (57, 58) has the following expression

h(2)(λ) =
b1

2πb3
0

[

2λ+ ln(1− 2λ)+
1

2
ln2(1− 2λ)

]

− γE

πb0

ln(1− 2λ)− K

4π2b2
0

[

2λ+ ln(1− 2λ)
]

, (60)

where the coefficient K is given by

K = CA

(

67

18
− π2

6

)

− 10

9
TRNf . (61)

The first-order coefficients C
(1)
qq̄→γ and C

(1)
qg→γ of the N -independent functions in Eq. (30) are

C
(1)
qq̄→γ(Q

2/µ2; Q2/µ2
F ) = γ2

E

(

2CF − 1

2
CA

)

+ γE

[

πb0 − (2CF − CA) ln 2
]

− 1

2
(2CF − CA) ln 2

+
1

2
K − Kq +

π2

3

(

2CF − 1

2
CA

)

+
5

4
(2CF − CA) ln2 2 (62)

−
(

2γECF − 3

2
CF

)

ln
Q2

µ2
F

− πb0 ln
Q2

µ2
,
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C(1)
qg→γ(Q

2/µ2; Q2/µ2
F ) = γ2

E

(1

2
CF + CA

)

+ γE

[3

4
CF − CA ln 2

]

− 1

10
(CF − 2CA) ln 2

− 1

2
Kq +

π2

60

(

2CF + 19CA

)

+
1

2
CF ln2 2 (63)

−
(

γE(CF + CA) − 3

4
CF − πb0

)

ln
Q2

µ2
F

− πb0 ln
Q2

µ2
,

where

Kq =

(

7

2
− π2

6

)

CF , (64)

and the coefficient K is given in Eq. (61).

Note that the LL functions g(1) are given in Eq. (28). Thus, the formulae presented in this
Appendix complete all the ingredients that are necessary to evaluate the resummed cross sections
with NLL accuracy.
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