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1 Introduction

At high temperature, non-Abelian gauge theories describe weakly coupled plasmas whose

constituents, quarks and gluons for hot QCD, have typical momenta k ∼ T , where T is the

temperature [1, 2, 3]. The plasma particles may take part in collective excitations which

develop typically on a space-time scale λ ∼ 1/gT much larger than the mean interparticle

distance r̄ ∼ 1/T (g is the gauge coupling, assumed to be small). Such collective exci-

tations can be described in terms of mean fields carrying appropriate quantum numbers

and coupled to the plasma particles. In this long-wavelength limit, the plasma particles

obey simple, collisionless, kinetic equations which can be viewed as the generalization of

the Vlasov equation of ordinary plasmas [4, 5, 1].

In this paper, we shall be interested in specific collective excitations involving colour

fluctuations on larger wavelengths, λ ∼ 1/g2T . In this situation, the effects of the colli-

sions among the plasma particles become as important as those of the mean fields. The

kinetic equations obeyed by the plasma particles must therefore be generalized so as to

include the collisions terms. This is what we shall do here. The Boltzmann equation

that we shall obtain (see eqs. (1.1)—(1.3) below) turns out to be identical to the one

proposed recently by Arnold, Son and Yaffe [7], and yields, in leading logarithmic accu-

racy, Bödeker’s effective theory for the soft (p ∼ g2T ) fields [6]. The derivation presented

here, starting from the quantum field equations, clarifies the nature of the approxima-

tions involved, and thus fixes its range of applicability. Furthermore, it also provides

some justification for numerous previous works using ad hoc transport equations inspired

by classical transport theory [8, 9, 10, 11, 12, 13, 14, 15, 16]. It should be emphasized

that transport equations with a similar colour structure have been also proposed in Refs.

[17, 10], and that some of the technics that we shall be using have been used already by

many authors [18, 19, 20, 21, 22]. However, in most of these works, the organizing role of

the various dynamical scales which appear in hot QCD was not recognized, which led to

unecessarily complicated, and sometimes inconsistent, equations.

In fact, “kinetic theory” in the way we use it here could be regarded as a powerful

tool for constructing effective theories for the soft modes of the plasma. These soft degrees

of freeedom are represented by mean fields, while the hard ones, which are “integrated out”

using perturbation theory, survive as induced sources for these mean fields. The resulting

effective theory can then be studied non-perturbatively, e.g., as a classical theory on a

lattice: recently, this strategy has received much attention in connection with studies of

baryon number violation in the high temperature electroweak theory [23, 24, 25, 26, 6, 7,

27, 16]. Let us also recall that this method has been first demonstrated for the collective

dynamics at the scale gT , where we have shown [4, 5] that simple, collisionless, kinetic

equations resum an infinite number of one-loop diagrams with soft external lines and hard
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loop momenta, the so-called “hard thermal loops” [28, 29].

Let us now summarize the main equations to be obtained below. The collective,

longwavelength colour fluctuations of the hard transverse gluons are described by a density

matrix N(k, x) which, to the order of interest, can be written in the form:

Nab(k, x) = N(εk)δab − gWab(x,v) (dN/dεk), (1.1)

where N(εk) ≡ 1/(eβεk −1) is the Bose-Einstein thermal distribution (with εk = |k|), and

the function W (x,v), which parametrizes the off-equilibrium deviation, is a colour matrix

in the adjoint representation, W (x,v) ≡ Wa(x,v)T a, which depends upon the velocity

v = k/εk (a unit vector), but not upon the magnitude k ≡ |k| of the momentum. The

functions Wa(x,v) satisfy the following transport equation:

(v ·Dx)
abWb(x,v) = v · Ea(x)− γ

{
W a(x,v)− 〈Φ(v · v′)W a(x,v′)〉

〈Φ(v · v′)〉

}
. (1.2)

In the left hand side of this equation, v · Dx is a gauge-covariant drift operator (with

vµ ≡ (1,v) and Dµ ≡ ∂µ + igAµ), while in the right hand side we recognize a mean

field term (v ·Ea(x), with Ea the chromoelectric field) and a collision term. The latter is

proportional to the quasiparticle damping rate γ, which appears to set the scale for the

colour relaxation time: τcol ∼ 1/γ ∼ 1/(g2T ln(1/g)) (see below). The other notations

above are as follows: the angular brackets in the collision term denote angular average

over the directions of the unit vector v′ (as in eq. (1.4) below), and the quantity Φ(v · v′)
is given by:

Φ(v · v′) ≡ (2π)2
∫

d4q

(2π)4
δ(q0 − q · v)δ(q0 − q · v′)

∣∣∣∗Dl(q) + (vt · v′t) ∗Dt(q)
∣∣∣2. (1.3)

where ∗Dl(q) and ∗Dt(q) denote the resummed gluon propagators in the electric and

the magnetic channels, respectively [1, 2]. Up to a normalization, Φ(v · v′) is the total

interaction rate for two hard particles with momenta k and p (and velocities v ≡ k̂ and

v′ ≡ p̂) in the (resummed) Born approximation, as illustrated in Fig. 1 (vt and v′t are the

transverse projections of the velocities with respect to the momentum q of the exchanged

gluon: e.g., vi
t = (δij− q̂iq̂j)vj). The damping rate γ is obtained from Φ(v · v′) as follows:

γ =
g4N2

c T 3

6

∫ dΩ′

4π
Φ(v · v′) ' g2NcT

4π
ln(1/g), (1.4)

and is of O(g2T ) in spite of the explicit factor g4 in front of the above integral. This

is because the quasiparticle damping is dominated by soft momentum transfers q <∼ gT ,

which gives an enhancement factor ∼ 1/g2 after the resummation of the screening effects

at the scale gT [28, 30, 31, 32].

2



q

k k’=k-q

p p’=p+q

Figure 1: Elastic scattering in the (resummed) Born approximation. The continuous lines

refer to hard gluons (these are off-equilibrium propagators), while the wavy line is the

soft gluon exchanged in the collision. The blob stands for HTL resummation.

Actually, in the present approximation, γ is even logarithmically infrared divergent,

due to the unscreened static (q0 → 0) magnetic interactions. (In writing the right hand

side of eq. (1.4) we have assumed an infrared cutoff ∼ g2T , as it is usually done in the

literature [31, 10, 12].) To logarithmic accuracy, that is, by preserving only the singular

piece of the magnetic scattering element in eq. (1.3) (see eq. (3.123) below), eqs. (1.2)–

(1.3) generate Bödeker’s effective theory for the soft modes Aµ
a [6].

Within the same accuracy, eq. (1.2) can be solved to get the so-called colour con-

ductivity [10, 12, 6, 7]. The induced colour current is expressed in terms of W (x,v)

as:

ja(x) = m2
D〈v W a(x,v)〉, (1.5)

with the Debye mass m2
D = g2NcT

2/3. For constant colour electric fields, we get from

eq. (1.2):

W a(v) =
1

γ
v · Ea, (1.6)

so that

ja =
m2

D

3γ
Ea ≡ σcE

a, (1.7)

with the colour conductivity σc = m2
D/3γ ∼ T/ ln(1/g).

The next section of the paper contains a derivation of the Boltzmann equation for

scalar electrodynamics (SQED). There are several reasons for this. First, to our knowl-

edge, this is the first consistent derivation of a Boltzmann equation for gauge theories,

starting form the quantum field equations. Second, it serves as a preparation for the more
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involved non Abelian case of QCD which is presented in the following section. Finally,

and this is the most important, it will reveal interesting compensations which occur in

Abelian, but not in non-Abelian gauge theories. Thus, in SQED, most transport phe-

nomena are dominated by large angle scattering, so that the typical relaxation times are

τtr ∼ 1/(e4T ln(1/e)), where e is the electric charge [9, 15]. This is to be contrasted

with the quasiparticle lifetimes which are limited by small angle scatterings and are of

order τ ∼ 1/(g2T ln(1/g)) (in both QED and QCD). The same cancellations occur in most

cases for QCD as well (thus yielding, e.g., a viscous relaxation time τvisc ∼ 1/(g4T ln(1/g))

[9, 14]), except for the the relaxation of colour excitations which remains dominated by

very soft gluon exchanges [10, 12, 6, 7]. As a result, the colour relaxation time turns

out to be of the same order as the quasiparticle lifetime, as is evident in eq. (1.2). This

yields a colour conductivity σc ∼ T/ ln(1/g), to be contrasted with the usual, electric

conductivityd: σel ∼ T/(e2 ln(1/e)) [15].

The main part of the paper is section 3, which contains the derivation of the Boltz-

mann equation for the QCD plasma, and a discussion of the approximations which are

needed in this derivation. These involve a gradient expansion of the Dyson-Schwinger

equations, supplemented by a perturbative evaluation of the collision terms and a lin-

earization with respect to the off-equilibrium fluctuations. All these approximations are

commonly used in deriving kinetic equations from quantum field theories, and they are

generally seen as independent approximations (to some extent they remain so in the case

of SQED discussed in Sec. 2 below). However, in order to fulfill the constraints imposed

by a non Abelian gauge symmetry, we shall see that it is convenient to control all these

approximations by the same small parameter, namely the gauge coupling g. Thus, for

instance, the amplitudes of the mean fields will be restricted so that |Aµ
a | ∼ gT : this

guarantees that the two terms in the soft covariant derivative Dµ
X = ∂µ

X + igAµ are of the

same order in g, ∂X ∼ gA ∼ g2T , so that DX = O(g2T ) can be preserved consistently

in the expansion. A further difficulty that we shall have to face is related to the poor

convergence of the gradient expansion when the range of the interactions becomes com-

parable to the scale of the system inhomogeneities. As we shall see this will be the main

limitation of the accuracy of the collision term.

For completeness, we present in section 4 some diagrammatic interpretation of the

Boltzmann equation. (Previously, the connection between Feynman graphs and the Boltz-

mann equation has been explored in detail only for a scalar field theory, in Refs. [33, 34].)

The section 5 summarizes the conclusions.

dWe mean here, of course, the electric conductivity in a QED or OCD plasma, that is, in a gauge theory
without electrically charged vector bosons. The situation would be different in the electroweak theory
where, in the high-temperature, symmetric, phase, the electric charge can be efficiently randomized via
small angle scatterings mediated by the W±-bosons [15].
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2 Scalar QED

In this section, we briefly summarize the general formalism which allows one to construct

kinetic equations from the Dyson-Schwinger equations obeyed by the non-equilibrium

Green’s functions [35, 36, 37, 38, 39, 40, 41]. In order to bring out the essential aspects

of the formalism while avoiding the complications specific to non Abelian gauge theories,

we shall consider here scalar electrodynamics (SQED), with Lagrangian:

L = (Dµφ)(Dµφ)∗ − 1

4
FµνF

µν , (2.1)

where φ is a complex scalar field, Aµ is the photon field, Dµ ≡ ∂µ + ieAµ is a covariant

derivative, and Fµν the field strength tensor, Fµν = ∂µAν − ∂νAµ.

The systems that we consider are assumed to be initially in thermal equilibrium,

and described by the density operator ρ = 1
Z

exp {−βH} where H is the Hamiltonian

corresponding to (2.1), and Z is the partition function. At some time t0, a time-dependent

external perturbation (an electromagnetic current jµ(x)) starts acting on the system, so

that the Hamiltonian becomes:

Hj(t) = H +
∫

d3x j(t,x) · A(x) , (2.2)

where j · A = jµ Aµ. The density operator at time t is given by:

ρ(t) = U(t, t0) ρ U(t0, t), (2.3)

where U(t, t0), the evolution operator, satisfies:

i∂t U(t, t0) = Hj(t)U(t, t0), U(t0, t0) = 1. (2.4)

In the presence of the perturbation, the gauge field Aµ develops an expectation value:

Tr
(
ρ(t)Aµ

)
= Tr

(
ρ Aµ(t)

)
= Tr

{
e−βH

Z
Aµ(t)

}
≡ 〈Aµ(t)〉 , (2.5)

with

Aµ(t) ≡ U−1(t, t0) Aµ U(t, t0) = U(t0, t) Aµ U(t, t0), (2.6)

where we have used the fact that U(t0, t) = U−1(t, t0). More generally, we shall be

interested in various n-point functions, and in particular in 2-point functions for which

we shall derive equations of motion in the next subsection. For instance, the time-ordered

2-point function of the charged scalar field is given by:

G(t1, t2) = 〈T φ(t1)φ
†(t2)〉 ≡ Tr

{
e−βH

Z
T φ(t1)φ

†(t2)

}
,

= θ(t1 − t2)G
>(t1, t2) + θ(t2 − t1)G

<(t1, t2) (2.7)
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where φ(t) = U(t0, t) φ U(t, t0), and the functions G> and G< are defined by:

G>(x, y) ≡ 〈φ(x)φ†(y)〉, G<(x, y) ≡ 〈φ†(y)φ(x)〉. (2.8)

(To lighten the notation, the spatial coordinates have not been indicated in eq. (2.7).)

The functions G> and G< can be used to construct the retarded (GR) and advanced (GA)

propagators, which will also be needed:

GR(x, y) ≡ iθ(x0 − y0)
[
G>(x, y) − G<(x, y)

]
,

GA(x, y) ≡ −iθ(y0 − x0)
[
G>(x, y) − G<(x, y)

]
. (2.9)

Similar definitions hold for the photon 2-point functions. In the case of the photon,

we shall decompose the gauge field into its average value for which we shall reserve the

notation Aµ(x) (i.e., in the following we identify 〈Aµ〉 → Aµ), and a fluctuating part aµ(x)

with 〈aµ〉 = 0. The time ordered photon propagator is then given by:

Dµν(x, y) = 〈Taµ(x)aν(y)〉. (2.10)

The 2-point functions introduced above satisfy boundary conditions which follow from

their definitions (cf. eq. (2.7)). For instance:

G<(t0, z) = G>(t0 − iβ, z), (2.11)

and similarly for the photon 2-point functions and for the various self-energies to be

introduced later. Furthermore, these functions have hermiticity properties which will

be useful below. Specifically, all the “bigger” (>) and “lesser” (<) 2-point functions

are hermitian: for instance, (G>(x, y))∗ = G>(y, x) and (D>
µν(x, y))∗ = D>

νµ(y, x). This,

together with the definitions (2.9), imply (GR(x, y))∗ = GA(y, x) and (Dµν
R (x, y))∗ =

Dνµ
A (y, x), together with similar properties for the various self-energies.

In thermal equilibrium, the system is homogeneous (e.g., G<
eq(x, y) ≡ G<

eq(x − y)),

and it is convenient to go to momentum space. Then, the boundary condition (2.11)

translates into the so-called KMS condition [2] :

G>
eq(k) = eβk0G<

eq(k), (2.12)

which implies the following structure for the equilibrium 2-point functions:

G>
eq(k) = ρ(k)

[
1 + N(k0)

]
, G<

eq(k) = ρ(k) N(k0) , (2.13)

with N(k0) ≡ 1/(eβk0−1) and the spectral density ρ(k) ≡ G>
eq(k)−G<

eq(k). In particular,

for free, massless particles:

G<
0 (k) ≡ ρ0(k)N(k0), G>

0 (k) ≡ ρ0(k)[1 + N(k0)], (2.14)

with ρ0(k) = 2πε(k0)δ(k
2).
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Figure 2: Complex-time contour for the evaluation of the thermal expectation values:

C = C+ ∪ C− ∪ C0.

2.1 Equations of motion for Green’s functions

In order to obtain the equations of motion for the 2-point functions, it is convenient

to extend their definition by allowing the time variables to take complex values. More

specifically, we introduce, in the complex time plane, the oriented contour depicted in

Fig. 2. This may be seen as the juxtaposition of three pieces: C = C+ ∪C− ∪C0. We call

z the (complex) time variable along the contour, and reserve the notation t for real times.

On C+, z = t takes all the real values between t0 to tf . On C−, we set z = t− iη (η → 0+)

and t runs backward from tf to t0. Finally, on C0, z = t0− iτ , with 0 < τ ≤ β. We define

a contour θ-function θC : θC(z1, z2) = 1 if z1 is further than z2 along the contour (we then

write z1 � z2), while θC(z1, z2) = 0 if the opposite situation holds (z1 ≺ z2). We can

formalize this by introducing a real parameter u which is continously increasing along the

contour; then, the contour C is specified by a function z(u), and θC(z1, z2) = θ(u1 − u2).

We shall later need also a contour delta function, which we define by:

δC(z1, z2) ≡
(

∂z

∂u

)−1

δ(u1 − u2). (2.15)

The definition of the propagators is then extended in a natural way. For instance, the

contour-ordered propagator of the scalar field becomes:

G(z1, z2) ≡ 〈TC φ(z1)φ
†(z2)〉 ≡ Tr

{
e−βH

Z
TC φ(z1)φ

†(z2)

}
, (2.16)

where TC orders the operators on its right, from right to left in increasing order of the

arguments ui. For time arguments t1, t2 on C+, the contour propagator (2.16) reduces to
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the time-ordered propagator (2.7). For t1 ∈ C− and t2 ∈ C+, we have G(t1 − iη, t2) =

G>(t1, t2), while for t1 ∈ C+ and t2 ∈ C−, we have G(t1, t2 − iη) = G<(t1, t2).

With these definitions in hand, most of the formal manipulations familiar in equi-

librium field theory can be extended to the case of non equilibrium. This is convenient

for the derivation of the equations of motion for the n-point functions to which we now

turn.

The mean field equation is:

∂νF
µν(x) = jµ(x) + jµ

ind(x), (2.17)

with the induced current

jµ
ind(x) = −ie

〈
(Dµφ(x))† φ(x) − φ†(x) (Dµφ(x))

〉
. (2.18)

In this expression, Dµ = ∂µ+ig(Aµ+aµ). However, in line with the approximations below,

we can ignore the contribution of the quantum field aµ in the expression of the induced

current. This amounts to neglect the contribution of a connected 3-point function. We

can then write:

jµ
ind(x) = ie

(
Dµ

x −
(
Dµ

y

)†)
G<(x, y)|x=y , (2.19)

where now, and for the rest of this section, Dµ = ∂µ + igAµ, with Aµ the average gauge

potential.

In order to calculate the induced current, we need the 2-point function G<(x, y).

An equation of motion for this function can be obtained from the equation of motion for

the time ordered propagator:

−D2
x G(x, y) − i

∫
C

d4z Σ(x, z) G(z, y) = iδC(x, y), (2.20)

where δC(x0, y0) is the contour delta function, and Σ the scalar self-energy. The latter

admits the following decomposition, similar to that of G, eq. (2.7):

Σ(x, y) = −iΣ̂(x)δC(x, y) + θC(x0, y0)Σ
>(x, y) + θC(y0, x0)Σ

<(x, y). (2.21)

We have separated out a possible singular piece Σ̂ (e.g., the standard tadpole diagram

which generates a temperature-dependent mass correction [42]). The non-singular com-

ponents Σ> and Σ< obey a boundary condition similar to (2.11). In particular, in equi-

librium, Σ>
eq(k) = eβk0Σ<

eq(k).

The equations of motion in real-time for the mean field and the 2-point functions

are obtained by letting the external time variables x0 and y0 take values on the real-time

pieces of this contour, C+ and C−. For x0 ∈ C+, the mean field equation is formally the
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same as in eq. (2.17). Consider now eq. (2.20): by choosing x0 ∈ C+ and y0 ∈ C−, and

by using the decompositions (2.7) and (2.21), we obtain, after some manipulations, an

equation for G<(x, y):(
D2

x + Σ̂(x)
)
G<(x, y) = −

∫
d4z

[
ΣR(x, z) G<(z, y) + Σ<(x, z) GA(z, y)

]
,

(2.22)

together with a similar equation where the differential operator is acting on y:(
(D†y)

2 + Σ̂(y)
)
G<(x, y) = −

∫
d4z

[
G<(x, z) ΣA(z, y) + GR(x, z) Σ<(z, y)

]
.

(2.23)

In these equations, D2 = DµDµ, D†µ = ∂µ − ieAµ, and we have used the definitions (2.9)

for the retarded and advanced Green’s functions, together with similar definitions for ΣR

and ΣA. One can also obtain an equation satisfied by GR(x, y):(
D2

x + Σ̂(x)
)
GR(x, y) +

∫
d4z ΣR(x, z) GR(z, y) = δ(4)(x− y) . (2.24)

Note that, while the Green’s functions G> and the G< and the corresponding self-energies

are coupled by eqs. (2.22)–(2.22), the retarded Green’s function GR is determined by the

retarded self-energy ΣR alone.

The above equations must be supplemented with some approximation scheme in

which, for instance, the self-energy Σ is expressed in terms of the propagator G. Below,

we shall use perturbation theory for this purpose. We shall refer to the above equations

as the Kadanoff-Baym equations. They were first obtained in the framework of non-

relativistic many-body theory [35]. Note that, in these equations, any explicit reference

to the initial conditions and to the KMS condition has disappeared. These only enter as

boundary conditions to be satisfied by the various Green’s functions in the remote past.

The same set of equations has been derived by Keldysh [38] to describe non-equilibrium

evolutions of quantum systems (see also [36, 37, 39, 40]).

2.2 Gauge covariant Wigner transforms

For slowly varying off-equilibrium perturbations, the Kadanoff-Baym equations can be

transformed into kinetic equations, as we now explain. In thermal equilibrium, the system

is homogenous, and the two-point functions depend only on the relative coordinates sµ =

xµ − yµ. The thermal particles have typical energies and momenta k ∼ T . It follows

that the 2-point functions are peaked around sµ = 0, their range of variation being fixed

by the thermal wavelength λT = 1/k ∼ 1/T . In what follows, we shall be interested in
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off-equilibrium deviations which are slowly varying in space and time, over a typical scale

λ � λT .

In order to take advantage of the assumed separation of scales between hard de-

grees of freedom (the plasma particles), and the soft degrees of freedom (the collective

excitations at scale λ � λT ), it is convenient to introduce relative and central coordinates,

sµ ≡ xµ − yµ, Xµ ≡ xµ + yµ

2
, (2.25)

and to use the Wigner transforms of the 2-point functions. These are defined as Fourier

transforms with respect to the relative coordinates sµ. For instance, the Wigner transform

of G<(x, y) is:

G<(k, X) ≡
∫

d4s eik·s G<
(
X +

s

2
, X − s

2

)
, (2.26)

and we shall use similar definitions for the other 2-point functions. Note that we shall

use the same symbols for the 2-point functions and their Wigner transforms, considering

that the different functions can be recognized from their arguments.

The hermiticity properties of the 2-point functions discussed after eq. (2.11) imply

similar properties for the corresponding Wigner functions. For instance, from (G>(x, y))∗ =

G>(y, x) we deduce that G<(k, X) is a real function, (G<(k, X))∗ = G<(k, X), and simi-

larly for G>(k, X). Also, (GA(k, X))∗ = GR(k, X). Similar properties hold for the photon

2-point functions and for the various self-energies.

In gauge theories, the physical interpretation of the Wigner functions as phase

space densities is complicated by the lack of gauge covariance of the 2-point functions.

To remedy this, we shall define new, gauge invariant, functions, whose construction may

be motivated by considering the conserved electromagnetic current:

jµ(x) = ie
(
Dµ

x −
(
Dµ

y

)†)
G<(x, y)|x=y , (2.27)

where G<(x, y) = 〈φ†(y)φ(x)〉 is not gauge invariant. It is easy to define a corresponding

gauge invariant function by multiplying it by a parallel transporter, or “Wilson line”,

U(x, y) = e
−ie
∫

γ
dzµAµ(z)

, (2.28)

where the path γ joining y to x is a priori arbitrary. Thus, for instance,

Ǵ<(x, y) ≡ 〈φ†(y)U(y, x)φ(x)〉 = U(y, x)G<(x, y) (2.29)

is manifestly gauge invariant. The conserved current may then be expressed in terms of

this gauge invariant function:

jµ(x) =
(
∂µ

x − ∂µ
y

)
Ǵ<(x, y)

∣∣∣
x=y

= 2i∂µ
s Ǵ<(s, X)

∣∣∣
s=0

. (2.30)

10



To see this, note that G<(x, y) = U(x, y)Ǵ<(x, y), and that Dµ
x U(x, y)|x=y = 0. Note

also that the expression for jµ(x) is independent of the path joining x and y, since only

an infinitesimal path is needed.

For definitness, we shall in fact choose γ to be the straight line joining x and y.

This choice is physically motivated since, as we shall see later, the hard particles preserve

straight line trajectories in the presence of the soft mean fields (at least, to leading order

in e). Moreover, as shown in Refs. [18, 19, 21], such a path allows one to interpret the

covariantization procedure as the replacement of the canonical momentum by the kinetic

one (see eq. (2.32) below). This being said, most of our results below will be independent

of the exact form of γ (see, however, the discussion after eq. (2.41)). Indeed, we shall

mostly need the parallel transporter U(x, y) in situations where the end points x and y

are close to each other (|s| <∼ 1/T , with s ≡ x− y), so that the variation of the field can

be neglected along the path. This is a good approximation provided γ never goes too far

away from x and y, that is, provided |z − X| = O(1/T ) (with X ≡ (x + y)/2) for any

point z on γ. For any such a path we can write:

U (x, y) ≈ e−ies·A(X) , (2.31)

up to terms which involve, at least, one soft derivative ∂XAµ (and which do depend upon

the path).

Starting from Ǵ<(x, y), we construct the gauge invariant Wigner function:

Ǵ<(k, X) ≡
∫

d4s eik·s U
(
X − s

2
, X +

s

2

)
G<

(
X +

s

2
, X − s

2

)
≈

∫
d4s e is·(k+eA(X)) G<

(
X +

s

2
, X − s

2

)
= G<(p = k + eA(X), X). (2.32)

This formula shows that, as alluded to before, the gauge invariant Wigner function may

be obtained from the ordinary one by the simple replacement of the canonical momentum

pµ by the kinetic momentum kµ = pµ − eAµ(X). Returning to the current, we see that

it takes the form:

jµ(x) = 2e
∫

d4p

(2π)4
(pµ − eAµ(X))G<(p, X)

= 2e
∫ d4k

(2π)4
kµ Ǵ<(k, X). (2.33)

These two expressions for the current may be seen as the analogs of eqs. (2.27) and (2.30).
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2.3 Gradient expansion and kinetic equations

For slowly varying disturbances, taking place over a scale λ � λT , we expect the sµ

dependence of the 2-point functions to be close to that in equilibrium. Thus, typically,

k ∼ ∂s ∼ T , while ∂X ∼ 1/λ � T . The general equations of motion written down in Sec.

2.1 can then be simplified with the help of a gradient expansion, using k and X as most

convenient variables.

The starting point of the gradient expansion is the equation obtained by taking the

difference of the Kadanoff-Baym equations (2.22) and (2.23). For further reference, we

shall call it the difference equation. We then define:

Ξ(x, y) ≡ D2
x − (D†y)

2, (2.34)

where:

D2
x = ∂2

x + 2ieA(x) · ∂x + ie(∂ · A(x))− e2A2(x),

(D†y)
2 = ∂2

y − 2ieA(y) · ∂y − ie(∂ · A(y))− e2A2(y). (2.35)

By replacing the coordinates xµ and yµ by sµ and Xµ (cf. eq. (2.25)), and rewriting the

derivatives as:

∂x = ∂s + 1
2
∂X , ∂y = −∂s + 1

2
∂X ∂2

x − ∂2
y = 2∂s · ∂X , (2.36)

we perform a gradient expansion in Ξ, with ∂s ∼ T and ∂X ∼ 1/λ � T , and preserve all

the terms involving at most one soft derivative ∂X . For instance,

Aµ(X + s/2) ≈ Aµ(X) + (1/2)(s · ∂X)Aµ(X).

A straightforward calculation yields then:

Ξ(s, X) ≈ 2 ∂s · ∂X + 2ieAµ(X)∂µ
X + 2ie(s · ∂XAµ)∂µ

s + 2ie(∂X · A)− e2(s · ∂XA2) + · · · ,
(2.37)

where the dots stand for terms which involve at least two soft derivatives ∂X .

Before taking the Wigner transform, we make the difference equation covariant by

multiplying both sides by the parallel transport U(y, x) (cf. eq. (2.29)). For the left hand

side, we use the expansion (2.37) of Ξ(s, X), together with eq. (2.31) to obtain:

U(y, x)
(
D2

x − (D†y)
2
) (

U(x, y)Ǵ<(x, y)
)
≈ 2

(
∂s · ∂X + iesµFµν(X)∂ν

s

)
Ǵ<(s, X). (2.38)

The right hand side of the difference equation involves convolutions of the form:

C(x, y) ≡
∫

d4z Σ(x, z) G(z, y). (2.39)
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Upon multiplication by U(y, x), this becomes the gauge invariant quantity:

Ć(x, y) = U(y, x)
∫

d4z U(x, z)Σ́(x, z)U(z, y)Ǵ(z, y)

=
∫

d4z P (x, y, z) Σ́(x, z)Ǵ(z, y), (2.40)

where we have set Ć(x, y) ≡ U(y, x)C(x, y), and P (x, y, z) denotes the following plaquette:

P (x, y, z) ≡ U(y, x)U(x, z)U(z, y). (2.41)

In line with the approximations in eq. (2.38), we need the gradient expansion of eqs. (2.40)

and (2.41) up to terms involving one soft derivative of the background field. In each of

the parallel transporters, we choose the path γ to be the straight line (cf. the discussion

before eq. (2.31)). Then, the plaquette (2.41) can be easily expanded around the point

X = (x + y)/2 to yield:

P (x, y, z) ≈ exp
{
− ie

4
sµFµν(X)δν

}
≈ 1 − ie

4
sµFµν(X)δν , (2.42)

where s ≡ x− y, X ≡ (x + y)/2, δ ≡ 2(z −X).

We are now in position to take the Wigner transform. The only delicate step

concerns the transformation of Ć(x, y), which is given by:

Ć(k, X) ≈ Σ́(k, X)Ǵ(k, X) +
i

2

{
Σ́, Ǵ

}
P.B.

− i

2
eFµν(X)

(
∂µ

k Σ́
) (

∂ν
k Ǵ
)

+ ... , (2.43)

where {A, B}P.B. denotes a Poisson bracket:{
A, B

}
P.B.

≡ ∂kA · ∂XB − ∂XA · ∂kB . (2.44)

The third term in the r.h.s. of eq. (2.43), involving Fµν(X), comes from the plaquette

(2.42) and is therefore sensitive to the choice of γ. To the accuracy where this term is

important, we expect the gauge-invariant Wigner functions Σ́(k, X) and Ǵ(k, X) to be

path-dependent as well. However, such path-dependent terms will disappear in the final

form of the Boltzmann equation that we shall obtain (see eq. (2.56) below).

By using eqs. (2.38) and (2.43), the difference equation finally becomes:

2(k · ∂X − ek · F · ∂k)Ǵ
< + (∂µ

XΣ̂)∂k
µǴ< −

{
ReΣ́R, Ǵ<

}
P.B.

−
{
Σ́<, ReǴR

}
P.B.

+ eF µν
(
(∂k

µΣ́<)(∂k
νReǴR) + (∂k

µReΣ́R)(∂k
ν Ǵ<)

)
= −

(
Ǵ>Σ́< − Σ́>Ǵ<

)
(2.45)

In deriving the equation above, we have used the following relations:

ǴR(k, X)− ǴA(k, X) = i
(
Ǵ>(k, X)− Ǵ<(k, X)

)
≡ iρ(k, X),

Σ́R(k, X)− Σ́A(k, X) = i
(
Σ́>(k, X)− Σ́<(k, X)

)
≡ −iΓ(k, X), (2.46)
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which follow, e.g., from the definitions (2.9) for GR and GA after multiplying with U(y, x)

and taking the Wigner transform. Note that the right hand sides of eqs. (2.46) define two

new Wigner functions, ρ(k, X) and Γ(k, X), which are real quantities (cf. the discussion

after eq. (2.26)) and can be seen as off-equilibrium generalizations of the corresponding

spectral densities in equilibrium (recall eq. (2.13)). In terms of these functions we have,

for instance:

ǴR(k, X) =
∫ ∞
−∞

dk′0
2π

ρ(k′0,k, X)

k′0 − k0 − iη
, Σ́R(k, X) = −

∫ ∞
−∞

dk′0
2π

Γ(k′0,k, X)

k′0 − k0 − iη
. (2.47)

Eq. (2.45) also involves:

2Re ǴR = ǴR + ǴA, 2Re Σ́R(k, X) = Σ́R + Σ́A. (2.48)

Further manipulations allow us to put eq. (2.45) in the form:

(2k − ∂kReΣ́) · (dX Ǵ<) + (∂XReΣ́) · (∂kǴ
<)

− (∂kΣ́
<) · (dX ReǴR) + (∂XΣ́<) · (∂kReǴR)

= −
(
Ǵ>Σ́< − Σ́>Ǵ<

)
, (2.49)

where Re Σ́ ≡ Re Σ́R + Σ̂, and dµ
X ≡ ∂µ

X − eF µν(X)∂k
ν . It is interesting to note that

the corresponding equation for a scalar field theory (like λφ4) can be obtained by simply

replacing dµ
X by ∂µ

X in the above equation [3].

In equilibrium, both sides of eq. (2.49) are identically zero. This is obvious for the

terms in the l.h.s., which involve the soft derivative ∂X or mean field insertions, and can

be easily verified for the terms in the r.h.s. by using the KMS conditions for Geq and Σeq

(cf. eq. (2.12)). Thus, eq. (2.49) is a transport equation which describes the space-time

evolution of long-wavelength fluctuations in the average density of the charged particles.

It holds to leading order in the gradient expansion (that is, up to terms involving at least

two powers of the soft derivative), and to all orders in the interaction coupling strength.

To conclude this section, note that, within the previous approximations (that is,

up to terms involving at least two soft derivatives), the retarded propagator ǴR(k, X)

satisfies an equation which is formally identical to that it obeys in equilibrium:(
k2 − Σ̂(X)− Σ́R(k, X)

)
ǴR(k, X) = −1 . (2.50)

In order to obtain this equation, start with eq. (2.24) for GR(x, y) together with its

conjugate equation where the differential operator acts on y; then, consider the sum of

these two equations, and perform a gauge-invariant gradient expansion as above. In this

expansion, all the terms involving one soft derivative ∂X cancel, and the same holds also
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for the terms involving the soft mean field. From eqs. (2.47) and (2.50), we deduce an

expression for the off-equilibrium spectral density:

ρ(k, X) = 2 Im ǴR(k, X) =
Γ(k, X)(

k2 − Re Σ́(k, X)
)2

+
(
Γ(k, X)/2

)2 , (2.51)

which will be useful in discussing the quasiparticle approximation below.

2.4 Mean-field and quasiparticle approximations

In order to make progress with eq. (2.49) further approximations are needed. In particular,

we shall use below perturbation theory to express the self-energies Σ́< and Σ́> in terms of

the propagators Ǵ< and Ǵ>. As a first step, let us consider the mean field approximation

in which the self energies Σ́ are neglected altogether. The equation (2.49) reduces then

to (k · dX)Ǵ<(k, X) = 0, or, more explicitly:(
k · ∂X − ekµF

µν(X)∂k
ν

)
Ǵ<(k, X) = 0. (2.52)

This equation describes the motion of independent particles in the mean field Fµν . In this

approximation the spectral density remains the same as in the free theory in equilibrium,

as obvious from eq. (2.51): ρ(k, X) ≈ ρ0(k) ≡ 2πε(k0)δ(k
2)N(k0). Accordingly, the

solution to eq. (2.52) can be written in the form:

Ǵ<(k, X) = 2πδ(k2)
{
θ(k0)N+(k, X) + θ(−k0)(1 + N−(−k, X))

}
, (2.53)

where the density matrices N±(k, X) satisfy the Vlasov equation [39]:(
v · ∂X ± e(E + v ×B) ·∇k

)
N±(k, X) = 0, (2.54)

with vµ = (1,v) and v = k̂ is the velocity of the charged particle. The density matri-

ces N±(k, X) may be given the interpretation of classical phase-space distributions for

particles and antiparticles. In terms of them, the induced current is simply:

jµ(x) = e
∫ d3k

(2π)3
vµ
(
N+(k, X) − N−(k, X)

)
. (2.55)

Going beyond the mean field approximation, we need to take into account the

various effects of the self-energies. We shall concentrate here on a commonly used ap-

proximation which consists in neglecting the broadening of the single-particle states when

computing the collision terms, an approximation which we refer to as the “quasiparti-

cle approximation”. Indeed, the interaction rate Γ in eq. (2.51) is of higher order in e

(specifically, Γ ∼ (e2 ln(1/e))T 2, as we shall see below), so we can use the mean field
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spectral density, ρ(k, X) ≈ ρ0(k), to estimate the collision terms. At the same time, we

shall ignore the self-energy terms in the l.h.s. of eq. (2.49). That this is consistent can be

verified by power counting (we shall do this explicitly for the QCD case, in Sec. 3.5); it is

also physically motivated from the fact that the role of these terms is to account for the

difference between ρ(k, X) and ρ0(k) in the transport equation for Ǵ<(k, X) [3]. Thus, in

the quasiparticle approximation, the Wigner functions Ǵ<(k, X) and Ǵ>(k, X) preserve

the same on-shell structure as in the mean field approximation, as displayed in eq. (2.53).

We thus end up with the following kinetic equation:

2
(
k · ∂X − ekµF

µν(X)∂k
ν

)
Ǵ<(k, X) = −

(
Ǵ>Σ́< − Σ́>Ǵ<

)
, (2.56)

where, in line with the weak coupling expansion, we choose the self energies Σ́< and Σ́> so

as to reproduce the one-photon-exchange scattering in Fig. 1 (Born approximation). As

we shall see in the next section, this generates a collision term of the standard Boltzmann

form. Note also that eq. (2.56) in independent upon the choice of the path γ in eq. (2.28);

indeed, the terms which were explicitly path-dependent in eq. (2.49) have disappeared in

the approximations leading to eq. (2.56). Moreover, we shall verify shortly that, to the

order of interest, the self-energies Σ́< and Σ́> are path-independent as well.

In computing transport coefficients like viscosities or electric conductivity (see, e.g.,

Refs. [9, 14, 15, 34, 43]), or the quasiparticle damping rate [11, 3], it is only necessary to

consider small off-equilibrium deviations, so that the linearized version of eq. (2.56) can

be used. We then write, e.g., Ǵ< ≡ G<
eq + δǴ< and Σ́< ≡ Σ<

eq + δΣ́< (with δǴ � Geq,

δΣ́ � Σeq), and linearize the collision term with respect to the small fluctuations δǴ and

δΣ́ :

C(k, X) ≡ −
(
Ǵ>(k, X)Σ́<(k, X)− Σ́>(k, X)Ǵ<(k, X)

)
' −

(
Σ<

eq δǴ> − Σ>
eq δǴ<

)
+
(
δΣ́> G<

eq − δΣ́< G>
eq

)
. (2.57)

In the quasiparticle approximation, we further have G>
eq ≈ G>

0 , G<
eq ≈ G<

0 and δǴ< ≈
δǴ> ≡ δǴ (since Ǵ>(k, X)− Ǵ<(k, X) = ρ0(k) = G>

0 (k)−G<
0 (k)). Then, the linearized

collision term takes the form:

C(k, X) ' −Γeq(k) δǴ(k, X) +
(
δΣ́> G<

0 − δΣ́< G>
0

)
, (2.58)

where we have isolated the damping rate in equilibrium (cf. eq. (2.46)):

Γeq(k) = Σ<
eq(k)− Σ>

eq(k). (2.59)

Note that the quasiparticle approximation is not a self-consistent approximation, but it

is in line with the weak coupling expansion: the collision term generates a width which is
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p

p+q
q

k-qk

Figure 3: The two-loop self-energy diagram which describes collisions in the Born approx-

imation. The wavy lines denote free, equilibrium, photon propagators. The other lines

are off-equilibrium scalar propagators.

not included in the spectral densities which are used to estimate it; however, the neglected

terms are of higher order than those we have kept.

The most direct application of the formula above is the calculation of the quasi-

particle damping rate [35, 11, 3]. To this aim, we consider a specific off-equilibrium

deviation which is obtained by adding, at t0 = 0, a particle with momentum p and energy

p0 = εp ≡ |p| to a plasma initially in equilibrium. Since, for a large system, this is a

small perturbation, we can neglect all mean field effects and assume N(p, t) to be only a

function of time (here, N(p, t) ≡ N+(p, t); cf. eq. (2.53)). Moreover, for momenta k 6= p,

the distribution function does not change appreciably from the equilibrium value N(εk),

so that, to leading order in the external perturbation, we can ignore the off-equilibrium

fluctuations of the self-energies: δΣ́< ≈ δΣ́> ≈ 0. Then, eqs. (2.53), (2.56) and (2.58)

yield a very simple equation for the fluctuation δN(p, t) (with Γ(p) ≡ Γeq(p0 = εp,p)) :

2εp
∂

∂t
δN(p, t) = −Γ(p)δN(p, t), (2.60)

whose solution shows exponential attenuation in time:

δN(p, t) = δN(p, 0) e−2γ(p)t . (2.61)

The quasiparticle damping rate γ is here conventionally defined as γ(p) ≡ Γ(p)/4εp [2].

(This simple picture is actually complicated by infrared effects to be discussed in Sec. 2.6

[30, 31, 32].)
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Figure 4: The effective one-loop self-energy which describes collisions in the resummed

Born approximation. The blob on the photon line denotes the resummation of the one-

loop polarization tensor (cf. Fig. (6)).

q

k-qk

....

Figure 5: One of the multi-loop diagrams (containing n bubble insertions along the photon

line) which is included in the effective one-loop diagram in Fig. 4.

2.5 The collision terms

We now turn to the calculation of the collisional self-energy corresponding to Fig. 1. As

it is well known (and will be verified later), the corresponding transport cross section

is dominated by relatively hard momentum transfers, eT <∼ q <∼ T . When the photon

momentum is hard, q ∼ T , the process in Fig. 1 is described by the two-loop self-energy

depicted in Fig. 3 in which all the lines are hard, and the scalar propagators are to be

understood as off-equilibrium propagators. The photon propagators, on the other hand,

are just free propagators in equilibrium. At soft momenta q ∼ eT , the relevant self-

energy is given by the effective one-loop diagram in Fig. 4 in which both the internal lines

denote off-equilibrium propagators; the scalar line is hard, while the photon line is soft

and dressed by the off-equilibrium polarization tensor in the one-loop approximation (this

is denoted by a blob). That is, the diagram in Fig. 4 involves an infinite series of bubble

insertions along the photon line, as illustrated in Fig. 5.

It is furthermore convenient to recognize that the diagram in Fig. 3 is one of the

family of diagrams displayed in Fig. 5; thus, we can use the effective one-loop self-energy
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in Fig. 4 to describe the collision in Fig 1 for all photon momenta, which we shall do in

what follows. To evaluate this diagram, we need the vertex coupling the photon to the

scalar field in the presence of the classical background field Aµ. This can be read off the

Lagrangian:

L =
(
D†µ − ieaµ

)
φ† (Dµ + ieaµ)φ

= ieaµ

[
(Dµφ)† φ− φ† (Dµφ)

]
+ e2aµa

µφ†φ, (2.62)

where Dµ = ∂µ + ieAµ. There are two relevant vertices: −2ieφ†aµDµφ and −ieφ†φ∂µaµ.

The self-energy reads then:

Σ(x, y) = e2
{
4
(
Dµ

xDν †
y G(x, y)

)
Dµν(x, y) + 2

(
Dµ

xG(x, y)
)(

∂ν
yDµν(x, y)

)
+ 2

(
Dν †

y G(x, y)
)(

∂µ
xDµν(x, y)

)
+ G(x, y)

(
∂x

µ∂ν
yDµν(x, y)

)}
. (2.63)

Here, Dµν(x, y) is the off-equilibrium photon propagator, to be constructed shortly. By

appropriately choosing x0 and y0 along the contour, we get expressions for both Σ> and

Σ<. For instance, Σ>(x, y) will involve G>(x, y) and D>(x, y), etc. Below, to simplify the

notations, the upper indices > and < will be often omitted.

We need then to evaluate the gauge invariant self energy Σ́(x, y) ≡ U(y, x)Σ(x, y).

In doing that, we meet terms like:

U(y, x) Dµ
x G(x, y) = U(y, x) Dµ

x

(
U(x, y)Ǵ(x, y)

)
. (2.64)

Performing the gradient expansion of such a term, one gets:

U(y, x) Dµ
x

(
U(x, y)Ǵ(x, y)

)
≈ eies·A(X) (∂µ

s + ieAµ(X))
{
e−ies·A(X)Ǵ(s, X)

}
≈ ∂µ

s Ǵ(s, X). (2.65)

Note that, in the above manipulations, we have used the simple approximation (2.31) for

U(x, y), which makes the final result independent of the choice the path in the Wilson

line. The same holds for all the other results in this section.

Similarly, we get ∂ν
yDµν(x, y) ≈ −∂ν

sDµν(s, X), so that the expression

Dµ
xG(x, y)∂ν

yDµν(x, y) becomes simply −∂µ
s Ǵ(s, X)∂ν

sDµν(s, X). Proceeding in the same

way for the other terms, and performing the Wigner transform, we get:

Σ́(k, X) ≈ e2
∫

d4q

(2π)4
(2kµ − qµ) (2kν − qν) Ǵ(k − q, X)Dµν(q, X). (2.66)

This is formally the same expression as in equilibrium, except for the fact that Ǵ(k−q, X)

and Dµν(q, X) are off-equilibrium propagators and kµ has to be interpreted as the kinetic
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Figure 6: One-loop contributions to the photon self-energy in SQED. All the internal lines

are off-equilibrium propagators.

momentum. (Note that the photon propagator Dµν does not need a special treatment

since it is invariant under the gauge transformations of the background field.)

The photon propagatorDµν(x, y) obeys Dyson-Schwinger equations similar to eqs. (2.22)–

(2.24). Specifically,(
gµν∂2 − ∂µ∂ν − Π̂µν

)
x
D<

νρ(x, y) =
∫

d4z
(
ΠRD< + Π<DA

)µ

ρ
(x, y), (2.67)

and similarly:(
gµν∂

2 − ∂µ∂ν − Π̂µν

)
x
Dνρ

R (x, y) −
∫

d4z ΠR
µνD

νρ
R (x, y) = δρ

µδ
(4)(x− y) , (2.68)

where, to the order of interest, Πµν(x, y) is given by the one-loop diagrams in Fig. 6.

That is, Π̂µν(x) is the tadpole contribution in Fig. 6.b, while the non-local self-energies

ΠR(x, y) and Π<(x, y) are determined by the graph in Fig. 6.a. From the equations above,

we deduce the following relation between D< and Π<:

D<
µν(x, y) = −

∫
d4z1d

4z2

(
DR(x, z1) Π<(z1, z2)DA(z2, y)

)
µν

, (2.69)

which becomes, after a gradient expansion,

D<
µν(q, X) ≈ −

(
DR(q, X) Π<(q, X)DA(q, X)

)
µν

, (2.70)

up to corrections of O(∂X/q). Since, as we shall see shortly, the collision terms are

saturated by momenta q >∼ eT , the corrections to eq. (2.70) are of higher order in e

provided ∂X
<∼ e2T . A similar relation holds between D>(q, X) and Π>(q, X).

It should be observed here that a new scale is entering the gradient expansion. In

most situations before, the soft derivative ∂X appeared in combinations such as s ·∂X with

the magnitude of the non-locality sµ fixed by thermal fluctuations: s ∼ 1/T . In eq. (2.69),

however, the non-localities x − z1 or z2 − y are of order 1/q and may be interpreted as

the range of the effective interaction between the colliding particles. Thus, the validity of

the gradient expansion in this case relies on the range of this effective interaction being
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small compared to the scale of the inhomogeneities, as measured by ∂−1
X . Now, the range

of the effective interaction depends on the specific transport processes one is looking at.

In most cases, and as a result of cancellations to be exhibited in the next subsection, this

range is typically of order 1/T (and marginally 1/eT ) so that the gradient expansion is

indeed valid to calculate transport coefficients to leading order in e already for processes

taking place on a scale 1/e2T .

To construct the photon self-energy out of equilibrium, we use the interaction ver-

tices from eq. (2.62) and obtain, to the order of interest,

Π̂µν(X) = −2gµνe
2
∫

d4p

(2π)4
Ǵ<(p, X), (2.71)

and (compare to eq. (2.66)) :

Π>
µν(q, X) ≈ e2

∫
d4p

(2π)4
(2pµ + qµ) (2pν + qν) Ǵ>(p + q, X)Ǵ<(p, X), (2.72)

together with a similar expression for Π<(q, X) which involves Ǵ<(p+q, X) and Ǵ>(p, X).

These expressions are gauge invariant, as expected. The tadpole piece (2.71) enters the

calculation of the retarded propagatorDR(q, X), which is related to the self-energy Π̂(X)+

ΠR(q, X) by the same equation as in equilibrium (cf. eq. (2.50)).

By collecting the previous results, we finally obtain the following collision term:

C(k, X) = −
∫

d4p

(2π)4

∫
d4q

(2π)4
|Mpk→p′k′|2

×
{
Ǵ<(k, X)Ǵ<(p, X)Ǵ>(k′, X)Ǵ>(p′, X)− Ǵ>(k, X)Ǵ>(p, X)Ǵ<(k′, X)Ǵ<(p′, X)

}
,

(2.73)

where p′ = p + q, k′ = k − q, and Mpk→p′k′ is the scattering matrix element:

|Mpk→p′k′|2 = e4(k + k′)µ(p + p′)ν(k + k′)α(p + p′)β[DR(q, X)]µν [DA(q, X)]αβ . (2.74)

This collision term has the standard Boltzmann structure, with a gain term and a loss

term. To be in line with the previous approximations, this must be evaluated with the

Wigner functions Ǵ< and Ǵ> in the quasiparticle approximation, i.e., Ǵ<(k, X) has the

on-shell structure exhibited in eq. (2.53), while Ǵ>(k, X) reads similarly :

Ǵ>(k, X) = 2πδ(k2)
{
θ(k0)(1 + N+(k, X)) + θ(−k0)N−(−k, X)

}
. (2.75)

Thus, the four energy variables k0, p0, k′0 and p′0 in eq. (2.73) are always on shell (e.g.,

|k0| = εk ≡ |k|), but they can be either positive (k0 = εk) or negative (k0 = −εk), corre-

sponding to particles and antiparticles, respectively. Choose k0 > 0 for definitness; then
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Figure 7: Scattering processes described by the collision term in eq. (2.73) : (a) particle-

particle scattering; (b) particle-antiparticle scattering (t-channel); (c) particle-antiparticle

annihilation (s-channel). In Fig. (c), the virtual photon is always hard, so it needs no

resummation.

(2.73) describes the t-channel particle-particle scattering depicted as Fig. 1 (when all the

energy variables are positive), but also the t-channel particle-antiparticle scattering (when

k′0 is positive, but p0 and p′0 are both negative), and the particle-antiparticle anihilation

(or s-channel scattering: p0 and k′0 negative, and p′0 positive). These various processes

are illustrated in Fig. 7.

2.6 Quasiparticle lifetimes vs. relaxation times

At the end of Sec. 2.4, we have seen that the collision term (2.58) yields the quasiparticle

lifetime τ ∼ 1/γ, which is dominated by soft momentum transfers, q <∼ eT , and is

typically τ ∼ 1/(e2T ln(1/e)) [31, 32]. For transport phenomena, however, it is well

known [2, 9, 14, 15] that the Abelian collision term (2.73) is saturated by relatively large

momentum transfers eT <∼ q <∼ T , and the typical relaxation time for off-equilibrium

perturbations is τtr ∼ 1/(e4T ln(1/e)). The fact that τtr � τ is due to specific infrared

cancellations in the collision term, that we shall discuss now. Note that in QCD the colour

algebra prohibits similar cancellations in the calculation of colour relaxation processes, as

we shall see in Secs. 3.8 and 4 below.

Consider then the linearized version of the collision term, as given by eq. (2.58). It

is convenient to define (with β = 1/T ) :

δǴ(k, X) ≡ ρ0(k)δN(k, X) ≡ −ρ0(k)W (k, X)
dN

dk0

= βρ0(k)W (k, X)N(k0)[1 + N(k0)] (2.76)

where (cf. eq. (2.75)) :

δN(k, X) = θ(k0)δN+(k, X))− θ(−k0)δN−(−k, X). (2.77)

The function W (k, X) describes the local distorsion of the momentum distribution, as
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may be seen from the following equation:

N(k, X) ≡ N(k0) − W (k, X)
dN

dk0

≈ N(k0 −W (k, X)). (2.78)

In terms of these new functions, the linearized collision term takes a particularly simple

form,

C(k, X) ≈ −βρ0(k)
∫

dT |M|2 N(k0)N(p0)[1 + N(k′0)][1 + N(p′0)]

×
{
W (k, X) + W (p, X)−W (k′, X)−W (p′, X)

}
, (2.79)

with the following notation for the phase-space integral:∫
dT ≡

∫
d4p

(2π)4

∫
d4q

(2π)4
ρ0(p)ρ0(p + q)ρ0(k − q). (2.80)

The matrix element |M|2 in eq. (2.79) is to be computed with the equilibrium retarded

and advanced photon propagators DR, A(q) (cf. eq. (2.74)).

Following eq. (2.58), we identify the damping rate Γ(k) ≡ Γeq(k) as the coefficient of

δǴ(k, X) in the r.h.s. of eq. (2.79), that is, as the term involving the fluctuation W (k, X) :

C1(k, X) = −βρ0(k)W (k, X)
∫

dT |M|2 N(k0)N(p0)[1 + N(k′0)][1 + N(p′0)]

≡ −Γ(k)δǴ(k, X). (2.81)

One can verify that within the present approximation the above expression of Γ satisfies

indeed eq. (2.59).

Moreover, in eq. (2.81), Γ(k) must be evaluated on the tree-level mass-shell (i.e., at

|k0| = εk), since it is multiplied by the on-shell fluctuation δǴ(k, X). This determines the

quasiparticle damping rate, γ ≡ (1/4k)Γ(k0 = k), which is, however, well known to be

infrared divergent in the present approximation [28, 30, 31, 32]. Specifically, the leading

contribution to γ comes from soft momenta exchange q <∼ eT in the t-channel collisions

in Figs. 7.a and b. To evaluate this contribution, we can neglect q0 next to p0 and k0 in

the thermal distributions in eq. (2.81), and get:

Γ(k) '
∫

dT |M|2 N(p0)[1 + N(p0)]. (2.82)

To the order of interest, we need the resummed photon propagator in the “hard thermal

loop” approximation [1, 2], to be denoted as ∗Dµν
R (q). This yields (for q � k, p):

|M|2 ' 16e4ε2
kε

2
p

∣∣∣∗Dl(q) + (q̂× v) · (q̂× v′) ∗Dt(q)
∣∣∣2. (2.83)

where ∗Dl and ∗Dt are the longitudinal (or electric) and the transverse (or magnetic)

components of the retarded propagator, with the following IR behaviour (below, mD is

the Debye mass, m2
D = e2T 2/3) [1, 2] :

∗Dl(q0 → 0, q) ' −1

q2 + m2
D

, ∗Dt(q0 � q) ' 1

q2 − i (πq0/4q) m2
D

. (2.84)
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Because of Debye screening, the electric contribution to the damping rate γl is finite and

of order e4T 3/m2
D = O(e2T ). In the magnetic sector, the dynamical (q0 6= 0) screening

[1, 2] is not enough to make finite γt, which remains logarithmically divergent (see Ref.

[32] for more details):

γt ' e4T 3

24

∫
dq
∫ q

−q

dq0

2π

1

q4 + (πm2
Dq0/4q)2

' e2T

4π

∫ mD

µ

dq

q
=

e2T

4π
ln

mD

µ
, (2.85)

where µ is an IR cutoff and we have retained only the dominant, logarithmically divergent,

contribution. The remaining IR divergence in eq. (2.85) is associated to the unscreened

static magnetic interactions. Since the latter have an infinite range, one may worry that

the gradient expansion may become invalid in the calculation of the damping rate (cf. the

remark after eq. (2.70)). Recall, however, that in the calculation of γ, the particles with

which the quasiparticle interacts are in equilibrium, and constitute therefore a uniform

background (cf. the discussion at the end of Sec. 2.4.) Thus, the question of the relative

sizes of the range of the interaction and that of the space-time inhomogeneities is not

an issue here. Rather, the IR divergence in eq. (2.85) is an artifact of the perturbative

expansion and can be eliminated by a specific resummation [32] which goes beyond the

approximations performed in deriving the Boltzmann equation (see however Ref. [44]).

The IR problem of the damping rate does not show up in the calculation of the

transport coefficients, because the IR contribution to Γ, the first term in the r.h.s. of

eq. (2.79), is actually compensated by a similar contribution to the third term, involving

W (k′, X) : indeed, for soft q, W (k′, X) ≡ W (k − q, X) ≈ W (k, X), so that the first

and third terms in eq. (2.79) cancel each other. As we shall see in Sec. 4, this can

be understood as a cancellation between self-energy and vertex corrections in ordinary

Feynman graphs. A similar cancellation occurs between the other two terms in eq. (2.79),

namely W (p, X) and W (p′, X). Thus, in order to see the leading IR (q � T ) behaviour

of the full integrand in eq. (2.79), one has to expand W (k′, X) and W (p′, X) to higher

orders in q. This generates extra factors of q which remove the most severe IR divergences

in the collision integral. As a result, the typical rate involved in the calculation of the

transport coefficients is Γtr ∼ e4T ln(1/e), where the logarithm originates from screening

effects at the scale eT .

Of course, the simple arguments above are only good enough to provide an order-

of-magnitude estimate for the transport relaxation times. In order to compute transport

coefficients, one has to solve the Boltzmann equation (2.56) with the linearized collision

term (2.79), which is generally complicated. Explicit solutions can be found, e.g., by

using specific Ansätze for the unknown function W (k, X), or by variational methods.

Some calculations of this kind can be found in Refs. [9, 14, 15, 33, 34].
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3 Boltzmann equation for hot QCD

We now come to the case of the high temperature Yang-Mills plasma. As mentioned in the

Introduction, we are interested in the regime of ultrasoft colour excitations propagating

on a typical scale λ ∼ 1/g2T . (More precisely, the spatial gradients of the fields Aµ
a are of

order g2T , but their time derivatives can be even softer, i.e., of order g4T .) The relevant

response function is the induced colour current, which we shall eventually express in the

form (with vµ = (1,k/k)):

ja
µ(X) = 2g

∫ d3k

(2π)3
vµ Tr

(
T aδN(k, X)

)
. (3.1)

where δNab(k, X) is a density matrix in colour space. The overall factor 2 stands for the

two transverse polarizations.

The density matrix δNab(k, X) is a functional of the average fields Aµ
a and must

transform covariantly under the gauge transformations of the latter. That is, under the

gauge transformation (Aµ = Aa
µT a):

Aµ(X) −→ h(X)

(
Aµ(X)− i

g
∂µ

)
h†(X), (3.2)

where h(x) = exp(iθa(x)T a), we must have:

δNab(k, X) −→ haā(X)δNāb̄(k, X)h†
b̄b
(X). (3.3)

Indeed, this ensures that ja
µ(X) transforms as a colour vector: jµ

a → habj
µ
b , or, in matrix

notations,

jµ(X) ≡ jµ
a T a −→ h(X)jµ(X)h†(X). (3.4)

(This should be contrasted with the Abelian case, where both the current and the distri-

bution function are gauge invariant.)

The covariance of the density matrix δNab(k, X) should result from a corresponding

property of the off-equilibrium gluon propagator Gµν
ab (x, y) = 〈Taµ

a(x)aν
b (y)〉 from which

it originates. However this propagator depends not only upon the choice of a gauge

for the average field Aµ
a , but also on the gauge-fixing condition for the fluctuating field

aµ
a . With a generic gauge fixing, Gµν

ab (x, y) transforms in a complicated way under the

gauge transformations of Aµ
a . The situation becomes simpler when one uses the so-called

“background field gauge” to be introduced in the next subsection [45, 46]. Then the gauge

fixing term is covariant under the gauge transformations of the average field Aµ
a , and the

gluon propagator G(x, y) can be turned into a covariant quantity by attaching Wilson

lines in x and y. We shall then be able to maintain explicit gauge symmetry with respect

to the background field at each step of our calculation.

25



3.1 The background field gauge

In this method, one splits the gauge field into a classical background field Aa
µ, to be later

identified with the average field, and a fluctuating quantum field aa
µ. The generating

functional of Green’s functions is written as:

Z[j; A] =
∫
DaDζ̄Dζ eiSF P [a,ζ,ζ̄;A]+i

∫
C

d4xjb
µaµ

b , (3.5)

with the Fadeev-Popov action:

SFP [a, ζ, ζ̄; A] =
∫

C
d4x

{
− 1

4

(
F a

µν [A + a]
)2

+
1

2λ

(
Di[A]ai

)2
+ ζ̄a

(
Di[A]Di[A + a]

)
ab

ζb
}
,

(3.6)

where Dµ[A + a] = ∂µ + ig(Aµ + aµ) is the covariant derivative for the total field Aµ + aµ,

and F a
µν [A+ a] is the respective field strength tensor. Furthermore, the gauge-fixing term

(1/2λ)(Di[A]ai)2, which is of the Coulomb type, is manifestly covariant with respect to the

gauge transformations of the background gauge field Aµ. Accordingly, the exponential in

eq. (3.6) is invariant with respect to the following transformations (with matrix notations:

h(x) = exp(iθa(x)T a), aµ = ab
µT b, ζ = ζaT a, etc.):

Aµ → h(Aµ − (i/g)∂µ)h
†, jµ → hjµh†,

aµ → haµh†, ζ → hζh†, ζ̄ → h†ζ̄h. (3.7)

(Note the homogeneous transformations of the quantum gauge fields (aµ) and ghost fields

(ζ, ζ̄) in the equations above.) Because of this symmetry, the generating functional Z[j; A]

is invariant under the normal gauge transformations of its arguments, given by the first

line of eq. (3.7). Then, the gluon Green’s functions, derived from Z[j; A] by differentiation

with respect to ja
µ, are gauge covariant under the same transformations.

The physical Green’s functions are obtained by identifying the total average field

to the background field. This implies:

〈ab
µ(x)〉 ≡ δ ln Z[j; A]

iδjµ
b (x)

= 0 (3.8)

which determines a functional relation between the external current and the average field;

we write this as j = j[A]. Then, the 2-point function is obtained as:

Gab
µν(x, y) ≡ 〈TC aa

µ(x)ab
ν(y)〉 = − δ2 ln Z[j; A]

δjµ
a (x)δjν

b (y)

∣∣∣∣
j[A]

. (3.9)

Under the gauge transformations (3.7) of Aµ, it transforms covariantly:

Gµν
ab (x, y) → haā(x) Gµν

āb̄
(x, y) h†

b̄b
(y). (3.10)
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The ghost propagator,

∆ab(x, y) ≡ 〈TC ζa(x)ζ̄b(y)〉, (3.11)

has the same transformation property. Similar covariance properties hold for the higher

point Green’s functions, and for the various self-energies. Note that, in practice, we shall

never have to solve the implicit eq. (3.8) for j[A], since we shall be able to impose the

condition 〈aµ(x)〉 = 0 directly on the equations of motion for the Green’s functions.

In deriving the Boltzmann equation satisfied by δN(k, X), it will be convenient to

use the Coulomb gauge, which offers the most direct description of the physical degrees of

freedom: in this gauge, the (hard) propagating modes are entirely contained in the trans-

verse components of the spatial gluon propagator Gij(x, y), so that the density matrix

δN(k, X) is simply the gauge-covariant Wigner transform of Gij(x, y) (see below). (In

other gauges — like the “covariant” ones with gauge-fixing term (1/2λ)(Dµ[A]aµ)2 — the

physical, transverse degrees of freedom are mixed in all the components of the gluon prop-

agator Gµν . In this case, the density matrix δN(k, X) involves a linear combination of the

Wigner functions of the gluons and the ghosts, and it is only this particular combination

which is gauge-fixing independent [4]. The intermediate calculations are cumbersome,

and the explicit proof of the gauge-fixing independence is quite non-trivial already at the

mean field approximation — or “hard thermal loop” — level [28, 4].)

In what follows we shall mostly use the strict Coulomb gauge condition, namely:

Di[A] ai = 0. (3.12)

In this gauge, all the non-equilibrium Green’s functions are transverse, that is:

Di
x[A] Giν(x, y) = 0 , (3.13)

and similarly for the higher point functions. The only non-trivial components of the free

retarded gluon propagator are:

G
(0)
00 (k) = − 1

k2
, G

(0)
ij (k) = − δij − k̂ik̂j

k2
0 − k2

. (3.14)

That is, the electric gluon is static, and the same is also true for the Coulomb ghost:

∆(0)(k) = 1/k2. Accordingly (with G<
0 (k) and G>

0 (k) as defined in eq. (2.14)),

G
< (0)
ij (k) = (δij − k̂ik̂j) G<

0 (k), G
> (0)
ij (k) = (δij − k̂ik̂j) G>

0 (k), (3.15)

while all the other components are zero.
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3.2 Equations of motion

The equations of motion for the average field Aµ
a read:

(DνFνµ)a(x) = ja
µ(x). (3.16)

Here and in what follows, Dµ or Fµν denote the covariant derivative or the field strength

tensor associated to the background field Aa
µ. The induced colour current ja

µ(x) involves

the off-equilibrium 2-point functionse for gluons and ghosts:

jµ
a (x) = i g Tr T a

{
ΓµρλνDx

λ G<
ρν(x, y) + ∆<(x, y) (Dµ

y )†
} ∣∣∣∣

y=x
. (3.17)

We have used here the notation:

Γµνρλ ≡ 2gµνgρλ − gµρgνλ − gµλgνρ. (3.18)

Furthermore, D†[A] =
←
∂ − igAaT a, and the derivative

←
∂ acts on the function on its left.

The Kadanoff-Baym equations for the gluon 2-point functions read (cf. Sec. 2.1) :(
g ρ

µD2 −DµD
ρ + 2igF ρ

µ

)
x
G<

ρν(x, y) =∫
d4z

{
gµλΣ

λρ
R (x, z) G<

ρν(z, y) + Σ<
µρ(x, z)Gρλ

A (z, y)gλν

}
, (3.19)

and

G<ρ
µ (x, y)

(
gρν

(
D†
)2
−D†ρD

†
ν + 2igFρν

)
y

=∫
d4z

{
gµλG

λρ
R (x, z) Σ<

ρν(z, y) + G<
µρ(x, z)Σρλ

A (z, y)gλν

}
, (3.20)

together with the gauge fixing conditions (cf. eq. (3.13)):

Di
xGiν(x, y) = 0, Gµj(x, y)Dj†

y = 0. (3.21)

In deriving these equations, we have used symmetry properties like:

G> ab
µν (x, y) = G< ba

νµ (y, x), G ab
R µν(x, y) = G ba

A νµ(y, x), (3.22)

and similarly for the self-energies.

In the following developments, we shall often omit the upperscripts > and < on the

2-point functions, and indicate them only when necessary, e.g., on the final equations.

eThere is also a contribution to the current from the gluon 3-point function which, however, starts at
two-hard-loop level and is thus negligible for what follows [3].
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3.3 Gauge-covariant Wigner functions

Let Gab(x, y) denote any of the 2-point functions, and Gab(k, X) the corresponding Wigner

function, defined as in eq. (2.26). Unlike Gab(x, y), which is separately gauge-covariant

at x and y (cf. eq. (3.10)), its Wigner transform Gab(k, X) is not covariant. However,

following what we did for SQED, we can construct the following function (cf. eq. (2.29)):

Ǵab(s, X) ≡ Uaā

(
X, X +

s

2

)
Gāb̄

(
X +

s

2
, X − s

2

)
Ub̄b

(
X − s

2
, X

)
, (3.23)

where U(x, y) is the non-Abelian parallel transporter, also referred to as a Wilson line

(Aµ = Aa
µT a) :

U(x, y) = P exp
{
−ig

∫
γ
dzµAµ(z)

}
. (3.24)

As in the Abelian case, the path γ is arbitrary (see the discussion before eq. (2.31)).

Under the gauge transformations of Aµ, the Wilson line (3.24) transforms as (in matrix

notations):

U(x, y) −→ h(x) U(x, y) h†(y) , (3.25)

so that the function (3.23) is indeed gauge-covariant at X for any given s:

Ǵ(s, X) −→ h(X) Ǵ(s, X) h†(X) . (3.26)

Correspondingly, its Wigner transform Ǵab(k, X) transforms covariantly as well: For any

given k, Ǵ(k, X) −→ h(X) Ǵ(k, X) h†(X).

In principle, the equations of motion for Ǵ(s, X) follow from the equations of motion

(3.19)–(3.21) for G(x, y) by replacing G(x, y) by (cf. eq. (3.23)):

G(x, y) = U(x, X) Ǵ(s, X) U(X, y). (3.27)

However, in contrast to what we did for SQED, in the non Abelian case we have to proceed

to a linearisation in order to preserve the consistency of the expansion in powers of g.

Recall indeed that the mean fields Aµ
a are supposed to be weak and slowly varying, such

that ∂X ∼ gA � T . (The ultrasoft covariant derivative is of the order DX = O(g2T ),

but the simplifications we are refering to hold already when DX = O(gT ) [4, 1, 3].)

For such soft background fields the function Ǵ(s, X) remains strongly peaked at s = 0,

and vanishes when s >∼ 1/T . Over such a short scale, the mean field Aµ does not vary

significantly. Furthermore, for s <∼ 1/T , gs · A � 1 since gAµ � T . We can then expand

the Wilson lines in eq. (3.23) in powers of g and get, to leading non-trivial order:

Uab(x, y) ' δab − ig
(
s · Aab(X)

)
. (3.28)
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This should be compared to eq. (2.31) in SQED: both expressions hold to leading order

in an expansion in soft gradients, but in the non-Abelian expression (3.28) we have also

performed an expansion in powers of the gauge field. In what follows, we will never need

to go beyond the simple approximation (3.28).

Similarly, we shall see that the off-equilibrium fluctuations δG ≡ G− Geq are per-

turbatively small: δG ∼ (DX/T )Geq ∼ g2Geq. Thus, by writing:

G ≡ Geq + δG, Ǵ ≡ Geq + δǴ, (3.29)

in eq. (3.23), and recalling that Gab
eq = δabGeq, we can easily obtain the following relation

between δǴ and δG, valid to leading order in g:

δǴ(s, X) ' δG(x, y) + ig
(
s ·A(X)

)
Geq(s), (3.30)

or, equivalently:

δǴ(k, X) ' δG(k, X) + g(A(X) · ∂k)Geq(k). (3.31)

Note that both terms in the r.h.s. of eq. (3.30) or (3.31) are of the same order, namely of

O
(
(DX/T )Geq

)
. On the other hand, the terms which have been neglected in going from

eq. (3.23) to eq. (3.30) are down by, at least, one more power of DX/T .

Consider now a term like Dµ
xG(x, y) which appears in eqs. (3.19)–(3.21). Clearly,

such a term transforms in the same way as G(x, y), so it can be treated in a similar way

(cf. eq. (3.23)). Then, we can write:

δ
(
Dµ

xG(x, y)
)
≡ Dµ

xG(x, y)− ∂µ
s Geq(s) ' ∂µ

s δǴ(s, X) − ig
(
s · A(X)

)
∂µ

s Geq(s), (3.32)

which parallels eq. (3.30). In particular, since the equilibrium gluon Wigner function

is transverse, ∂iG
iν
eq = 0, eqs. (3.21) and (3.32) show that the gauge-covariant Wigner

function is transverse as well:

∂i
sǴiν(s, X) = 0, or kiǴiν(k, X) = 0. (3.33)

Finally, we have to express the induced current (3.17) in terms of the gauge-covariant

Wigner functions. Since it vanishes in equilibrium, it involves only the off-equilibrium

deviations of the Wigner functions of the gluons and the ghosts. We have:

ja
µ(X) = g

∫
d4k

(2π)4
Tr T a

{
−kµδǴ< ν

ν (k, X) + δǴ<
µν(k, X)kν − kµδ∆́

<(k, X)
}
, (3.34)

where the following property has been used (cf. eq. (3.32)):

Dµ
xG(x, y)

∣∣∣
y=x

= ∂µ
s Ǵ(s, X)

∣∣∣
s=0

. (3.35)

30



Like (3.17), eq. (3.34) holds in an arbitrary gauge. In Coulomb’s gauge it can be further

simplified: as we shall see in the next section, only the transverse fluctuations δǴij(k, X) ≡
(δij − k̂ik̂j)δǴ(k, X) matter for the calculation of jµ, so that:

jµ
a (X) = 2g

∫ d4k

(2π)4
kµTr

{
T aδǴ<(k, X)

}
. (3.36)

3.4 The non-Abelian Vlasov equation

In this section, we shall study eqs. (3.19)–(3.21) in the limit where the all the terms

involving self-energies can be neglected. As in the case of SQED, this amounts to a mean

field approximation in which the hard gluons are allowed to scatter on the average colour

fields Aµ
a , but not among themselves. The resulting equations are:(

g ρ
µ D2 −DµDρ + 2igF ρ

µ

)
x
Gρν(x, y) = 0,

G ρ
µ (x, y)

(
gρν(D

†)2 −D†ρD
†
ν + 2igFρν

)
y

= 0, (3.37)

where G denotes either one of the functions G> or G<. The outcome of the present

subsection is the Vlasov equation for the gluon density matrix. The derivation is not new

[4], except for the use of the Coulomb gauge. However, since this involves manipulations

which will be essential for the evaluation of the collision terms, we present it in detail.

The equations (3.37) involve hidden powers of g, associated with the soft inho-

mogeneities (∂X ∼ g2T ) and with the amplitudes of the mean fields (A ∼ gT and

gFµν ∼ g4T 2). The purpose of the covariant gradient expansion is precisely to isolate

all the terms of leading order in g. (Actually, all the manipulations in this subsection

apply already for inhomogeneities at the scale gT , when ∂X ∼ gA ∼ gT and gFµν ∼ g2T 2

[4].)

As in Sec. 2.3, we start by considering the difference of the two equations (3.37).

Let us look at the first term in the l.h.s. of this difference equation, which we denote as:

Ξ(x, y) ≡ D2
xG(x, y) − G(x, y)(D†y)

2, (3.38)

where D2
x and (D†y)

2 are given by eq. (2.35), except that the derivatives in (D†y)
2 are now

understood to act on their left. (Minkowski indices are omitted to simplify the notations;

they will be reestablished when needed.) Proceeding as in Sec. 2.3, and paying attention

to the colour algebra, we obtain:

Ξ(s, X) = 2∂s · ∂XG + 2ig
[
Aµ(X), ∂µ

s G
]
+ ig

{
Aµ(X), ∂µ

XG
}

+ ig
{
(s · ∂X)Aµ, ∂µ

s G
}

+ig
{
(∂X · A), G

}
− g2

[
A2(X), G

]
− g2

2

{
(s · ∂X)A2, G

}
+ ... , (3.39)
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where the right parantheses (the braces) denote commutators (anticommutators) of colour

matrices, and the dots stand for terms which involve at least two soft derivatives ∂X .

At this point, we use the fact that A ∼ gT and δG ≡ G−Geq ∼ g2Geq (as will be

verified a posteriori), with Geq ≈ G(0) in the mean field approximation. To leading order

in g, eq. (3.39) then simplifies to:

Ξ(s, X) ≈ 2(∂s · ∂X)δG + 2ig [Aµ, ∂µ
s δG] + 2ig(s · ∂X)Aµ (∂µ

s G(0)) + 2ig(∂X ·A)G(0) ,

(3.40)

where all the terms are of order g4T 2G0. Taking now the Wigner transform, we get:

Ξ(k, X) ≈ 2
[
k ·DX , δG(k, X)

]
+ 2gkµ

(
∂ν

XAµ(X)
)
∂νG

(0)(k), (3.41)

where G(k, X) is the ordinary Wigner transform of G(x, y), defined as in eq. (2.26). This

can be rewritten in a gauge-covariant form by replacing δG = δǴ − g(A · ∂k)G
(0) (cf.

eq. (3.31)):

Ξµν(k, X) ≈ 2
[
k ·DX , δǴµν(k, X)

]
− 2gkαFαβ(X) ∂βG(0)

µν (k), (3.42)

where the Minkowski indiced have been reintroduced.

We return now to eqs. (3.37). Since we are mainly interested in the transverse gluon

Wigner function δǴij(k, X), let us focus on the components µ = i and ν = j:

D2
xGij −Dx

i D
x
0G0j + 2igF ρ

i (x)Gρj = 0,

Gij

(
D†y
)2
−Gi0D

†
0 yD

†
j y + 2igGiρF

ρ
ν(y) = 0. (3.43)

(In writing these equations, we have also used the gauge-fixing constraint (3.21) to simplify

some terms.) When taking the difference of these equations, we first meet (cf. eq. (3.42)):

D2
xGij −Gij

(
D†y
)2
−→ 2

[
k ·DX , δǴij

]
− 2gkαFαβ(X) ∂βG

(0)
ij (k). (3.44)

Note the following identity, which will be useful later:

kαFαβ∂βG
(0)
ij (k) ≡ kαFαβ∂β [(δij − k̂ik̂j)G0(k)]

= (δij − k̂ik̂j)k
αFαβ∂βG0 − kαFαl

kiδjl + kjδil − 2k̂ik̂jkl

k2
G0. (3.45)

The terms involving Gi0 and G0j vanish in equilibrium, and remain small out of equi-

librium, but nevertheless their conribution to eqs. (3.43) is non-negligible: Indeed, we

shall verify shortly that Gi0 ∼ (D2
X/T 2)G0, which is one order higher than the transverse

fluctuations δGij ∼ (DX/T )G0. However, the hard derivatives multiplying Gi0 and G0j

in eqs. (3.43) do not cancel in the difference of the two equations, in contrast to what
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happens with the spatial components δGij . Specifically, ∂2
x − ∂2

y = 2∂s · ∂X ∼ TDX , while

∂x
i ∂x

0 ∼ ∂s
i ∂

s
0 ∼ T 2. Therefore, the difference:

Dx
i D

x
0G0j −Gi0D

†
0 yD

†
j y ≈ ∂s

0(∂
s
i G0j − ∂s

j Gi0) ∼ (DX)2G0, (3.46)

is of the same order as, e.g., (∂s · ∂X)Gij . We thus have to evaluate these terms properly,

which we shall do later, with the following results:

G0j(k, X) ≈ 2igF0l
δlj − k̂lk̂j

k2
G0(k), Gab

i0 (k, X) = Gba
0i (−k, X). (3.47)

(The second equality above follows from the symmetry property (3.22).) The correspond-

ing contribution to the kinetic equation for δǴij(k, X) reads then:

−
(
Dx

i D
x
0G0j −Gi0D

†
0 yD

†
j y

)
−→ −2gk0F0l

kiδjl + kjδil − 2k̂ik̂jkl

k2
G0(k). (3.48)

Finally, in the last terms in eqs. (3.43) — the terms involving the field strength tensor —

we can replace F ρ
i (x) ≈ F ρ

i (X) and Gρj(k, X) ≈ G
(0)
ρj (k) = δρl(δlj − k̂lk̂j)G0, to get:

−2ig
(
Fil(X)G

(0)
lj (s)−G

(0)
il (s)Flj(X)

)
−→ −2gG0(k)

(
Filk̂lk̂j + Fjlk̂lk̂i

)
. (3.49)

By using the identity (3.45), it is easy to recognize the role of the two contributions in

eqs. (3.48) and (3.49): this is to cancel the non-transverse piece in the r.h.s. of eq. (3.44).

Finally, δǴij(k, X) satisfies the following kinetic equation:[
k ·DX , δǴij(k, X)

]
− (δij − k̂ik̂j)gkαFαβ(X)∂βG0(k) = 0. (3.50)

It is transverse, as anticipated:

δǴij(k, X) ≡ (δij − k̂ik̂j)δǴ(k, X), (3.51)

with the new function δǴ(k, X) satisfying:[
k ·DX , δǴ(k, X)

]
= g kαFαβ(X)∂βG0(k). (3.52)

Since k ∼ T , DX ∼ g2T and gFαβ ∼ (DX)2 ∼ g4T 2, eq. (3.52) implies δǴ ∼ (DX/T )G0 ∼
g2G0, as anticipated.

Eq. (3.50) is the main result of this subsection. In order to complete its proof, we

still have to justify eq. (3.47) for G0j. To this aim, we shall consider the first eq. (3.37)

with µ = 0 and ν = j. This reads

D2
xG0j + 2igF0l(x)Glj(x, y) = 0. (3.53)

To the order of interest, D2
x ≈ ∇2

s, F0l(x) ≈ F0l(X) and Glj(k, X) ≈ G
(0)
lj (k). Then,

eq. (3.47) is just the Wigner transform of eq. (3.53).
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To conclude this section, let us remark that δǴ(k, X) is of the form (compare to

eq. (2.53) in SQED):

δǴab(k, X) = ρ0(k)δNab(k, X)

≡ 2πδ(k2)
{
θ(k0)δNab(k, X) + θ(−k0)δNba(−k, X)

}
, (3.54)

where the structure of the second line follows from the first symmetry property (3.22),

and the density matrix δNab(k, X) satisfies the equation [4] (with vµ = (1,k/k)):

[v ·Dx, δN(k, x)] = − g v · E(x)
dN

dk
, (3.55)

which may be seen as the non-Abelian generalization of the Vlasov equation. Note also

that eqs. (3.52) and (3.54) hold for both δǴ< and δǴ>, which are equal in the mean field

approximation:

δǴ<(k, X) ≈ δǴ>(k, X) ≡ δǴ(k, X) = ρ0(k)δN(k, X). (3.56)

This results from the fact that the spectral density ρ(k, X) = G>(k, X)−G<(k, X) is not

modified in the present approximation: ρ(k, X) ≈ ρ0(k) ≡ 2πε(k0)δ(k
2).

3.5 Collision terms in QCD

As we have seen in the previous section, the colour background field Aµ
a induces a fluc-

tuation δǴij ∼ (DX/T )G0 in the Wigner function of the hard transverse gluons. For

DX ∼ g2T , this fluctuation is of order g2G0, and the various terms in eq. (3.50) are all of

order D2
XG0 ∼ g4T 2G0. In this case, the collision terms cannot be neglected and must be

added in the r.h.s. of eq. (3.50).

In order to compute these terms, we consider, as usual, the difference of the self-

energy terms in the r.h.s. of eqs. (3.19) and (3.20). These involve convolutions of self-

energies and propagators which yield, after a Wigner transform,∫
d4z G(x, z) Σ(z, y) −→ G(k, X)Σ(k, X) +

i

2

{
G, Σ

}
PB

+ ... , (3.57)

up to terms involving, at least, two soft derivatives. The Poisson bracket {G, Σ}PB is

defined as in eq. (2.44). To simplify writing, we have left aside the Minkowski indices;

these will be added on the final equations. Note also that Σ and G are colour matrices,

so their ordering is important.

Collecting all the terms without soft derivatives in the r.h.s. of eqs. (3.19) and

(3.20), we obtain:

C(k, X) ≡ i
(
ΣRG< −G<ΣA + Σ<GA −GRΣ<

)
= − 1

2

(
{G>, Σ<} − {Σ>, G<}

)
− i[ReΣR, G<] + i[ReGR, Σ<], (3.58)
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where the various parantheses stand for colour commutators or anticommutators. In

writing the second line above, we have also used the relations (2.46).

We now proceed to some approximations. Recall first that both the soft gradi-

ents, and the amplitudes of the background fields and of the fluctuations δG or δΣ, are

controlled by powers of g. Writing for instance G>(k, X) ≡ G>
eq(k) + δG>(k, X) and

Σ<(k, X) ≡ Σ<
eq(k) + δΣ<(k, X), we have δG> ∼ g2G>

eq, and similarly δΣ< ∼ g2Σ<
eq (see

the next section for the latter estimate). Thus, to leading order in g, we can linearize

C(k, X), eq. (3.58), with respect to the off-equilibrium fluctuations. Since the equilibrium

two-point functions are diagonal in colour (e.g., Gab
eq = δabGeq), the two commutator terms

in eq. (3.58) simply vanish, while the anticommutator terms yield:

C(k, X) ' −
(
G>

eqδΣ
< + δG>Σ<

eq

)
+
(
δΣ>G<

eq + Σ>
eqδG

<
)
. (3.59)

Each of the terms in the above equation is of order g2GeqΣeq. At this order, the Poisson

bracket in eq. (3.57) can be neglected. Indeed:{
G, Σ

}
PB

≡ ∂kG · ∂XΣ − ∂XG · ∂kΣ = ∂kG · ∂XδΣ − ∂XδG · ∂kΣ, (3.60)

where we have used, e.g., ∂XΣ(k, X) = ∂XδΣ(k, X). With δΣ ∼ g2Σeq and a similar

estimate for δG, each of the two terms above is ∼ g2(∂X/T )GeqΣeq ∼ g4GeqΣeq.

Thus, at the order of interest, the only relevant collision terms are those displayed

in eq. (3.59). This corresponds to the quasiparticle approximation introduced in Sec. 2.4.

Indeed, it can be verified that with the Poisson brackets excluded, the hard gluon spectral

density ρ(k, X) satisfies the same equation as in the mean field approximation [3], so that

ρ(k, X) ≈ ρ0(k) ≡ 2πε(k0)δ(k
2). This has the consequence discussed at the end of the

previous section, namely:

δǴ<(k, X) ≈ δǴ>(k, X) ≡ δǴ(k, X) = 2πδ(k2)ε(k0)δN(k, X), (3.61)

and the density matrix δN(k, X) has the structure displayed in eq. (3.54). Here, however,

δN(k, X) will be shown to satisfy a Boltzmann-like equation, with the collision terms in

eq. (3.59). In the same approximation, the equilibrium 2-point functions G>
eq and G<

eq

coincide with the free respective functions, as given in eqs. (3.15) and (2.14).

We end this section by completing the following two tasks: (i) First, we shall rewrite

the collision terms (3.59) in a manifestly gauge-covariant way. (ii) Then, we shall specify

the tensor structure of the collision terms in Minkowski space.

For point (i), it is enough to replace the non-covariant fluctuations δΣ and δG in

eq. (3.59) by the corresponding gauge-covariant expressions δΣ́ and δǴ (cf. eq. (3.31)):

δG(k, X) = δǴ(k, X)− g(A(X) · ∂k)Geq(k),

δΣ(k, X) = δΣ́(k, X)− g(A(X) · ∂k)Σeq(k). (3.62)
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This yields:

C(k, X) = −
(
G>

eq δΣ́< + δǴ>Σ<
eq

)
+
(
δΣ́>G<

eq + Σ>
eq δǴ<

)
, (3.63)

which turns out to be the same expression as above, eq. (3.59), except for the replacement

of ordinary by gauge-covariant Wigner functions: The corrective terms in eq. (3.62) do

not contribute to C(k, X) since they are proportional to the collision term in equilibrium,

which is zero:

g(A(X) · ∂k)
(
G>

eq Σ<
eq − G<

eq Σ>
eq

)
= 0. (3.64)

And, actually, eq. (3.63) is formally the same as in SQED (cf. eq. (2.57)).

Concerning point (ii), recall that the equilibrium 2-point functions G< µν
eq and G> µν

eq

— which coincide here with the corresponding tree-level functions; cf. eq. (3.15) —

have only spatial, and transverse, components. These will in turn project the tranverse

components of the self-energy fluctuations δΣ́>
ij and δΣ́<

ij in the collision term (3.63).

Accordingly, the kinetic equation for δǴij(k, X), which reads (cf. eq. (3.50)) :

2
[
k ·DX , δǴij(k, X)

]
− 2(δij − k̂ik̂j)gkαFαβ(X)∂βG0(k) = Cij(k, X), (3.65)

admits a transverse solution:

δǴij(k, X) ≡ (δij − k̂ik̂j)δǴ(k, X) , (3.66)

as in the mean field approximation. Defining transverse projections in the usual way, e.g.,

δΣ́>
T (k, X) ≡ (1/2)(δij − k̂ik̂j)δΣ́

>
ij(k, X), (3.67)

we are finally led to the following kinetic equation for δǴ(k, X) :

2
[
k ·DX , δǴ(k, X)

]
− 2gkαFαβ(X)∂βG0(k) = C(k, X), (3.68)

with the collision term:

C(k, X) = −ΓT (k)δǴ(k, X) +
(
δΣ́>

T G<
0 − δΣ́<

T G>
0

)
. (3.69)

We have recognized here the equilibrium damping rate for the transverse gluons (cf.

eq. (2.59)):

ΓT (k) = (Σ<
eq(k) − Σ>

eq(k))T . (3.70)

(Note that, in what follows, the subscript T on transverse quantities will be often omit-

ted.) Eqs. (3.68)–(3.69) are manifestly covariant under the gauge transformations of the

background field.
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3.6 The hard gluon self-energy out of equilibrium

In this subsection, we use perturbation theory to compute the transverse gluon self-energy

δΣ́(k, X) to the order of interest. Specifically, we shall find that δΣ́ ∼ g2Σeq ∼ g4T 2, so

that the collision terms in the r.h.s. of eq. (3.68) are of the same order as the drift and

mean field terms in the l.h.s.

We start with the ordinary (i.e., non-gauge-covariant) self-energy Σ(x, y) out of

equilibrium. As in SQED, the leading-order collision term corresponds to scattering via

one gluon exchange, as illustrated in Fig. 1. However, as stated in the Introduction,

we are mostly interested here in colour relaxation, for which the relevant collisions are

dominated by soft momentum transfers, g2T <∼ q <∼ gT (cf. Sec. 3.8 below). Accordingly,

the virtual gluon in Fig. 1 is always soft and the self-energy which describes this collision

is the effective one-loop diagram depicted in Fig. 4. This is formally the same diagram

as in SQED, except that, now, the continuous line in Fig. 4 refers to a hard transverse

gluon and the wavy line to a soft virtual one (which can be longitudinal or transverse).

The bubble on the wavy line denotes, as usual, the resummation of one-loop polarization

tensor in the propagator of the soft gluon.

In thermal equilibrium, the hard line in Fig. 4 is a free propagator, while the soft one

is the HTL-resummed propagator, as introduced in Sec. 2.6. (In the HTL approximation,

the gluon and photon propagators are formally the same up to the replacement of the

Abelian Debye mass m2
D = e2T 2/3 by the non-Abelian one, m2

D = g2NcT
2/3 [1, 2].) Then,

the self-energy in Fig. 4 yields a contribution of O(g2T 2) to the thermal interaction rate

Γ(k), eq. (3.70). Thus, the first collision term in eq. (3.69) can be estimated as:

Γ(k)δǴ(k, X) ∼ g2T 2δǴ ∼ g4T 2G0. (3.71)

Consider now the other terms in eq. (3.69), which involve the off-equilibrium self-energy

δΣ. A typical term contributing to δΣ is obtained by replacing the equilibrium propagator

G0 in the hard line in Fig. 4 by the respective off-equilibrium fluctuation δG. Thus,

δΣ ∼ (δG/G0)Σeq ∼ g2Σeq ∼ g4T 2, (3.72)

which contributes to the collision terms at the same order as the damping rate in eq. (3.71).

Moreover, the off-equilibrium effects enter also the soft gluon line in Fig. 4, via the po-

larization tensor. This will be computed in the next section, where we shall see that the

net effect is also of order g4, as in eq. (3.72).

Let us turn now to the explicit evaluation of Σ. To this aim, we need the three-gluon

vertex between two hard gluons and a soft one in the presence of the background field. This

can be read on the Yang-Mills action, in the following way: Split the fluctuating gluon field
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(that we have originally denoted as aµ
b (x); cf. eq. (3.5)) into soft and hard components,

and use different notations for the two. That is, replacef aµ
b (x) −→ aµ

b (x) +Aµ
b (x), where

the new field aµ is hard (it carries momenta k ∼ T ), while the field Aµ is soft (with typical

momenta g2T � q � T ). There is no difficulty with this separation (e.g., no problems

with gauge symmetry) since the collision terms will be saturated by soft momenta q <∼ gT .

The Yang-Mills piece of the action reads then:

SY M = −
∫

C
d4x

1

4

(
F a

µν [A + a +A]
)2

=
1

2

∫
C

d4x aµ
a

{
gµνD

2 −DµDν + 2igFµν

}
ab

aν
b + . . . (3.73)

where Dµ ≡ Dµ[A + A] = Dµ[A] + igAµ, and the dots stands for terms of cubic or

quartic order in aµ, which are unimportant here. We still have to isolate the trilinear

couplings aµaνAρ from the equation above. After some algebra and integration by parts,

the relevant interaction piece of the action is obtained as:

SI = ig
∫

C
d4x aµ

a

{
gµν(A ·D) − 1

2
(AµDν +AνDµ) + 2[Dµ,Aν ]

}
ab

aν
b , (3.74)

where now Dµ ≡ Dµ[A] = ∂µ + igAµ is the covariant derivative defined by the background

field alone, and all the fluctuating fields are explicit.

Only the first two terms in eq. (3.74) will be important. In these terms, the covariant

derivatives act on the hard fields aµ and give rise to vertices with hard momenta. The

third term, on the other hand, involves a covariant derivative acting on the soft field Aµ,

and is subleading (by a factor of q/k <∼ g). In what follows, we shall ignore this term,

and focus on the self-energy built out of the first two terms in SI . We write:

SI =
ig

2
Γµνρλ

∫
C

d4x aµAρDλ[A]aν , (3.75)

with an implicit trace over the colour indices (the symbol Γµνρλ has been defined in

eq. (3.18)). With the three-particle vertex above, it is a straightforward exercise to con-

struct the self-energy displayed in Fig. 4. This reads:

Σab
µν(x, y) = − 4× g2

4
ΓµαγρΓνβδλ (T a)cd (T b)c̄d̄Dγδ

dd̄
(x, y)

(
Dρ

xG
αβ(x, y)Dλ †

y

)
cc̄
, (3.76)

where Gαβ(x, y) is the hard gluon propagator and Dγδ(x, y) the soft gluon propagator:

Dγδ
ab (x, y) ≡ 〈TCAγ

a(x)Aδ
b(y)〉. (3.77)

Finally, the factor 4 takes into account the fact that, strictly speaking, there are three

other terms similar to the one above, which yield the same contribution to the order of

interest (see below).

fNote that we preserve the notation Aµ
a(x) for the colour background field.
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By choosing the time variables in eq. (3.76) on opposite sides of the contour, we

deduce expressions for the Wigner functions Σ> and Σ<. The upperscripts > and < will

be often omitted, to simplify writing.

Consider first the equilibrium limit of eq. (3.76), where Aµ = 0 and the internal

propagators are unit matrices in colour: By using (T a)cd (T b)cd = −Ncδ
ab and going to

momentum space, we obtain (Σeq)
µν
ab (k) = δabΣ

µν
eq (k) with :

Σeq
µν(k) = g2Nc ΓµαγρΓνβδλ

∫
d4q

(2π)4
(k − q)ρ(k − q)λDγδ

eq (q) Gαβ
eq (k − q). (3.78)

In the construction of the collision terms, we shall need only the difference Σ< − Σ> (cf.

eqs. (3.69) and (3.70)), and the resulting integral will be dominated by soft momenta.

With this in mind, we shall neglect q next to k ∼ T in the vertices in eq. (3.78). Further-

more, to the same order, Geq ≈ G0 (which has only spatial and transverse components; cf.

eq. (3.15)) and Deq ≈ ∗D (which is the HTL-resummed gluon propagator; cf. Sec. 2.6).

We finally get the following estimate for the transverse gluon self-energy in equilibrium:

Σ<
eq(k) ≡ (1/2)(δij − k̂ik̂j)Σ

eq <
ij = 4g2Nck

ρkλ
∫

d4q

(2π)4
∗D<

ρλ (q)G<
0 (k − q), (3.79)

together with a similar expression for Σ>
eq(k). The following identity has been useful in

performing the Minkowski algebra (with Pij(k̂) ≡ δij − k̂ik̂j):

(1/2)Pij(k̂) Γilγρk
ρ Plm(k̂) Γjmδλk

λ = 4kγkδ. (3.80)

We now return to the general expression in eq. (3.76) and evaluate the off-equilibrium

fluctuation δΣ. Since we consider only small deviations away from equilibrium, we can

linearize this expression, as we have already done for the collision terms in Sec. 3.5. We

thus get, keeping explicit only the colour indices:

δΣab(x, y) = (T a)cd (T b)c̄d̄

{
δDdd̄(x, y)

(
∂ρ

x∂
λ
y G0(x− y)

)
δcc̄

+ δdd̄
∗D(x− y) δ

(
Dρ

xG(x, y)Dλ †
y

)
cc̄

}
. (3.81)

From this, we shall construct the gauge-covariant self-energy δΣ́ab(s, X), as explained in

Sec. 3.3. First, we replace the non-covariant fluctuations in the internal propagators

δD and δG in terms of the corresponding gauge-covariant fluctuations δD́ and δǴ (cf.

eq. (3.30) and (3.32)):

δD(x, y) = δD́(s, X) − ig
(
s · A(X)

) ∗D(s),

δ
(
Dρ

xG(x, y)Dλ †
y

)
= −∂ρ

s ∂
λ
s δǴ(s, X) + ig

(
s · A(X)

)
∂ρ

s∂
λ
s G0. (3.82)

Then, we define the covariant self-energy as in eq. (3.62):

δΣ́(s, X) = δΣ(x, y) + ig
(
s ·A(X)

)
Σeq(s), (3.83)
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with Σeq of eq. (3.78). The result of these operations has the rather simple form:

δΣ́ab(s, X) = (T aT b)cd

{
δD́cd(s, X)∂ρ

s∂
λ
s G0(s) + ∗D(s)∂ρ

s∂
λ
s δǴcd(s, X)

}
(3.84)

so that, after a Wigner transform:

δΣ́ab(k, X) = −(T aT b)cd

∫
d4q

(2π)4
(k − q)ρ(k − q)λ

×
{
δD́cd(q, X)G0(k − q) + ∗D(q)δǴcd(k − q, X)

}
. (3.85)

By putting back the factors of g2 and the Minkowski indices, we finally obtain the following

expression for the gauge-invariant self-energy fluctuation δΣ́ab
µν :

δΣ́ab
µν(k, X) = g2 ΓµαγρΓνβδλ (T aT b)cd

∫
d4q

(2π)4
(k − q)ρ(k − q)λ

×
{
δD́γδ

cd (q, X)Gαβ
0 (k − q) + ∗Dγδ(q)δǴαβ

cd (k − q, X)
}
.

(3.86)

This expression is very close to the corresponding expression in equilibrium: eqs. (3.78)

and (3.86) involve the same momentum-dependent vertices, and the equilibrium propa-

gators of eq. (3.78) have been simply replaced in eq (3.86) by the (linearized version) of

the respective off-equilibrium propagators. The only significant difference is the colour

structure, which is trivial in equilibrium.

As before, we can neglect the soft momentum q in the vertices of eq. (3.86), and

take the transverse projection of this expression, to obtain:

δΣ́ab
T (k, X) = 4g2kρkλ (T aT b)cd

∫ d4q

(2π)4

{∗Dρλ(q)δǴcd(k − q, X) + δD́ρλ
cd (q, X)G0(k − q)

}
,

(3.87)

which is the non-equilibrium generalization of eq. (3.79).

To conclude this section, let us return to a previous remark according to which the

complete self-energy Σ should involve three other terms in addition to the one displayed

in eq. (3.76). In these terms, the covariant derivatives act differently on the two internal

propagators, which then results in modification of the momentum-dependent vertices.

For instance, we meet terms like Dρ
xD

λ
y

(
G(x, y)D(x, y)

)
which, after covariantization and

Wigner transform, yield the same result as in eq. (3.86), except for the replacement

(k − q)ρ(k − q)λ −→ kρkλ in the vertices. However, this difference is not important here

since we neglect q next to k in the vertices. The same holds for the other two terms, so

that the total contribution is, indeed, four times the contribution of the term displayed

in eq. (3.76). Hence the factor 4 in eq. (3.76).
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3.7 The off-equilibrium propagator of the soft gluon

The above expression for δΣ́(k, X) involves the off-equilibrium propagator of the soft

gluon δD́ρλ(q, X), to which we turn now. The relevant off-equilibrium effects are encoded

in the soft gluon polarization tensor, which we denote by Πab
µν(x, y). In equilibrium, this

reduces to the corresponding hard thermal loop δabΠeq
µν(x − y). Thus, the calculation

below provides a generalization of the HTL polarization tensor out of equilibrium.

The Kadanoff-Baym equations for the soft gluon propagator Dµν(x, y) are formally

identical to those for Gµν(x, y), i.e., eqs. (3.19) and (3.20). For instance:(
g ρ

µ D2 −DµDρ + 2igF ρ
µ

)
x
D<

ρν −
∫

d4z gµλ Πλρ
R D<

ρν =
∫

d4z gλν Π<
µρD

ρλ
A . (3.88)

We shall also need the retarded propagator Dµν
R (x, y), which obeys (cf. eq.( 2.24)):(

gµ
ρD

2 −DµDρ + 2igF µ
ρ

)
x
Dρν

R (x, y) −
∫

d4z gλρ Πµλ
R Dρν

R = gµνδ(4)(x− y) . (3.89)

A priori, the self-energy Πµν in these equations involves both interactions with the hard

fields aµ
a and self-interactions of the fields Aa

µ. However Πµν will be dominated by the

one-loop diagrams depicted in Fig. 6 where the internal lines are hard.

As in the Abelian case, the two equations above imply a relation between D< and

Π< (cf. eq. (2.69)) :

D<
ρλ(x, y) = −

∫
d4z1d

4z2 gραDαµ
R (x, z1) Π<

µν(z1, z2)Dνβ
A (z2, y)gβλ. (3.90)

A similar relation holds in between D> and Π>. In particular, in thermal equilibrium,

∗D<
ρλ(q) = −

(∗DR(q) Π<
eq(q)

∗DA(q)
)

ρλ
, (3.91)

where ∗D(q) is the HTL-resummed propagator.

Out of equlibrium, we can compute the Wigner transform of eq. (3.90) to get:

D<
ρλ(q, X) = −

(
DR(q, X) Π<(q, X)DA(q, X)

)
ρλ

. (3.92)

This equation holds up to corrections of O(∂X/q). This is an important limitation here

since ∂X ∼ g2T , while g2T <∼ q <∼ gT . However, since it will turn out that the colour

relaxation rate is only logarithmically sensitive to the ultrasoft momenta q ∼ g2T , it can

be argued that the terms which have been neglected in the above gradient expansion are

suppressed by a factor of 1/ ln(1/g). In this sense, eq. (3.92) is still correct to logarithmic

accuracy.

The difficulty we are facing here comes from the necessity to perform a gradient

expansion in the presence of long range interactions, and has already been alluded to
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in the case of SQED in Sec. 2.5 (see the discussion after eq. (2.70)). In principle, one

could develop a more accurate approximation scheme by allowing for a collision term

non-local in X. Specifically, in the exact equation (3.90), we can safely treat x and y as

neighbouring points, with |x−y| ∼ 1/T , since the propagator D<(x, y) is to enter the hard

gluon self-energy Σ(x, y) in eq. (3.76); we can proceed similarly with the points z1 and z2 :

|z1 − z2| ∼ 1/T , since the polarization tensor Π<
µν(z1, z2) is dominated by the hard loop

(e.g., p is a hard momentum in eq. (3.97) below). But the points x and z1 (or y and z2) are

relatively distant one from the other, since they are related by the long-range propagator

DR(x, z1) (respectively, by DA(z2, y)). Thus, a more accurate gradient expansion should

treat X ≡ (x+y)/2 and X ′ ≡ (z1+z2)/2 as distinct points (the “end-points” of the virtual

gluon line in Fig. 1), which would then lead to a collision term which is non-local in X ′.

However, the construction of such a non local collision term goes beyond our present goal,

and we shall stick to the local expression in eq. (3.92).

The gauge-covariant fluctuation δD́<(q, X) is obtained from eq. (3.92) by first

linearizing with respect to the off-equilibrium fluctuations (e.g., Π<(q, X) ≡ Π<
eq(q) +

δΠ<(q, X), with δΠ< ∼ g2Π<
eq), and then replacing the ordinary 2-point functions with

the corresponding covariant ones. This gives:

δD́<(q, X) ≡ δD<(q, X) + g(A(X) · ∂q)
∗D<(q) = −∗DR(q) δΠ́<(q, X)∗DA(q) . . . , (3.93)

where the dots stand for terms involving the off-equilibrium deviations of the retarded,

or advanced, functions, but the equilibrium self-energy Π<
eq(q). It is easy to verify that

such terms will eventually cancel in the collision terms (as they do in the Abelian case:

cf. the remark after eq. (2.80)), so we shall ignore them in what follows.

We thus need the off-equilibrium polarization tensor δΠ́<(q, X) for soft q. This is

determined by one-loop diagrams which look formally as in SQED (cf. Fig. 6), except

that, in QCD, the internal lines denote hard transverse gluons. The tadpole diagram in

Fig. 6.b does not contribute to the collisional self-energies Π> and Π<, but only to the

retarded self-energy ΠR, which we know already to be the HTL (recall that we only need

this in equilibrium; cf. eq. (3.93)). Therefore, in what follows we shall focus on the non-

localg self-energy in Fig. 6.a, which we evaluate by using the three-particle vertex aµaνAρ

in eq. (3.75). This yields:

Πab
µν(x, y) =

g2

4
ΓµραβΓνλγδ (T a)cd (T b)c̄d̄

{(
Dρ

xG
αγ(x, y)

)
cc̄

(
Gβδ(x, y)Dλ †

y

)
dd̄

×Gαγ
cc̄ (x, y)

(
Dρ

xG
βδ(x, y)Dλ †

y

)
dd̄

}
. (3.94)

gIn Coulomb’s gauge, there is another tadpole coming from the diagram in Fig. 6.a where one of the
internal lines is transverse, and the other one is longitudinal (and static) [28]. This too contributes to
the retarded/advanced propagators, but not to the collisional self-energies.
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Starting with this expression, the linearization and the covariantization proceed along the

same lines as for the hard gluon self-energy in eq. (3.76). (This is legitimate since the loop

integral is dominated by hard momenta, so that Πµν(x, y) is localized at |x−y| <∼ 1/T .) In

this process, we use identities like eq. (3.30), (3.32) and (3.82) to replace ordinary Wigner

functions by gauge-covariant ones, and define the covariant polarization tensor as usual:

δΠ́(s, X) = δΠ(x, y) + ig
(
s · A(X)

)
Πeq(s), (3.95)

with

Πeq
µν(q) =

g2Nc

2
ΓµραβΓνλγδ

∫
d4p

(2π)4
pρpλ Gαγ

0 (p + q) Gβδ
0 (p). (3.96)

Here again, we have neglected q <∼ gT next to p ∼ T in the vertices.

The final result is quite predictible: The covariantized fluctuation δΠ́(q, X) is for-

mally similar to the equilibrium self-energy (3.96), except for the replacement of the

equilibrium internal lines by (linearized) off-equilibrium gauge-covariant Wigner func-

tions. Once again, this simple result holds only after covariantization, and implies that

the internal momenta in eq. (3.97) below should be interpreted as kinetic momenta (recall

the discussion after eq. (3.86)). Specifically:

δΠ́ab
µν(q, X) =

g2

2
ΓµραβΓνλγδ (T aT b)cd

∫
d4p

(2π)4
pρpλ

×
{
Gαγ

0 (p + q) δǴδβ
dc (p, X) + δǴαγ

cd (p + q, X) Gδβ
0 (p)

}
. (3.97)

At this point, we remember that the hard gluon transverse functions (in or out of equi-

librium) are purely spatial and transverse, so that the above equation can be further

simplified to:

(δΠ́>)ab
µν(q, X) = 4g2 (T aT b)cd

∫
d4p

(2π)4
pµpν

×
{
G>

0 (p + q) δǴ<
dc(p, X) + δǴ>

cd(p + q, X) G<
0 (p)

}
, (3.98)

where we have reestablished the upperscripts > and <.

3.8 The Boltzmann equation for colour

We are now in position to explicitly compute the collision terms in eq. (3.69). We write

C = C1 + C2, with

C1 ≡ −Γ(k)δǴ(k, X), C2 ≡ δΣ́>(k, X)G<
0 (k)− δΣ́<(k, X)G>

0 (k). (3.99)
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The first piece C1 involves the (equilibrium) damping rate for hard transverse gluons Γ(k),

which can be computed from eqs. (3.79) and (3.91) above:

Γ(k) = 4Ncg
2
∫ d4q

(2π)4
kρkλ

(∗D>
ρλ(q) G>

0 (k − q)− ∗D<
ρλ(q) G<

0 (k − q)
)

= −4Ncg
2
∫

d4q

(2π)4

[
kρ
∗Dρµ

R (q) ∗Dνλ
A (q)kλ

](
Π>

µν(q)G
>
0 (k − q)− Π<

µν(q)G
<
0 (k − q)

)
.

(3.100)

Here, Πµν ≡ Πeq
µν is the polarization tensor in equilibrium, as given in eq. (3.96). By

inserting it in eq. (3.100), one finds (with p′ ≡ p + q and k′ ≡ k − q):

Γ(k) = N2
c

∫
p q
|M|2

{
G<

0 (p)G>
0 (p′)G>

0 (k′)−G>
0 (p)G<

0 (p′)G<
0 (k′)

}
, (3.101)

where ∫
p q
≡
∫

d4q

(2π)4

∫
d4p

(2π)4
, (3.102)

and we have recognized the matrix element squared for the collision depicted in Fig. 1 :

|M|2 ≡ 16g4
[
kρ
∗Dρµ

R (q)pµ

][
pν
∗Dνλ

A (q)kλ

]
. (3.103)

The second piece C2 in eq. (3.99) can be similarly computed by using eqs. (3.87), (3.93)

and (3.98). One gets:

C2 = C21 + C22 + C23

Cab
21 ≡ −Nc(T

aT b)cd

∫
p q
|M|2

{
G<

0 (p)G>
0 (p′)G<

0 (k)−G>
0 (p)G<

0 (p′)G>
0 (k)

}
δǴcd(k

′, X),

Cab
22 ≡ −(T aT b)cc̄(T

cT c̄)dd̄

∫
p q
|M|2

{
G<

0 (k)G>
0 (k′)G>

0 (p′)−G>
0 (k)G<

0 (k′)G<
0 (p′)

}
δǴd̄d(p, X),

Cab
23 ≡ −(T aT b)cc̄(T

cT c̄)dd̄

∫
p q
|M|2

{
G<

0 (k)G>
0 (k′)G<

0 (p)−G>
0 (k)G<

0 (k′)G>
0 (p)

}
δǴdd̄(p

′, X).

(3.104)

In writing these equations, we have used the fact that δǴ< ' δǴ> ≡ δǴ in the present

approximation (cf. eq. (3.61)). The piece C21 comes from the first term in the r.h.s.

of eq. (3.87), which describes fluctuations in the hard propagator inside Σ(k, X) (the

lower line in Fig. 4). The other two pieces, C22 and C23, come from the second term in

eq. (3.87) and describe fluctuations in the soft (upper) line in Fig. 4. Clearly, these three

terms C21 C22 and C23 are associated with fluctuations along the external lines “to be

summed over” in Fig. 1 — namely, the lines with momenta p, p′ and k′ —, as opposed to

C1 which describes fluctuations along the incoming line with momentum k.

We shall verify in a moment that the phase-space integrals in eqs. (3.101) and

(3.104) are indeed dominated by soft exchanged momenta q, which justifies our previous
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approximations. This allows us to make some further simplifications, as follows: Recall

first that all the Wigner functions in these equations are distributions with support on

the tree-level mass-shell (cf. eq. (3.61)). E.g.,

G<
0 (k′) = ρ0(k − q)N(k0 − q0), δǴ(p′, X) = ρ0(p + q)δN(p + q, X), (3.105)

with ρ0(k) = 2πε(k0)δ(k
2). In such expressions, we cannot neglect q next to k (or p)

within the mass-shell δ-functions, but we can still do that in the occupation numbers:

G<
0 (k′) ≈ ρ0(k − q)N(k0), δǴ(p′, X) ≈ ρ0(p + q)δN(p, X). (3.106)

This yields, e.g., (compare to the Abelian expression in eq. (2.82)) :

Γ(k) ' N2
c

∫
dT |M|2

{
N(p0)[1 + N(p0)][1 + N(k0)]− [1 + N(p0)]N(p0)N(k0)

}
= N2

c

∫
dT |M|2 N(p0)[1 + N(p0)], (3.107)

and the phase-space measure
∫

dT has been defined in eq. (2.80). Similarly,

Cab
21 ' ρ0(k)Nc(T

aT b)cdδNcd(k, X)
∫

dT |M|2 N(p0)[1 + N(p0)], (3.108)

which is of the same form as the damping rate contribution C1 ≡ −Γ(k)δǴ(k, X) (cf.

eq. (3.107)), and can be combined with the latter to yield (in matrix notations):

C1 + C21 = −ρ0(k)
Nc

2
[T a, [T a, δN(k, X)]]

∫
dT |M|2 N(p0)[1 + N(p0)]. (3.109)

The remaining two terms C22 and C23 can be similarly simplified to yield:

Cab
22 + Cab

23 ' ρ0(k)(T aT b)cc̄(T
cT c̄)dd̄

∫
dT |M|2 N(k0)[1 + N(k0)]

(
δNdd̄ − δNd̄d

)
(p, X)

= ρ0(k)
Nc

2
(T e)ab

∫
dT |M|2 N(k0)[1 + N(k0)] Tr

(
T eδN(p, X)

)
, (3.110)

where the second line follows after some elementary colour algebra.

Thus, unlike the Abelian case in Sec. 2.6, where the IR contributions to the four

terms in eq. (2.79) cancel each other, here we do not have a complete cancellation because

of the non-trivial colour structure. By putting together eqs. (3.109) and (3.110), we finally

derive the following expression for the non-Abelian collision term:

C[δN ] = −ρ0(k)
Nc

2

∫
dT |M|2

{
N(p0)[1 + N(p0)] [T

a, [T a, δN(k, X)]] −

−N(k0)[1 + N(k0)] T
a Tr (T aδN(p, X))

}
. (3.111)

Together, eqs. (3.68) and (3.111) determine a Boltzmann equation which describes colour

relaxation in hot QCD. By also using eq. (3.54), this can be rewritten as an equation
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for the density matrix δNab(k, X). To this aim, we need the positive-energy projection

(k0 = εk ≡ |k|) of the collision term. For soft q and k0 = εk ∼ T , k′0 is positive as well:

ρ0(k
′)|k0=εk

=
2π

2εk−q

δ(εk − q0 − εk−q) '
2π

2εk

δ(q0 − q · v), (3.112)

where v = k̂ is the velocity of the incoming particle with momentum k. Concerning p0,

this can be either positive, p0 = εp, or negative, p0 = −εp, and the two situations yield

identical contributions. We thus replace (with v′ = p̂):

ρ0(p)ρ0(p + q) → 2

(
2π

2εp

)2

δ(p0 − εp)δ(q0 − q · v′). (3.113)

Also, for on-shell momenta k0 = εk and p0 = εp, the matrix element (3.103) becomes:

|M|2 = 16g4ε2
kε

2
p

∣∣∣∗Dl(q) + (q̂× v) · (q̂× v′) ∗Dt(q)
∣∣∣2, (3.114)

with the same notations as in the Abelian case (cf. eq. (3.114)).

By also using the identity N(p)[1 + N(p)] = −T (dN/dp), we are finally led to the

following Boltzmann equation, which is the main result in this paper:

[v ·DX , δN(k, X)] + g v ·E(X)
dN

dk
= C[δN ], (3.115)

with the collision termh:

C[δN ] ≡ g4NcT
∫

d3p

(2π)3
Φ(v · v′)

{
dN

dεp
[T a, [T a, δN(k, X)]] − dN

dεk
T a Tr (T aδN(p, X))

}
,

(3.116)

and the collision integral (vt and v′t are the velocity projections transverse to q):

Φ(v · v′) ≡ (2π)2
∫

d4q

(2π)4
δ(q0 − q · v)δ(q0 − q · v′)

∣∣∣∗Dl(q) + (vt · v′t) ∗Dt(q)
∣∣∣2. (3.117)

The collision terms above are identical to those written down in Ref. [7] on an heuristic

basis (cf. eq. (3.26) in Ref. [7]).

The above equations can be further simplified by noticing that the corresponding

solution δN(k, X) can be written in the form:

δN(k, X) ≡ −gW (X,v) (dN/dk), (3.118)

where the new function W (X,v) (a colour matrix) depends upon the velocity v (a unit

vector), but not on the magnitude k ≡ |k| of the momentum. This function satisfies a

hNote that the overall normalizations in eqs. (3.111) and (3.116) are different.
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simpler equation (we change X → x from now on since this is the only space-time variable

left in all the equations to come):

[v ·Dx, W (x,v)] = v ·E(x) − m2
D

g2T

2

∫
dΩ′

4π
Φ(v · v′)

×
{
[T a, [T a, W (x,v)]] − T a Tr (T aW (x,v′)

}
, (3.119)

where the angular integral runs over all the directions of the unit vector v′, and the Debye

mass m2
D comes out after performing the radial integral over p ≡ |p| :

m2
D ≡ − g2Nc

π2

∫ ∞
0

dp p2 dN

dp
=

g2NcT
2

3
. (3.120)

The factorized structure of the colour density matrix in eq. (3.118) has been first recog-

nized at the level of the mean field (or Vlasov) approximation (cf. eq. (3.55)), where it

has been shown to have a simple physical interpretation [5]. It is remarkable that such a

structure persists after the inclusion of the collision terms.

Consider furthermore the colour structure of eq. (3.119). In constructing the in-

duced current (3.1), we only need the first colour moment of the density matrix W (x,v),

namely Wa(x,v) ≡ (1/Nc)Tr (T aW (x,v)). The equation satisfied by Wa(x,v) follows

from eq. (3.119) by taking the appropriate colour trace, and reads:

(v ·Dx)
abWb(x,v) = v ·Ea(x)−m2

D

g2NcT

2

∫
dΩ′

4π
Φ(v · v′)

{
W a(x,v)−W a(x,v′)

}
.

(3.121)

This is the equation which has been announced in the Introduction (cf. eq. (1.2)). The

collision term in this equation has a simple physical interpretation. We may indeed

identify

m2
D

g2NcT

2

∫
dΩ′

4π
Φ(v · v′) = γ =

g2NcT

4π

(
ln

mD

µ
+ O(1)

)
, (3.122)

which is the damping rate γ ≡ Γ(k0 = k)/4k for a hard transverse gluon with velocity

v [31, 32]. In the present approximation, the gluon damping rate suffers from the same

logarithmic IR divergence as the damping rate for a charged particle in the Abelian case

(cf. Sec. 2.6). In the equation above, this has been cutoff by hand, by introducing an IR

cutoff µ (see the r.h.s. of eq. (3.122)).

In previous studies of the colour conductivity or the damping rates, it has been

generally assumed that the IR cutoff is provided by non-perturbative magnetic screening

at the scale g2T [2, 3]. This yields a damping rate γ ' αNcT ln(1/g) (with α ≡ g2/4π),

but the constant term under the logarithm cannot be determined: indeed, this is sensi-

tive to the details of the magnetic screening, which remains poorly understood. In the
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framework of the effective theory recently proposed by Bödeker [6], µ should be rather

understood as an intermediate scale µ ∼ g2T ln(1/g) separating the perturbative physics

at “hard” (k ∼ T ) and “semi-hard” (µ <∼ q <∼ gT ) momenta from the non-perturbative

physics at “ultrasoft” (q <∼ g2T < µ) momenta. Then, µ will hopefully cancel in any

complete calculation, via a matching between the perturbative and the non-perturbative

(e.g., lattice) calculations. However, our above derivation of the collision term shows that,

within the present formalism, it is not possible to go beyond leading-log accuracy (which

makes the issue of matching superfluous): this reflects the present limits of the gradient

expansion in the presence of long range interactions (cf. the discussion after eq. (3.92)).

Within this logarithmic accuracy, the integral in eq. (3.117) can be performed by

replacing the matrix element for transverse scattering by its infrared limit as q0 � q → 0,

namely (see eq. (2.84)) [32]:

|∗Dt(q0, q)|2 '
1

q4 + (πm2
Dq0/4q)2

−→q→0
4

m2
D

δ(q0)

q
. (3.123)

One thus obtains:

Φ(v · v′) ' 2

π2m2
D

(v · v′)2√
1− (v · v′)2

ln(1/g) , (3.124)

where the ln(1/g) comes from (compare to eq. (2.85)) :∫ mD

µ

dq

q
' ln

gT

µ
' ln

1

g
, (3.125)

with µ ∼ g2T ln(1/g). Then, eq. (3.121) reduces to (with γ ' αNcT ln(1/g)) :

(v ·Dx)W (x,v) = v ·E(x) − γ

W (x,v)− 4

π

∫
dΩ′

4π

(v · v′)2√
1− (v · v′)2

W (x,v′)

 .(3.126)

This is precisely the kinetic equation which generates Bödeker’s effective theory [6, 7].

The previous equations have been obtained by working in the Coulomb gauge for

the hard field fluctuations (cf. eq. (3.12)), but we expect the final results — namely,

the Boltzmann equation in eqs. (3.115)–(3.116), or (3.121) — to be actually gauge-fixing

independent. Except for the collision term, this has been explicitly proven in [4] (see also

Refs. [28, 29]). Moreover, on physical grounds, the collision term should be gauge-fixing

independent as well, since it involves only the off-equilibrium fluctuations of the (hard)

transverse gluons, together with the (gauge-independent) matrix element squared (3.114).

(See also the discussion after eq. 3.11.)

Furthermore, the previous equations are manifestly covariant under the gauge trans-

formations of the background fields. This ensures that the induced current (3.1), which
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can be expressed in terms of Wa(x,v) as follows:

jµ
a (x) = m2

D

∫
dΩ

4π
vµ Wa(x,v), (3.127)

transforms indeed as a colour vector in the adjoint representation. Moreover, this current

is covariantly conserved,

Dµj
µ = 0, (3.128)

as necessary for the consistency of the mean field equations of motion (3.16). To verify

eq. (3.128), use eq. (3.121) together with the fact that the collision terms vanishes after

angular averaging:∫
dΩ

4π

∫
dΩ′

4π
Φ(v · v′)

{
W a(x,v)−W a(x,v′)

}
= 0. (3.129)

The quantities Wa(x,v) may be regarded as functionals of the mean fields Aµ
a(x),

as given implicitly by the Boltzmann equation (3.121). The current (3.127) itself acts as

a generating functional for the one-particle-irreducible amplitudes of the ultrasoft colour

fields. We can formally write (see, e.g., Refs. [1, 3, 4]) :

ja
µ = ΠµνA

ν
a +

1

2
Γabc

µνρA
ν
bA

ρ
c + ... (3.130)

where Πµν(P ) is the polarization tensor for the ultrasoft (P ∼ g2T ) gluons, Γabc
µνρ is a

correction to the 3-gluon vertex, etc. For external momenta of order g2T or less, the

amplitudes in eq. (3.130) are of the same order of magnitude as the “hard thermal loops”

[28, 29, 4], which they generalize by including the effects of the collisions among the

hard particles. Like the HTL’s, the above amplitudes are gauge-fixing independent, and

satisfy simple Ward identities which follow from the conservation law (3.128) by successive

differentiations with respect to the fields Aµ
a . For instance:

pµ Πµν(p) = 0,

pµ
1Γµνρ(p1, p2, p3) = Πνρ(p3)− Πνρ(p2) . (3.131)

Such identities express the fact that the effective theory at the scale g2T , as obtained

from the Boltzmann equation [6], is gauge invariant. However, unlike the HTL’s — which

in terms of Feynman graphs correspond to one-loop diagrams [28, 29] —, each of the

ultrasoft amplitudes in eq. (3.130) receives contributions from an infinite series of multi-

loop Feynman graphs, which all contribute at the same order in g. This will be explained

in the next section and, in more detail, in a further publication [47].
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4 Diagrammatic interpretation of the collision terms

In this section we provide a diagrammatic interpretation of the collision terms. For the

case of a scalar field theory, such an interpretation has been worked out in much detail

in Refs. [33, 34], where the Boltzmann equation has been actually derived by resumming

appropriate classes of Feynman graphs. Here, where the Boltzmann equation has been

constructed by using different technics, it is still interesting to understand what are the

diagrams which have been effectively resummed in this construction. To this aim, it

is convenient to go back to eqs. (3.99), (3.101) and (3.104) where the off-equilibrium

fluctuations (like, e.g., δǴ(k, X)) are unambiguously associated with each of the colliding

fields in Fig. 1.

Consider first the piece C1 ≡ −Γ(k)δǴ(k, X) which involves the interaction rate

Γ(k) for the incoming particle with momentum k (cf. eq. (3.101)). This can be moved

into the l.h.s. of the kinetic equation and combined with the drift term k ·DX to yield:(
2(k ·Dx) + Γ(k)

)
δǴ(k, x) = 2g(k · F · ∂k)G0(k) + C21 + C22 + C23, (4.1)

with C2i as given in eqs. (3.104). After the inclusion of Γ, the drift operator describes

also the decay of the incoming particle. For instance, the corresponding Green’s function

satisfies (with k0 = k and γ = Γ/4k; cf. eq. (3.122)) :

−i (v ·Dx + 2γ) ∆(x, y;v) = δ(4)(x− y), (4.2)

with the retarded solution (below, t ≡ x0 − y0):

∆R(x, y;v) = i θ(t) δ(3) (x− y − vt) e−2γt U(x, y), (4.3)

which shows exponential attenuation in time with a rate equal to 2γ (compare to eq. (2.60)).

The inclusion of the interaction rate Γ(k) in the drift operator amounts to an approx-

imate self-energy resummation in the hard gluon propagator. At the level of the original

Kadanoff-Baym equations (3.19) and (3.20), this amounts to moving all the terms in-

volving G<(x, y) (including the terms ΣRG< and ΣAG<) into the left hand sides of these

equations. What we would like to argue now is that the other collision terms in the r.h.s.

of eq. (4.1) can be similarly recognized as vertex corrections.

For more clarity, consider the response of the plasma to an arbitrarily weak electric

mean field Ea. Then, non-linear effects are negligible and the relevant response function

is the polarization tensor: jµ
a (P ) ' Πµν(P )Aa

ν(P ), where P ∼ g2T is the (ultrasoft)

momentum carried by the background field. In the mean field approximation, and to

linear order in the electric field, the induced fluctuation reads (cf. eq. (3.55)):

δN(k, P ) =
−gv · E(P )

v · P + iη

dN

dk
, (4.4)
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Figure 8: Diagrammatic representation of eq. (4.5): (a) the first-order fluctuation

δN (0)(k, P ), as induced by the mean field Aµ(P ); (b) the corresponding contribution

to the polarization tensor Πµν(P ). The continuous line with a blob denotes the hard

gluon propagator after the inclusion of the damping rate.

where the small imaginary part iη with η → 0+ stands for retarded boundary conditions.

After adding the collision terms, we end up with an integro-differential equation for

δN (see, e.g., eqs. (3.121) or (4.1)), whose resolution is non-trivial already in the weak

field limit. However, in order to see what are the relevant graphs, it is sufficient to consider

the perturbative solution obtained by iterations. First, it is straightforward to resum the

equilibrium damping rate Γ (i.e., the collision term C1): according to eqs. (4.1) and (4.2),

this amounts to including the damping rate in eq. (4.4). This provides us with the 0th

order iteration for δN :

δN (0)(k, P ) =
−gv · E(P )

v · P + 2iγ

dN

dk
. (4.5)

This can be given the diagrammatic representation in Fig. 8.a where the blob on the

continuous line denotes the resummation of the damping rate in the hard gluon propaga-

tor, and the wavy line with a bubble attached to it represents a mean field insertion. In

this approximation, the polarization tensor Πµν(P ) is given be the one-loop diagram in

Fig. 8.b.

With δN (0) as above, we can compute the first iteration for the collision terms

C2i, i = 1, 2, 3. We shall not write down the corresponding formulae, but simply look for

their interpretation in terms of Feynman graphs. The term C21 in eq. (3.104) is associated

with a fluctuation δN(k′, X) in the hard, lower, propagator in Fig. 4; its first iteration is

obtained by using the approximation (4.5) for this fluctuation, and has the diagrammatic

representation in Fig. 9.a. To the same order, C22 is represented in Fig. 9.b, while C23

has a similar representation. With these approximations for the collision terms, one can

compute the first iteration δN (1)(k, P ), as well as its contribution to Πµν(P ): the latter

is shown in Figs. 10.a and 10.b. Clearly, Fig. 10.a is a vertex correction, which has
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Figure 9: Diagrammatic representation of the collision terms C21 (fig. (a)) and C22 (fig.

(b)), as computed with the first-order fluctuation δN (0)(k, P ). The wavy line with a blob

denotes the soft gluon propagator in the HTL approximation. The other notations are as

in Fig. 8.
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Figure 10: Loop corrections to the polarization tensor in Fig. 8.b, as generated by the

collision terms depicted in Fig. 9.

to supplement the self-energy resummations in Fig. 8.b as required by gauge symmetry.

Similarly, the diagram in Fig. 10.b is a different kind of vertex correction which involves

two hard loops (and one soft one).

It should be clear by now what are the diagrams generated by further iterations:

these are the ladder diagrams displayed in Fig. 11 where the continuous lines are hard

transverse gluons dressed with the damping rate Γ, and the (internal) wavy lines are soft

gluons which may be longitudinal or transverse and are dressed with the hard thermal

loop. Indeed, the phase-space integrals giving Γ and C2i are individually dominated by

soft q momenta, in the range g2T <∼ q <∼ gT . Note also that the diagrams in Fig. 11

may involve an arbitrary number of loops. However, from the previous derivation of

the Boltzmann equation, we know that, for an external momentum P ∼ g2T , they all

contribute at the same order in g, namely, at the same order as the corresponding hard

thermal loop [1, 2] (see also Ref. [47]).

Except for the colour structure of the vertices, similar diagrams are resummed by the

Abelian Boltzmann equation as well. There too, the damping rate Γ of the charged particle
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P

Figure 11: A generic ladder diagram of the type resummed in the solution to the Boltz-

mann equation.

is dominated by soft momenta transfer, and, in fact, it coincides with the corresponding

rate for gluons up to a colour factor (compare eqs. (2.82) and (3.107)). Nevertheless, we

have seen in Sec. 2.6 that the Abelian collision terms are not dominated by soft momenta

exchange, but receive contributions from all the momenta between gT and T . In order

for this to be consistent with the diagrammatic picture in Fig. 11, there must be some

cancellations among the Feynman graphs, in such a way that the globl contribution of

soft (q <∼ gT ) internal photons cancels out in their sum.

The relevant cancellations have been discussed in Sec. 2.6, and can be also read off

the formulae in Sect. 3.8. The contributions of the soft exchanged momenta q <∼ gT to

the individual collision terms are listed in eqs. (3.107), (3.108) and (3.110). If there was

not for the colour structure, the vertex correction in eq. (3.108) would exactly cancel the

self-energy correction in eqs. (3.107). This is what happens in the Abelian case (cf. the

discussion in Sec. 2.6) and explains, for instance, why there is no effect of the damping rate

γ ∼ e2T ln(1/e) of the charged particle on the polarization tensor Πµν for soft photons.

Diagramatically, this corresponds to a cancellation of the soft photon effects in between

self-energy and vertex corrections in any of the bubbles depicted in Fig. 11, as it has been

also verified via the direct analysis of the Feynman graphs, by Lebedev and Smilga [30]

(see also Refs. [42, 48]).

Similarly, in the absence of colour effects, there would be an exact cancellation

between the soft contributions to C22 and C23 (cf. eq. (3.110)): if we refer to the diagram

in Fig. 9b, this cancellation reflects the well known fact that there is no photon HTL with

three (or more) external legs [1, 2].

In QCD, on the other hand, these cancellations are not complete, because of the

non-trivial colour structure (cf. eqs. (3.109) and (3.110)). In fact, for δN(k, X) ≡ δNaT
a,

we have (refer to eq. (3.108)) (T aT b)cdδNcd = (Nc/2)δNab, so that the vertex correction in

eq. (3.108) only cancels half of the damping rate contribution in eq. (3.107). Furthermore,

since δN ≡ δNaT
a is an antisymmetric colour matrix, the two terms C22 and C23 give

identical contributions which add together (rather than subtract, as in QED) to give the

final result in eq. (3.110). Accordingly, the polarization tensor Πµν(P ) for soft (P ∼ g2T )

gluons is sensitive to the hard gluon damping rate γ ∼ g2T ln(1/g), as discussed at the
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end of the previous section. (To our knowledge, this has been first observed by Bödecker

[6].)

The previous discussion also shows that, for colourless fluctuations in the hot QCD

plasma (as involved, for instance, in the calculation of the shear viscosity), the pattern

of the cancellations is the same as in QED: the relevant collision terms are dominated

by relatively large (gT <∼ q <∼ T ) transferred momenta. Thus, the typical inverse relax-

ation time for such fluctuations is τ−1 ∼ g4T ln(1/g), where the logarithm comes from

log(T/mD), that is, from the screening effects at the scale gT [9, 14, 15].

5 Conclusions

Starting from first principles, we have derived a Boltzmann equation which describes

the long wavelength colour excitations of a high temperature Yang-Mills plasma. Our

derivation relies on a gauge-covariant gradient expansion of the Kadanoff-Baym equations

for the off-equilibrium dynamics of the plasma. This expansion can be also intrepreted

as an expansion in powers of g, in the sense that the plasma inhomogeneities (the “soft”

gradients ∂X), the strength of the colour mean fields Aµ
a and the off-equilibrium deviations

of the distribution functions are all contolled by powers of g. Specifically, our derivation

applies to the case where ∂X ∼ gA ∼ g2T , so that the soft covariant derivatives DX =

∂X + igA ∼ g2T are consistently preserved in the perturbative expansion. This, together

with a judicious choice of the gauge fixing (the background field gauge) and a proper

definition of gauge-covariant Wigner functions, has allowed us to maintain explicit gauge

symmetry at all steps of our construction.

In this framework, the Boltzmann equation has emerged as the quantum trans-

port equation at leading order in g. Note that our present, leading order, perturbative

expansion encompasses several approximations which are generally seen as independent

approximations when deriving transport equations: the gradient expansion (slowly vary-

ing disturbances), the weak field expansion (small perturbations), the quasiparticle ap-

proximation (well defined “quasiparticles”, with a long lifetime) and the (dressed) Born

approximation (one-gluon exchange) for the collision term. Note also that, in spite of be-

ing obtained within a systematic perturbative expansion, the Boltzmann equation actually

resums an infinite series of ladder diagrams and therefore generates a non-perturbative

effective theory for the “ultrasoft” (∂X ∼ g2T ) colour fields. For instance, the polarization

tensor for these fields, as obtained by solving the Boltzmann equation, is equivalent to

the sum of an infinite number of ladder diagrams of the perturbation theory.

Remarkably, the colour structure of the collision terms is precisely that predicted
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by Arnold, Son and Yaffe, on the basis of simple heuristic arguments [7] (this is also

consistent with some previous results in Refs. [17, 10, 12]). Accordingly, the effective

theory generated by our Boltzmann equation is precisely that obtained by Bödecker using

a different method [6] (see Ref. [7] for a discussion of the relation between the Boltzmann

equation and Bödecker’s theory).

It is important to emphasize the accuracy limits of the Boltzmann equation pre-

sented here. The collision term in eq. (1.2) is only known to logarithmic accuracy, which

means that both its functional form and the overall coefficient γ which fixes the time scale

for colour relaxation are known only up to corrections of relative order 1/ ln(1/g). For

instance, γ = αNcT
(
ln(1/g)+O(1)

)
where the constant terms under the logarithm is not

accurately given by the present formalism. There are two main sources for such a limita-

tion: (i) The gradient expansion in the presence of long range interactions: the one-gluon

exchange interaction has a typical range ∼ 1/q with g2T <∼ q <∼ gT which is marginally

the same as the inhomogeneity scale in the problem, λ ∼ 1/g2T . Since the collision terms

are only logarithmically sensitive to the low momenta q ∼ g2T , it follows that the gradient

expansion for the collision kernel (i.e., for the exchanged gluon propagator in eq. (3.90))

is only correct to logarithmic accuracy. As discussed after eq. (3.92), this limitation can

be avoided, at least in principle, by relaxing the gradient expansion so as to allow for a

collision kernel which is non-local in X. (ii) Still related to the long-ranged collision ker-

nel: the behaviour of the gluon propagator at very soft momenta q ∼ g2T is not correctly

described by the HTL approximation, since it is sensitive to the non-perturbative physics.

Of course, the Boltzmann equation constructed in this paper can also be used to

study colourless fluctuations, as involved, e.g., in the calculation of the shear viscosity [9,

14, 34]. The relevant collision terms are displayed in eqs. (3.99), (3.101) and (3.104), where

the off-equilibrium fluctuations have now a trivial colour structure (e.g., δǴd̄d(p, X) ≡
δd̄dδǴ(p, X), etc.). This yields the standard Boltzmann equation (in its linearized version),

as already used in calculations of the shear viscosity for the quark gluon plasma [9, 14].
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