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Abstract

A measurement of the forward–backward asymmetry of e+e− → cc̄ and e+e− →
bb̄ on the Z resonance is performed using about 3.5 million hadronic Z decays
collected by the DELPHI detector at LEP in the years 1992 to 1995. The heavy
quark is tagged by the exclusive reconstruction of several D meson decay modes.
The forward–backward asymmetries for c and b quarks at the Z resonance are
determined to be:

Ac
FB(

√
s = 91.235 GeV) = 0.0659 ± 0.0094 (stat) ± 0.0035 (syst)

Ab
FB(

√
s = 91.235 GeV) = 0.0762 ± 0.0194 (stat) ± 0.0085 (syst)

Ac
FB(

√
s = 89.434 GeV) = −0.0496 ± 0.0368 (stat) ± 0.0053 (syst)

Ab
FB(

√
s = 89.434 GeV) = 0.0567 ± 0.0756 (stat) ± 0.0117 (syst)

Ac
FB(

√
s = 92.990 GeV) = 0.1180 ± 0.0318 (stat) ± 0.0062 (syst)

Ab
FB(

√
s = 92.990 GeV) = 0.0882 ± 0.0633 (stat) ± 0.0122 (syst)

The combination of these results leads to an effective electroweak mixing angle
of:

sin2 θlept
eff = 0.2332± 0.0016
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5Dipartimento di Fisica, Università di Bologna and INFN, Via Irnerio 46, IT-40126 Bologna, Italy
6Centro Brasileiro de Pesquisas F́ısicas, rua Xavier Sigaud 150, BR-22290 Rio de Janeiro, Brazil
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37Dipartimento di Fisica, Università di Roma II and INFN, Tor Vergata, IT-00173 Rome, Italy
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1 Introduction

The cross–section for the process e+e− → Z → f f̄ for the fermion f as a function of
its polar angle θ with respect to the direction of the e− can be expressed as:

dσ

d cos θ
∝ 1 +

8

3
Af

FB cos θ + cos2 θ .

The term proportional to cos θ generates a forward–backward asymmetry Af
FBwhich re-

sults from the interference of the vector (v) and axial vector (a) couplings of the initial
and final state fermions of the Z boson. The improved Born level asymmetry using the
effective couplings for pure Z exchange is given by:

Af
FB =

3

4

2 v̄e āe

v̄2
e + ā2

e

2 v̄f āf

v̄2
f + ā2

f

The measurement of the forward–backward asymmetry for the different fermions in the
final state can thus be used to measure v/a, and hence to determine the electroweak

mixing angle sin2 θlept
eff .

In this analysis, the forward–backward asymmetries for the processes e+e− → cc̄ and
e+e− → bb̄ at the Z resonance are measured using reconstructed D mesons in the modes1:

D∗+ → D0π+

→ (K−π+)π+

→ (K−π+π−π+)π+

→ (K−π+(π0))π+ with and without π0 reconstruction
→ (K−µ+(νµ))π+

→ (K−e+(νe))π
+

D0 → K−π+

D0 → K−π+(π0) without π0 reconstruction
D+ → K−π+π+

The D meson contains a charm quark and therefore provides a clean signature of a cc̄
event or a decay of a heavy b–hadron in a bb̄ event. In both cases the charge state2 of the
D is directly correlated to the charge of the primary quark.

Particle identification in the DELPHI detector is provided by ring imaging Cherenkov
counters (RICH), the specific energy loss dE/dx in the Time Projection Chamber (TPC),
and electron and muon identification (see section 2); together with π0 reconstruction, it
is used to identify the D decay products and to reduce the combinatorial background.

It is necessary to distinguish between the contributions of D mesons from c and b
quark events in order to determine the individual forward–backward asymmetries. In
this analysis a simultaneous fit is performed in terms of the scaled energy XE = 2ED/

√
s

(where ED is the energy of the D) and the b-tagging probability variable (see section 5).
The forward–backward asymmetry is then extracted from the distribution of the cosine
of the polar angle of the thrust axis signed by the charge state of the D meson.

In this paper an update of previous DELPHI results [1] is presented. All LEP 1 data
collected by the DELPHI detector in the years 1992 to 1995 are used. The high quality
of the data through the final LEP 1 reprocessing in combination with improved recon-
struction and b-tagging techniques [2] result in a significant gain in statistical precision.

1Throughout the paper charge-conjugated states are included implicitly.
2For the D0 the charge state is defined as minus the charge of its decay kaon.
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2 The DELPHI Detector

The DELPHI detector consists of several independent devices for tracking, calorimetry
and lepton and hadron identification. The components relevant for this analysis will be
briefly described in the following. A detailed description of the whole apparatus and its
performance can be found in [3].

In the barrel region the innermost component is the vertex detector (VD) near to the
LEP beam pipe. The VD consists of three concentric layers (closer, inner and outer)
of silicon microstrip detectors. Since 1994 the VD provides Rφ and z information3 in
the closer and outer layer and has an extended polar angle coverage of 25◦ < θ < 155◦

(closer layer). For polar angles of 44◦ < θ < 136◦, a particle crosses all three layers of
the VD. With an intrinsic Rφ resolution of 7.6 µm [3], the VD is the main component for
reconstructing secondary vertices of heavy hadron decays.

The inner detector (ID) is outside the VD and consisted of a jet-chamber to perform a
precise Rφ measurement, and five cylindrical MWPC layers. In 1995 the MWPC layers
were replaced by five layers of straw tube detectors.

The ID is followed by the TPC, the main tracking device in DELPHI. It covers polar
angles between 21◦ < θ < 159◦ with a single point resolution for charged particles of
approximately 250 µm in Rφ and 880 µm in z [3]. The analysis of the pulse heights of
the signals of up to 192 sense wires allows the determination of the specific energy loss,
dE/dx, of charged particles which can be used for particle identification (see section 4).

The barrel ring imaging Cherenkov counter is behind the TPC. Its gas and liquid
radiators allow particle identification for pions, kaons and protons over almost the whole
momentum range (see section 4).

The outer detector (OD) is mounted behind the RICH to give additional tracking
information. It improves significantly the momentum resolution due to its large distance
from the interaction point. Five layers of drift cells cover polar angles between 42◦ < θ <
138◦ and provide Rφ and z information.

The barrel electromagnetic calorimeter (HPC) is between the OD and the supercon-
ducting coil and covers polar angles between 42◦ < θ < 138◦. It is a gas-sampling device
which provides complete three-dimensional charge information in the same way as a time
projection chamber. The excellent granularity allows good separation between close par-
ticles in three dimensions. This permits good electron identification even inside jets and
direct identification of π0 → γγ decays.

In the forward region, tracking is performed by two planar drift chambers (FCA and
FCB) with a polar angle covering of 11◦ < θ < 33◦ (FCA) and 11◦ < θ < 36.5◦ (FCB).
Their resolutions transverse to the beam axis are 270 µm (FCA) and 150 µm (FCB)
respectively.

For muon identification the DELPHI detector is surrounded by layers of drift chambers.
They cover 52◦ < θ < 128◦ with a resolution of 4mm in Rφ and 2.5 cm in z in the barrel
region and 9◦ < θ < 43◦ with a resolution of 1mm in the forward region.

3 Hadronic event selection

Charged particles are selected as follows. The momentum is required to be between
0.4 GeV/c and 50 GeV/c, the relative error on the momentum measurement less than
100%, the polar angle relative to the beam axis between 20◦ and 160◦, the length of

3In the DELPHI coordinate system, z is along the electron beam direction, φ and R are the azimuthal angle and radius
in the xy plane, and θ is the polar angle with respect to the z axis.
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tracks in the TPC larger than 30 cm, the projection of the impact parameter relative to
the interaction point less than 4 cm in the plane transverse to the beam direction, and
the distance along the beam direction to the interaction point less than 10 cm.

Hadronic events are selected by requiring five or more charged particles and a total
energy in charged particles larger than 12% of the collision energy (assuming all charged
particles to be pions). A total of 3.5 million hadronic events is obtained from the 1992-
1995 data, at centre–of–mass energies within ± 2 GeV of the Z resonance mass. According
to the simulation, the selection efficiency for hadronic Z decays is 95.7 %. Table 1 shows
the number of selected hadronic events. Remaining backgrounds from τ pairs and Bhabha
events are found to be negligible for this analysis.

A set of about 8.5 million simulated hadronic events for the years 1992 to 1995 is used.
They are generated using JETSET 7.4 Parton Shower model [4] in combination with the
full simulation of the DELPHI detector. The parameters of the generator are tuned to
the DELPHI data [5].

For each event, the primary interaction vertex is determined from the measured tracks,
with a constraint from the measured mean beam spot position. The removal of the track
with the largest χ2 (followed by a refit of the vertex) is repeated until either the χ2 of
each contributing track is less than 3 or less than three charged particle tracks are left.
All track parameters are recalculated after a helix extrapolation to this vertex position.
The resolution of tracks measured only by the forward tracking chambers is improved by
a track refit using the primary vertex. Forward tracks having a χ2 in the refit larger than
100 are removed from the analysis.

Year Data events Simulation
91.235GeV 89.434GeV 92.990GeV events

1992 703859 — — 2003142
1993 475151 97623 134240 1893139
1994 1386191 — — 3551362
1995 458700 84763 131637 1126557

92-95 3023901 182386 265877 8574200

Table 1: The number of selected hadronic events for data and simulation.

4 Reconstruction of charmed mesons

Reconstructed D mesons are used as a signature for cc̄ and bb̄ events and are identified
through their decay products. The D mesons are reconstructed in nine different decay
modes (see table 2). In the following a brief description of the selection criteria for the
D candidates is given.

For all decay modes the selection of candidates is performed in a similar way. A
number of charged particles (corresponding to the multiplicity of the specific D0/+ decay
mode) with momentum p larger than 1 GeV/c are combined, requiring the total charge
to be zero in case of the D0 and one in case of the D+ decay. The invariant mass mD

of the D0/+ candidate is calculated, assuming one of the particles to be a kaon and the
others pions. In addition the kaon momentum has to exceed 2 GeV/c for the D+ decay,
the leptonic modes and the decays with π0 reconstruction, and 1 GeV/c for all the other
decay channels. A D∗+ candidate is obtained by associating a low momentum pion down
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to 0.4 GeV/c to the reconstructed D0 meson. The charge of the pion is required to be
opposite to that of the kaon from the D0 decay.

For the semileptonic decay modes D0 → K−e+ν and D0 → K−µ+ν, the lepton is
required to be identified, using standard DELPHI identification criteria [3,6].

For the reconstruction of π0 → γγ decays, three different classes of candidates mea-
sured in the HPC are used [3,7]. The measurement of two separated photon showers in
the HPC are used to construct the π0. Above π0 energies of 6–8GeV, the angle between
the γγ pair is too small to separate the photon showers. The pion is therefore derived
from the analysis of the shower shape of these merged photons. Information from photons
converted in front of the TPC is also used to reconstruct photons and thereby the neutral
pion.

The particle identification provided by the RICH and the specific energy loss dE/dx
measurement in the TPC are used to reduce the combinatorial background. Due to
the large number of pions in the hadronic final state, combinations in which a pion is
assigned as a kaon candidate are the main contribution to the background. To optimize
the efficiency of the D signal, a pion veto, rather than direct kaon identification, has
been introduced. Tagging is performed using DELPHI standard tagging routines for
the RICH [8] and the dE/dx [3] identification. For the RICH, the measured Cherenkov

angle information is translated into π, K and p tagging information tagπ,K,p
Rich , taking into

account the quality of the measurement. The way the information from the two radiators
is combined depends on the momentum of the candidate, in order to guarantee the best
separation over almost the whole momentum range. Kaon candidates are tagged if they
have either no pion tag or a very loose pion tag tagπ

Rich.
The dE/dx information is used only if no RICH information is available. For each

track a probability P can be expressed in terms of the expected ionisation for a given
particle hypothesis:

PK,π = exp

−1

2

(
dE/dx− dE/dxK,π

σK,π

)2
 . (1)

This can be translated into a normalized kaon probability:

tagTPC =
PK

PK + Pπ
. (2)

Depending on the decay channel, a cut tagTPC > 0.2 − 0.3 to the kaon candidate is
applied.

For the D0 and the D+ decays the kaon has to be tagged by the RICH or the TPC
as explained above. For the D∗+ decay channels a tag of the kaon candidate is not
necessarily required because of the cut on the mass difference ∆m = mD∗+ −mD0 which
selects rather pure sample of D mesons.

For all decay modes a secondary vertex fit for the D0/+ is performed and the D0/+

flight distance and improved track parameters are obtained. All tracks associated to a
D are required to have at least one hit in the vertex detector. A further reduction of
background for the D+ is achieved by rejecting track combinations with a probability for
χ2 of the vertex fit less than 0.001. The slow pion from the D∗+ decay is constrained to
the D0 vertex, which is a good approximation for the D∗+ decay vertex because of the
small transverse momentum of the slow pion with respect to the flight direction of the
D0.

Cuts on the helicity angle distribution are used to achieve a further significant reduc-
tion of the combinatorial background. The helicity angle θH is defined as the angle of
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decay mode ∆L for D [cm] Xcut
E a b c d

D∗+ → (K−π+)π+ -0.05 to 2.0 0.15 -2.5 0.04 3.0 0.1

D∗+ → (K−π+π−π+)π+ 0.0 to 2.0 0.3 -1.0 0.05 2.0 0.1

D∗+ → (K−π+γγ)π+ 0.0 to 2.0 0.3 -1.5 0.09 2.0 0.1

D∗+ → (K−µ+ν)π+ 0.0 to 2.0 0.2 -1.2 0.06 3.0 0.1

D∗+ → (K−e+ν)π+ 0.0 to 2.0 0.2 -1.4 0.05 3.0 0.1

D∗+ → (K−π+(π0))π+ 0.0 to 2.0 0.2 -2.5 0.03 3.0 0.0

D+ → K−π+π+ 0.125 to 2.0 0.35 — — 3.0 0.1

D0 → K−π+ 0.05 to 2.0 0.3 -0.5 0.125 2.0 0.2

D0 → K−π+(π0) 0.05 to 2.0 0.3 -0.6 0.15 2.0 0.2

Table 2: The selection cuts for XE versus ∆L (a, b), XE versus cos θH (c, d) and the
absolute cut on XE.

the sphericity axis in the D0/+ rest frame with respect to the D0/+ flight direction. The
orientation of the sphericity axis corresponds to the kaon candidate in the decay. D0/+

decays are isotropic in cos θH , whereas the background is peaked at cos θH = ±1. Be-
cause of the shape of the energy spectrum of charged particles in hadronic Z events, the
combinatorial background is concentrated at small scaled energies XE(D). Therefore XE

cuts which depend on the helicity angle are used, in order to remove higher background
contributions at small D meson energies:

XE > 0.5 · ec(|cosθH |−1) + d . (3)

In addition the scaled energy XE of the D combination is required to exceed the limits
Xcut

E given in table 2, where the parameters c and d are also shown.
The distance between the primary and the D0/+ vertex is calculated in the plane

transverse to the beam axis and projected onto the D0/+ direction of flight to obtain the
decay length ∆L. A vertex combination is accepted if ∆L is within the range specified in
table 2 for the different decay modes. In addition an XE dependent cut on ∆L is applied:

∆L(XE) > a · (XE −Xcut
E )2 + b . (4)

This rejects combinatorial background, which is concentrated at low values of both of
these variables. The parameters a and b are given in table 2.

For the D+ → K−π+π+ mode, a cut4 of ∆m > 200 Mev is used to veto D∗+ decays.
For the D∗+ → (K−π+π0)π+ decay mode with a reconstructed π0, an additional cut

on the D0 Dalitz plot is applied to select the dominant decay via D0 → K−ρ+:

0.5 GeV/c2 < mK−π+ < 1.1 GeV/c2 and 1.4 GeV/c2 < mK−π0 < 1.8 GeV/c2

1.4 GeV/c2 < mK−π+ < 1.8 GeV/c2 and 0.5 GeV/c2 < mK−π0 < 1.1 GeV/c2

The mass bands to select the different D0/+ decay modes and the cuts on the mass
difference are listed in table 3. The mass and mass difference bands in the signal regions
for the different decay channels used in the final analysis are given in table 4; the sidebands
are defined as the mass or mass difference regions given in table 3 not selected by the cuts

4The mass difference for the D+ is given as ∆m = mD+ − mK−π+ , in analogy with that for the D∗ decay: ∆m =
mD∗ −mD0 . Both possible mK−π+ combinations are tested.
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mode D0/+ mass interval max.∆m

[GeV/c2] [GeV/c2]

D∗+ → (K−π+)π+ 1.790 to 1.94 0.160

D∗+ → (K−π+π−π+)π+ 1.845 to 1.90 0.160

D∗+ → (K−π+γγ)π+ 1.740 to 1.98 0.165

D∗+ → (K−µ+ν)π+ 0.750 to 1.75 0.250

D∗+ → (K−e+ν)π+ 0.750 to 1.75 0.250

D∗+ → (K−π+(π0))π+ 1.350 to 1.75 0.175

D+ → K−π+π+ 1.700 to 2.05 -

D0 → K−π+ 1.750 to 2.20 -

D0 → K−π+(π0) 1.500 to 1.70 -

Table 3: Mass and mass difference cuts for the selection of the D meson signal plus
sideband regions.

in table 4. The mass differences for the D∗+ and also the D0 and D+ mass distributions
are shown in figures 1 and 2. The wrong sign combination for D0 → K−π+, where the
kaon and pion masses are interchanged, is also shown in figure 2. The histograms show
the simulated distributions normalized to the data samples. The contributions of signal
and background are adjusted to compensate for different D rates in data and simulation.

5 Measurement of Ac
FB and Ab

FB

For a measurement of Ac
FB and Ab

FB from the polar angle cos θthrust of the thrust axis
in the D meson events, it is necessary to separate D from cc̄ and bb̄ events and the com-
binatorial background. Since the c and b asymmetries are expected to be of comparable
size and to have the same relative sign, the statistical precision of the measurement is
limited by the negative correlation between both asymmetries. In this analysis, good
separation with a small correlation is obtained by using the scaled energy distribution
XE of the D candidates and the event b-tagging variable Pev [2].

The hadronization of primary c quarks leads to high energy D mesons, whereas b
quarks fragment into b–hadrons which then decay into D mesons with a softer energy
spectrum. The combinatorial background is concentrated at low XE. Furthermore bb̄
events can be identified by b–tagging, which utilises special features of B hadrons, as
compared with other hadrons. The combined b-tagging used in this analysis takes into
account the long lifetime and the large mass of B hadrons, their higher decay multiplicity
and their large XE(B). This leads to a high tagging efficiency in combination with good
separation power of the tag.

The shape of the combinatorial background is tested using the sidebands in the mass
(or the mass difference) distribution. Due to the different relative acceptance of D mesons
and background at small and large polar angles, the fit method has to take into account
the | cos θthrust| dependence of the different classes.

The charge state of a signal D is directly correlated to the charge of the primary quark,
whereas the charge correlation of the combinatorial background is expected to be very
small.
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For the asymmetry measurement, partially reconstructed D∗+ mesons (πsl + X) and
reflections from other decay modes (see figures 1 and 2) have to be considered as signal to
avoid charge correlations in the background. The contributions from reflections, where
some particles from the D decay are assigned a wrong mass or are missing, and true
D decays are treated as one class, because of the similar shape of the signals and the
charge correlation with the primary quark. This leads to a significant increase of the
sample for the K−π+(π0) decay mode. The rate of partially reconstructed D∗+ mesons,
where a π+ from a D∗+ decay is combined with a fake D0, depends on the branching
ratio D∗+ → D0π+, the D∗+ production rate and the efficiency in the relevant mass
difference interval. The contribution of partially reconstructed D∗+ decays to the signal
is taken from the simulation and contributes to the systematic uncertainty. In the case
of D0 → K−π+/K−π+(π0) decay modes without the D∗+ constraint, candidates with
wrong mass assignments flip the sign of the estimated primary quark direction. This is
taken into account in the fit; the systematic error allows for uncertainties.

To avoid double counting of events, only one D candidate in the signal region per
event is retained. For a given event the D candidate with the largest kaon momentum is
used. If two candidates for a given decay mode use the same kaon track, the one with the
largest XE(D) is used. Events entering the signal region for the K−π+ decay mode are
removed from the K−π+π−π+ distribution and events from both decay modes are then
removed from the K−µ+ν or K−e+ν distribution and so forth. The order of the rejection
is as listed in table 3. Good agreement between data and simulation was found for the
rejection.

The numbers of reconstructed D decays given in table 4 are obtained from fits to the
mass spectra. A total sample of 61829 ± 521 reconstructed D decays is used for the
asymmetry measurement. The D mass bands to select D meson candidates are listed in
table 4.

signal region signal region

decay mode signal events ∆m [GeV/c2] mD [GeV/c2] RS/B

D∗+ → (K−π+)π+ 6030 ± 103 0.143-0.148 - 0.95 ± 0.02

D∗+ → (K−π+π−π+)π+ 5123 ± 103 0.143-0.148 - 0.86 ± 0.02

D∗+ → (K−π+γγ)π+ 5787 ± 125 0.141-0.151 - 1.19 ± 0.03

D∗+ → (K−µ+ν)π+ 3042 ± 91 < 0.180 - 0.64 ± 0.02

D∗+ → (K−e+ν)π+ 1810 ± 65 < 0.180 - 0.98 ± 0.04

D∗+ → (K−π+(π0))π+ 15111 ± 232 < 0.152 - 1.16 ± 0.02

D+ → K−π+π+ 5667 ± 161 - 1.83-1.91 0.83 ± 0.02

D0 → K−π+ 9311 ± 232 - 1.80-1.93 1.00 ± 0.02

D0 → K−π+(π0) 9948 ± 298 - 1.50-1.70 1.21 ± 0.04

Table 4: D meson samples used for the measurement, cuts to select signal regions, and
the relative normalizations RS/B of signal to background for data and simulation.

5.1 The minimum χ2 fit

The determination of the asymmetries at
√

s = 91.235GeV is achieved by a minimum
χ2 fit to the D samples using the scaled energy XE, the transformed b-tagging variable
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Decay mode number of bins per average number√
s = 91.235GeV XE tr(Pev) | cos θthrust| of events

D∗+ → (K−π+)π+ 4 5 4 77.8

D∗+ → (K−π+π−π+)π+ 5 5 5 65.8

D∗+ → (K−π+γγ)π+ 4 4 4 88.0

D∗+ → (K−µ+ν)π+ 4 6 4 49.6

D∗+ → (K−e+ν)π+ 4 4 3 56.4

D∗+ → (K−π+(π0))π+ 6 7 5 77.7

D+ → K−π+π+ 5 5 5 87.9

D0 → K−π+ 5 6 5 80.0

D0 → K−π+(π0) 7 7 7 59.9

Table 5: Number of bins in each dimension used for the individual decay modes and the
average number of data events per bin at

√
s = 91.235GeV.

tr(Pev) for the event and the polar angle Q·cos θthrust signed with the charge state Q of the
D. Examples of these distributions for the D∗+ → (K−π+)π+ channel are shown in figure
3. The measured distributions are compared to the predictions of the simulation, split
into charm, bottom and background events. The simulated prediction is normalized to
the data to reproduce the signal to background ratio. Therefore a factor RS/B (see table
4) is introduced for each decay mode, which compensates for different D rates in data
and simulation. After this correction, good agreement is found in all distributions. The
shape of the background distribution, as obtained from the sidebands, is well reproduced
by the simulation.

A transformation of the event variable Pev is used for the b-tagging distribution:

tr(Pev) =
2.5

5.1 + Pev
. (5)

The bins in the three dimensional XE, tr(Pev) and cos θthrust space have been chosen such
that each bin contains about 70 events (table 5). In each bin i the differential asymmetry:

Aobs,i
FB =

N+
i −N−

i

N+
i + N−

i

(6)

is calculated from the numbers of events N+
i and N−

i with Q · cos θthrust greater or less
than zero, respectively. The observed asymmetry receives contributions from c, b and
combinatorial background. The fractions fji of D signal and reflection from c and b
events as well as the fractions of partially reconstructed D mesons and combinatorial
background are taken from the simulation. Furthermore the combinatorial background
is divided into c, b and uds contributions to account for the small charge correlation
to the primary quark in the background, especially for the semileptonic decay mode of
the D0. This leads to three different contributions (i.e. signal plus reflections, partially
reconstructed D, and combinatorial background) from each of c and b, and one for the
background from uds.

The χ2 to be minimized is given by:
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χ2 =
Nbins∑
i=1

Aobs,i
FB −

7∑
j=1

fji Cji A
j
FB(cos θi)


2

/σ2
i (7)

where σi accounts for the statistical error of both data and simulation; Aj
FB(cos θi) is the

differential asymmetry:

Aj
FB(cos θi) =

8

3
Aj

FB

cos θi

1 + cos2 θi
, (8)

of b, c or uds events; and Cji is the charge correlation of the class j calculated in each
bin using the simulation. For b events the mixing effect leads to values of the charge
correlation Cji which are smaller than 1, and thus to a smaller observed b asymmetry.
The simulation is used to estimate the mixing effect as a function of the b–tagging tr(Pev),
because the b–tagging depends on the individual B lifetime (see section 6 for details).
The combinatorial background from c is expected to have only a small charge correlation
Cji to the primary quark at large energies XE. The asymmetry of the combinatorial
background and of D mesons from gluon splitting in uds events is expected to be very
small. The predictions from the simulation for this class in each bin are subtracted in the
fit. The two fit parameters Ac

FB and Ab
FB are used for all three classes from c and b, while

for the single class from uds the prediction of the simulation is used. The agreement of
data and simulation is tested in the sidebands of the different samples where no significant
deviations are found.

Decay mode number of bins per number of√
s = 89.434GeV XE tr(Pev) | cos θthrust| candidates

D∗+ → (K−π+)π+ 3 3 4 378

D∗+ → (K−π+π−π+)π+ 4 4 3 539

D∗+ → (K−π+γγ)π+ 3 3 4 356

D∗+ → (K−µ+ν)π+ 3 3 4 260

D∗+ → (K−e+ν)π+ 3 3 2 188

D∗+ → (K−π+(π0))π+ 5 5 4 1096

D+ → K−π+π+ 4 4 4 814

D0 → K−π+ 4 5 3 721

D0 → K−π+(π0) 4 5 5 1287

Table 6: Number of bins in each dimension used for the individual decay modes and the
number of data events per bin at

√
s = 89.434GeV.

5.2 The maximum likelihood fit

The data taken by the DELPHI detector in the years 1993 and 1995 at energies
near the Z resonance allow the investigation of the energy dependence of the forward–
backward asymmetry of c and b quarks. Due to the reduced statistics of 182386 events at√

s = 89.434GeV and 265877 events at
√

s = 92.990GeV, a binned maximum likelihood
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Decay mode number of bins per number of√
s = 92.990GeV XE tr(Pev) | cos θthrust| candidates

D∗+ → (K−π+)π+ 3 4 4 576

D∗+ → (K−π+π−π+)π+ 4 4 4 734

D∗+ → (K−π+γγ)π+ 3 4 3 473

D∗+ → (K−µ+ν)π+ 3 3 4 412

D∗+ → (K−e+ν)π+ 3 3 3 276

D∗+ → (K−π+(π0))π+ 5 5 5 1475

D+ → K−π+π+ 5 4 4 1058

D0 → K−π+ 4 5 4 1076

D0 → K−π+(π0) 5 5 6 1947

Table 7: Number of bins in each dimension used for the individual decay modes and the
number of data events per bin at

√
s = 92.990GeV.

fit is used instead of the χ2 fit of section 5.1. The likelihood function is given by:

L =
Nbins∑
i=1

ln
λ+

N+
i

i

eλ+
i ·N+

i !
+ ln

λ−
N−

i

i

eλ−i ·N−
i !

 (9)

where the Nbins cells are given by the binned information in XE, tr(Pev) and cos θthrust.
The bins for the three dimensions are given in tables 6 and 7. The λ±i describe the
expectation in each cell of a Poisson distribution, and are given by:

λ±i =
N tot

i

2

7∑
j=1

fijCij(1±Aj
FB(cos θi)). (10)

The total number of candidates N tot
i = N+

i + N−
i is taken from real data and the coeffi-

cients fij , Cij and Aj
FB(cos θi) are defined in the same way as in section 5.1.

6 Effective mixing in b → D decays

The observed forward–backward asymmetry in b events is proportional to the charge
correlation of the reconstructed D meson to the primary quark. The correlation Cb is
reduced because of two factors. The first is B0 − B̄0 mixing, and the second is double D
production in B decays. The observed b asymmetry in the different D samples needs to
be corrected for both of the above sources of D mesons of the wrong charge state.

The effect of B0 − B̄0 mixing is to reduce the correlation Cb by a factor 1− 2χ. The
mixing probability χ is determined by the mass difference ∆m between the two mass
eigenstates and by the B lifetime τB. The product of these leads to χd = 0.172± 0.010
[9]. For the B0

s only a lower limit of ∆ms > 14 ps−1 [9] is known. This is compatible with
full mixing χs ∼ 0.5.

The production of D mesons from the “upper vertex” (i.e. via the W decay, rather
than from the bcW coupling) also reduces the charge correlation to the primary b quark.
A sizeable rate fB→W→D of wrong sign D mesons from B decays reduces the measured
b asymmetry by a factor 1− 2 · fB→W→D. Recent measurements of CLEO and ALEPH
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indicate a significant rate of double-charmed B decays involving no Ds production (Ds

production would not result in D or D∗ of the wrong charge state). CLEO [10] finds for
a mixture of B0

d and B+ a ratio of:

Γ(B → DX)

Γ(B → D̄X)
= 0.100 ± 0.026 (stat) ± 0.016 (syst). (11)

This number is in good agreement with the ALEPH result on double D production in B
decays [11]:

BR(b → D0D̄0, D0D−, D+D̄0 + X) =
(
7.8 +2.0

−1.8
+1.7
−1.5

+0.5
−0.4

)
%, (12)

where the dominant contribution is B → D(∗)D̄(∗)K. The first error is statistical, the
second one contains the systematic errors and the third corresponds to the uncertainties
on the D branching fractions. Both measurements include Cabbibo suppressed W → cd̄
decays which are expected to contribute with a rate of about 1% per W decay to the
“upper vertex” charm rate.

Mixing is relevant for D mesons from B0
d and B0

s decays, but not from B+ or Λb

decays, whereas the effect from the “upper vertex” charm contributes in all B decays.
The fractions of D±, D0

( )

and D∗± from different B states need to be determined from
the branching rates B → D and B → D̄ to be able to consider the combination of both
effects correctly. Very little is known at present about the individual exclusive branching
ratios, but several inclusive measurements from the Υ(4S) and LEP experiments can be
used to deduce the rates.

CLEO and ARGUS have measured the rates [9] of D0
( )

, D±, D±
s and Λ±

c as well as
the rates of D∗± and D∗0( )

in Υ(4S) decays, i.e. in decays of B0
d and B+ at about 50%

admixture. From these measurements the overall rates of B0
d and B+ decays in the D

( )

samples are deduced, taking into account the production fractions of B+, B0
d, B0

s and Λb

in Z → bb̄ events [9]. The relative rate of D∗± from B− and from B̄0 is not measured.
Therefore the JETSET prediction of

(B+ → D∗± X)/(B+,0 → D∗± X) = 0.30 (13)

with a relative error of 50% is used. This number is compatible with the assumption
that most of the B+ → D∗± X decays are produced via D∗∗ (i.e. D∗

2, D
∗
1, D1, D0) decays

and higher D resonances.
The D∗ rates measured at the Υ(4S) also fix the effective rate of vector and pseu-

doscalar mesons V/(V + P ). The decay of the D∗0 into D+π− is forbidden by phase
space, while the branching ratio D∗+ → D0π+ is measured to be 0.683± 0.013 [9]. This
difference in charged and neutral D∗ decays significantly affects the fractions of B+ and
B0

d decays seen in the D± and D0
( )

samples and thus the effective mixing.
A small correction to the B+ and B0

d into D±, D0
( )

and D∗± rates originates from D∗∗

production. These states subsequently decay into vector or pseudoscalar charm mesons.
D∗

2 mesons decay into D∗ and D states and the ratio between these two decays is given
by the measurement BR(D∗0

2 → D+π−)/BR(D∗0
2 → D∗+π−) = 2.3 ± 0.8 [12]. Angular

momentum conservation allows D∗
1 and D1 mesons to decay into D∗ states, and D0

to decay into D states. The decay rates of the different D∗∗ states into charged and
neutral states (D∗π,Dπ) are fixed by isospin invariance. The relative production rates
of the four D∗∗ states are assumed to be proportional to the number of spin states. The
total D∗∗ rate is obtained from the measured semileptonic B branching ratios BR(B →
D̄∗∗l+ν)/BR(B → Xl+ν) = 0.26± 0.07 [9].
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The decay of B0
s and Λb into D±, D0

( )

and D∗± also contribute to the sample. They
can be deduced from the total rate of D0, D+, D+

s and Λ+
c in Z → bb̄ events measured at

LEP [13]. Here the number of charm quarks produced per b decay is limited to the LEP
measurement nc = 1.17±0.04 [9], with charmonia and Ξc production taken into account.

From this information and assuming that the branching fraction of W → cs̄ → D(∗)+

is equal to that for W → cs̄ → D(∗)0, the effective B mixings in the D+, D0 and D∗+

samples are:

χeff (D
+) = 0.222± 0.033

χeff(D
0) = 0.176± 0.030 (14)

χeff(D
∗+) = 0.222± 0.033 .

The errors quoted represent the precision of the measurements used to determine the b
decay properties. The effective mixing for the D∗+ sample is in good agreement with a
direct measurement of OPAL using the jet charge technique in the hemisphere opposite
to the reconstructed meson. They obtained χeff (D

∗+) = 0.191± 0.083 [14].

7 QCD corrections

The analysis of the final state of hadronic Z decays gives only indirect information
about the electroweak process Z → qq̄. The evolution to the final parton level and
the following process of hadronization smear the clear signature of the initial qq̄ system.
The hard gluon radiation in the parton shower changes significantly the direction of
the primary quarks and thus also the angular distribution of the following partons and
hadrons. The size of this QCD effect strongly depends on the individual techniques in the
determination of the forward–backward asymmetry. The QCD correction can be written
as [15]:

Aq
FB = (1− Cq) (Aq

FB)0 = (1− sq Cq
QCD) (Aq

FB)0 (15)

where (Aq
FB)0 is the asymmetry without gluon radiation, which can be calculated from

the measured asymmetry Aq
FB through the correction coefficient Cq. This correction

coefficient can be parameterized by a bias factor sq, which accounts for the individual
sensitivity to the QCD correction Cq

QCD. The values of the QCD corrections are estimated
to be [15]:

Cb
QCD = (2.96 ± 0.40) %

Cc
QCD = (3.57 ± 0.76) % . (16)

The experimental bias is studied using a fit to the simulation after setting the generated
asymmetry to 75%. The observed relative difference Cq of (−1.66 ± 0.01) % for cc̄ and
(−2.22± 0.02) % for bb̄ lead to the bias factors sc = −46 % and sb = −75 %. The values
of Cq are used to define the experimental bias on the QCD corrections to correct the fit
results. The statistical error of the fit and the uncertainty of the QCD correction are
used to determine the systematic error.

8 Systematic uncertainties

The systematic error sources are of two types. The uncertainty of the simulation
modelling of heavy quark production affects the measurement, and the fit method itself
is a potential source for a systematic error.
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systematic 91.235GeV 89.434GeV 92.990GeV

error source variation δAc
FB δAb

FB δAc
FB δAb

FB δAc
FB δAb

FB

×103 ×103 ×103 ×103 ×103 ×103

MC statistics see text ±2.47 ∓3.54 ±3.31 ∓7.20 ±3.31 ∓7.20

〈XE〉D∗ 0.510 ± 0.009 ±0.16 ∓0.40 ∓0.11 ∓0.36 ±0.59 ∓0.60

〈XE〉B 0.702 ± 0.008 ∓0.20 ±0.25 ±0.69 ∓0.51 ∓0.25 ∓0.43

εB→D 0.42 ± 0.07 ±0.26 ∓0.40 ∓0.78 ∓0.18 ±0.42 ±0.98

τ(B+) 1.65 ± 0.04 ∓0.06 ±0.18 ∓0.02 ±0.31 ∓0.10 ±0.49

τ(B0) 1.56 ± 0.04 ∓0.01 ∓0.69 ±0.09 ∓0.20 ∓0.11 ∓0.28

τ(B0
s ) 1.54 ± 0.07 ∓0.01 ∓0.03 ±0.02 ±0.04 ∓0.04 ±0.08

τ(Λb) 1.22 ± 0.05 ∓0.03 ±0.11 ±0.08 ∓0.02 ∓0.08 ±0.11

τ(D+) 1.057 ± 0.015 ±0.02 ∓0.03 ±0.01 ∓0.09 ±0.02 ∓0.03

τ(D0) 0.415 ± 0.004 ±0.04 ±0.02 ∓0.25 ±0.10 ±0.03 ±0.13

τ(D+
s ) 0.467 ± 0.017 ∓0.02 ±0.04 ∓0.10 ±0.11 ∓0.08 ±0.11

τ(Λc) 0.206 ± 0.012 ±0.03 ∓0.04 ∓0.03 ±0.04 ∓0.03 ±0.04

f(D+) 0.221 ± 0.020 ∓0.02 ±0.04 ∓0.35 ±0.46 ∓0.27 ±0.36

f(D+
s ) 0.112 ± 0.027 ±0.19 ∓0.19 ∓0.42 ±0.42 ±0.13 ∓0.19

f(cbaryon) 0.084 ± 0.022 ±0.03 ∓0.03 ∓0.23 ∓0.05 ±0.20 ±0.15

ng→cc̄ 2.38 ± 0.48 % ±0.05 ±0.19 ∓0.05 ±0.19 ±0.05 ±0.19
(Rb·Pb→D)
(Rc·Pc→D)

see text ±0.38 ∓0.40 ∓1.15 ±0.07 ±0.70 ±0.22

eff. mixing see text ∓0.05 ±5.78 ∓0.26 ±2.82 ∓0.18 ±5.71

QCD bias see text ∓0.24 ∓0.23 ∓0.17 ∓0.18 ∓0.41 ∓0.27

fit method see text ±1.73 ∓2.81 ±1.73 ∓2.81 ±1.73 ∓2.81

btag see text ±0.74 ±1.54 ±0.74 ±1.54 ±0.74 ±1.54

RS/B ± 5/10% ∓0.63 ∓1.05 ±1.81 ∓1.28 ∓2.51 ∓2.54

πslow,wrong sign ± 15% ±0.21 ±0.43 ∓1.07 ±0.97 ±0.48 ±0.85

Auds
FB(backgr.) ± 30% ∓0.55 ±0.02 ∓1.46 ∓0.50 ∓0.69 ∓0.54

Ab,c
FB(backgr.) ± 30% ∓1.26 ∓3.62 ±2.04 ∓7.86 ∓3.93 ∓6.59

total — ±3.51 ∓8.47 ±5.28 ∓11.67 ±6.16 ∓12.20

Table 8: Contributions to the systematic errors on the measured asymmetries.
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To describe adequately heavy quark production, it is necessary to correct for inad-
equate simulation settings. This is achieved using JETSET; the relevant distributions
are compared (at the full simulation level, but before detector acceptance effects) for the
parameters as used in the generation and at their required values. The ratio of the two
spectra is used as a weight to modify the simulation shape in equations 7 and 10. To
estimate the systematic uncertainty, the input value is changed within its error and the
procedure is repeated.

A similar approach is employed to allow for the uncertainty of the means 〈Xc
E(D)〉 and

〈Xb
E(B)〉. JETSET is used to generate the XE distributions of all charm states according

to 〈Xc
E(D∗)〉 = 0.510±0.005±0.008, 〈Xb

E(B)〉 = 0.702±0.008 [16]. The energy spectrum
of D mesons in the B rest frame was measured by CLEO [17]. This spectrum includes
the contributions from B → D̄ X and B → DD̄ X. It can be parameterized in terms of
a Peterson function with εb→D = 0.42± 0.07 [16].

The corrections are applied to all simulated charm ground state hadrons separately
for bb̄ and cc̄ events. The resulting XE distribution of the sum of all charm hadron
ground states in cc̄ events is found to be in agreement with the corresponding average of
〈Xc

E(D0, D+)〉 = 0.484±0.008 [16]. Here the effect of gluon splitting into cc̄ is taken into
account. The systematic uncertainties are calculated separately for 〈Xc

E(D)〉, 〈Xb
E(B)〉

and εb→D.
The b–hadron lifetimes are corrected separately for B+, B0, Λb and B0

s . Here the world
averages τ(B0) = 1.56 ± 0.04, τ(B+) = 1.65 ± 0.04, τ(B0

s ) = 1.54 ± 0.07 and τ(Λb) =
1.22 ± 0.05 ps [9] are used to correct the simulation. For the systematic uncertainties
from this source, all the b lifetime distributions are regenerated with a change of one
standard deviation and the fit is performed again. Similarly the c–hadron lifetimes are
also corrected separately for D+, D0, Λc and D+

s . Here the values τ(D0) = 0.415±0.004,
τ(D+) = 1.057± 0.015, τ(D+

s ) = 0.467± 0.017 and τ(Λc) = 0.206± 0.012 ps from [9] are
taken.

The separation between bb̄ and cc̄ events obtained from the b–tagging depends on the
production rates of D+ and D0 mesons in cc̄ events. The rates of charm hadrons in the
hemisphere opposite to the reconstructed D are therefore fixed to the present averages
f(D+) = 0.221± 0.020, f(D+

s ) = 0.112± 0.027 and f(cbaryon) = 0.084± 0.022 [18]. The
D0 rate is calculated from these numbers according to:

f(D0) = 1− f(D+)− f(D+
s )− f(cbaryon) . (17)

A variation of one standard deviation on each fraction is included in the systematic error,
leaving the D0 fraction free to keep the sum constant.

The effect due to the efficiency of the b-tagging was studied in reference [2] using a
tuning determined independently on data and simulation. A residual difference in the b
efficiency of 3% per jet between data and simulation was found. The corrections to the
physics parameters in the simulation mentioned above account for this difference. This
systematic error is therefore already included in the physics corrections. Furthermore,
the effect due to the resolution of the b-tagging is determined by interchanging the b-tag
tunings of data and simulation with each other.

The rate of gluon splittings into cc̄ pairs is varied by one standard deviation.
The relative rate of D mesons from bb̄ and cc̄ events is not a free parameter in the

asymmetry fit. Therefore the ratio is fixed to the DELPHI measurement [19] using the
same data and varied by one standard deviation.

The mixing correction for Ab
FB is discussed in section 6. The systematic error is

obtained by varying separately each parameter used to obtain the B decay rates into D
( )
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mesons by one standard deviation. The effect of the variation is studied directly on the
asymmetry fit; this allows for the lifetime dependence of the B0 − B̄0 mixing. The total
error is then calculated taking the correlation between the parameters into account. The
effect of the oscillation frequency error is small compared to that from the uncertainty of
the B → D

( )

rates.
Differences between the signal and background efficiency as a function of cos θ are

considered in the calculation of the probabilities from the simulation. Because the asym-
metry evaluation depends on the ratio of D to D̄ at a given cos θ, the sensitivity to
efficiency variations (which are largely independent of the nature of the D) is small. The
systematic error due to the fit method is estimated by comparing the results of the χ2 fit
to the results obtained assuming a Poisson distribution and neglecting in both cases the
error on the simulation. The observed difference is included in the systematic error.

For all decay modes the relative normalization RS/B is obtained from a fit of the
simulated D signal and background to the data. A variation of ±5 % (±10 % for the
off–peak data) is included in the systematic error, not only to account for the error of the
fitted RS/B, but also for uncertainties in the agreement of the shape of the mass difference
signals in data and simulation.

The contribution of partially reconstructed D decays depends on the efficiency to
reconstruct such πsl + X combinations, as well as on the total rate of D∗+ → D0π+

decays in hadronic Z events. The differences for the background normalizations between
data and simulation average around 10 % whereas the total rate of D∗+ → D0π+ decays
is known at the 5 % level. Combining these, the contribution to the systematic error is
estimated as a ±15 % variation of the prediction of the simulation.

The three classes of the combinatorial background (uds, c and b) have a small remain-
ing asymmetry. The asymmetry of the uds quark background is taken from the simulation
and subtracted in the fit. The charge correlation for the combinatorial background from
b and c events is taken from the simulation. The agreement between data and simulation
is tested using the side bands, where good agreement is found. 30 % of the effect due to
the background asymmetry is considered in the systematic error on the asymmetry.

The contributions to the systematic errors for the combined fit of the charm and
bottom asymmetries are listed in table 8. The relative sign of the systematic error
indicates the direction in which the results change for a particular error source.

9 Fit results

The results of the 2 parameter fits of the c and b asymmetries for the different energies
are given in tables 9, 10 and 11.

Taking the correlations into account, the combination of the results of the different
samples at the peak energy leads to:

Ac
FB(

√
s = 91.235 GeV) = 0.0659 ± 0.0094 (stat)

Ab
FB(

√
s = 91.235 GeV) = 0.0762 ± 0.0194 (stat)

with a statistical correlation of −0.27. The average centre–of–mass energy is
√

s = 91.235
GeV. In figure 4 the fit results for the forward–backward asymmetries of the different
samples are compared to the average. The forward–backward asymmetry averaged over
all samples as a function of cos θthrust is shown in figure 5.
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decay mode Ac
FB Ab

FB correlation χ2/N.D.F.

D∗+ → (K−π+)π+ 0.0590 ± 0.0239 0.0498 ± 0.0481 −0.26 0.97

D∗+ → (K−π+π−π+)π+ 0.0738 ± 0.0237 0.1125 ± 0.0560 −0.28 0.87

D∗+ → (K−π+γγ)π+ 0.0255 ± 0.0298 0.0914 ± 0.0654 −0.28 0.79

D∗+ → (K−µ+ν)π+ 0.1130 ± 0.0328 0.0131 ± 0.0738 −0.26 1.10

D∗+ → (K−e+ν)π+ 0.1201 ± 0.0434 0.0218 ± 0.0996 −0.23 1.26

D∗+ → (K−π+(π0))π+ 0.0720 ± 0.0209 0.1037 ± 0.0468 −0.27 0.92

D+ → K−π+π+ 0.0567 ± 0.0256 −0.0066 ± 0.1298 −0.33 1.04

D0 → K−π+ 0.0431 ± 0.0376 0.0805 ± 0.0489 −0.37 0.80

D0 → K−π+(π0) 0.0534 ± 0.0405 0.0936 ± 0.0489 −0.33 0.82

Average 0.0659 ± 0.0094 0.0762 ± 0.0194 −0.27 0.54

Table 9: Results of the two parameter fit to the individual decay modes. The average
centre–of–mass energy is 91.235GeV. The χ2/N.D.F. of the averages is 0.54.

decay mode Ac
FB Ab

FB correlation

D∗+ → (K−π+)π+ 0.0286 ± 0.1026 0.1417 ± 0.1940 −0.26

D∗+ → (K−π+π−π+)π+ −0.1893 ± 0.0950 0.2492 ± 0.2170 −0.27

D∗+ → (K−π+γγ)π+ −0.2496 ± 0.1187 0.0915 ± 0.2934 −0.31

D∗+ → (K−µ+ν)π+ −0.0438 ± 0.1656 −0.3322 ± 0.3417 −0.38

D∗+ → (K−e+ν)π+ 0.0342 ± 0.1638 0.4078 ± 0.3746 −0.23

D∗+ → (K−π+(π0))π+ −0.0514 ± 0.0773 0.0475 ± 0.1763 −0.27

D+ → K−π+π+ −0.0600 ± 0.0903 0.0158 ± 0.3888 −0.26

D0 → K−π+ 0.2614 ± 0.1609 −0.0195 ± 0.2044 −0.34

D0 → K−π+(π0) 0.1240 ± 0.1333 −0.1309 ± 0.1704 −0.34

Average −0.0496 ± 0.0368 0.0567 ± 0.0756 −0.28

Table 10: Results of the two parameter fit to the individual decay modes. The average
centre–of–mass energy is 89.434GeV and the χ2/N.D.F. of the averages is 0.96.

The results of the different samples at the off–peak energies are combined to give:

Ac
FB(

√
s = 89.434 GeV) = −0.0496 ± 0.0368 (stat)

Ab
FB(

√
s = 89.434 GeV) = 0.0567 ± 0.0756 (stat)

Ac
FB(

√
s = 92.990 GeV) = 0.1180 ± 0.0318 (stat)

Ab
FB(

√
s = 92.990 GeV) = 0.0882 ± 0.0633 (stat)

The statistical correlation is −0.28 for
√

s = 89.434GeV and −0.26 for
√

s = 92.990GeV.
The results of the fit are shown in figures 6 and 7. The averages of the c and b asymmetries
for the different energies are shown in figure 8.
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decay mode Ac
FB Ab

FB correlation

D∗+ → (K−π+)π+ 0.1090 ± 0.0772 0.1214 ± 0.1616 −0.25

D∗+ → (K−π+π−π+)π+ 0.1281 ± 0.0770 0.2124 ± 0.1765 −0.27

D∗+ → (K−π+γγ)π+ 0.1778 ± 0.1047 0.1690 ± 0.2535 −0.29

D∗+ → (K−µ+ν)π+ 0.1190 ± 0.1212 0.2652 ± 0.2655 −0.32

D∗+ → (K−e+ν)π+ 0.3113 ± 0.1452 −0.0129 ± 0.3003 −0.28

D∗+ → (K−π+(π0))π+ 0.1049 ± 0.0720 −0.0798 ± 0.1494 −0.25

D+ → K−π+π+ −0.0016 ± 0.0902 0.1387 ± 0.3652 −0.19

D0 → K−π+ 0.2065 ± 0.1253 0.0049 ± 0.1575 −0.33

D0 → K−π+(π0) 0.0384 ± 0.1285 0.1227 ± 0.1543 −0.34

Average 0.1180 ± 0.0318 0.0882 ± 0.0633 −0.26

Table 11: Results of the two parameter fit to the individual decay modes. The average
centre–of–mass energy is 92.990GeV and the χ2/N.D.F. of the averages is 0.50.

10 The effective electroweak mixing angle

In order to obtain the effective electroweak mixing angle from the bare asymmetries
A0,c

FB and A0,b
FB at the nominal Z mass, small corrections have to be applied to the measured

forward–backward asymmetries. The measured asymmetries for the different centre–of–
mass energies have to be corrected to

√
s = MZ . The slope of the asymmetry around

MZ depends only on the axial vector coupling and the charge of the final fermions. It is
thus independent of the pole asymmetry itself. In addition QED corrections, in particular
initial state photon radiation, reduce the effective centre–of–mass energy. Finally the dia-
grams from γ exchange and γZ interference result in a small correction to the asymmetry.

The corrections have been determined using the ZFITTER program [20] to be:

source δAc
FB δAb

FB√
s = MZ −0.0034 −0.0013

QED effects +0.0104 +0.0041

γ, γZ −0.0008 −0.0003

total +0.0062 +0.0025

where the bare asymmetry is given by A0,f
FB = Af

FB +
∑

i(δA
f
FB)i. The individual QCD

corrections for this analysis are included in the quoted measured asymmetries for c and
b. From the fit results for all energies, the bare asymmetries for c and b are calculated to
be:

A0,c
FB = 0.0715± 0.0093

A0,b
FB = 0.0793± 0.0194

with a total correlation of −0.22. The quoted error is the combination of the statistical
and systematic errors at the three different energies. This leads to an effective electroweak
mixing angle:

sin2 θlept
eff = 0.2332± 0.0016 .
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11 Conclusion

A measurement of the forward–backward asymmetries Ac
FB and Ab

FB at LEP 1 energies
is performed using about 3.5 million hadronic Z decays collected by the DELPHI detector
in the years 1992 to 1995. The heavy quark is tagged by the exclusive reconstruction of
D meson decays in the modes D∗+ → D0π+, D+ → K−π+π+ and D0 → K−π+(π0). The
forward–backward asymmetries for c and b quarks at the Z resonance are determined to
be:

Ac
FB(

√
s = 91.235 GeV) = 0.0659 ± 0.0094 (stat) ± 0.0035 (syst)

Ab
FB(

√
s = 91.235 GeV) = 0.0762 ± 0.0194 (stat) ± 0.0085 (syst)

with a total correlation of −0.22.
The analysis of the off–peak data from 1993 and 1995 leads to:

Ac
FB(

√
s = 89.434 GeV) = −0.0496 ± 0.0368 (stat) ± 0.0053 (syst)

Ab
FB(

√
s = 89.434 GeV) = 0.0567 ± 0.0756 (stat) ± 0.0117 (syst)

Ac
FB(

√
s = 92.990 GeV) = 0.1180 ± 0.0318 (stat) ± 0.0062 (syst)

Ab
FB(

√
s = 92.990 GeV) = 0.0882 ± 0.0633 (stat) ± 0.0122 (syst)

with a total correlation of −0.28 at
√

s = 89.434GeV and −0.24 at
√

s = 92.990GeV
respectively.

The results are in good agreement with other LEP measurements [14,21] using re-
constructed D mesons. The use of the full available sample of the reprocessed data for
the years 1992 to 1995 leads to a significant improvement in statistical precision as com-
pared with the previous results from DELPHI [1]. The results and the obtained energy
dependence are consistent with the predictions of the Standard Model.

From the corresponding bare asymmetries for c and b quarks, the effective electroweak
mixing angle is determined as:

sin2 θlept
eff = 0.2332± 0.0016 .

This result is in good agreement with the determinations of the effective electroweak
mixing angle from several LEP and SLD measurements [18].
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Figure 1: The mass difference distributions ∆m for the different decay modes. ∆m is
defined as the difference between the mass of the D∗+ and the D0 candidate. The data
are compared to the simulation. Contributions from reflections, partially reconstructed
D∗+ decays (πsl + X) and combinatorial background are also shown. See section 5 for
the discussion of these contributions.
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Figure 2: The mass difference distributions ∆m for the semileptonic decay modes are
shown in the two upper plots. ∆m is defined as the difference between the mass of the
D∗+ and the D0 candidate. The data are compared to the simulation. Contributions
from reflections, partially reconstructed D∗+ decays and combinatorial background are
also shown. The lower diagrams show the D+ and D0 mass distributions. For the D0 the
background distribution for candidates with wrong mass assignments is also shown. In
the D0 case, the peak in the K−π+ mass distribution comes from D0 decays into K−π+,
and the broad enhancement at lower values is from the K−π+π0 decay.
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Figure 3: The XE , tr(Pev) and Q · cos(θthrust) distribution for the signal region of the
D∗+ → (K−π+)π+ decay mode. The data are compared to the simulation where D∗+

from charm and bottom events and combinatorial background are shown separately. See
section 5.1 for the definition of tr(Pev).
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Figure 4: The results of the two parameter fit of the c and b asymmetry at an average
centre–of–mass energy of 91.235GeV for the different D samples are shown. The grey
bands represent the averages over all these measurements. Only statistical errors are
shown.
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Figure 5: The c and b forward–backward asymmetries at an average centre–of–mass
energy of 91.235GeV as a function of cos θthrust. Only statistical errors are shown. The
bands represent the fit results.
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Figure 6: The results of the two parameter fit of the c and b asymmetry at an average
centre–of–mass energy of 89.434GeV for the different D samples are shown. The grey
bands represent the averages over all these measurements. Only statistical errors are
shown.
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Figure 7: The results of the two parameter fit of the c and b asymmetry at an average
centre–of–mass energy of 92.99GeV for the different D samples are shown. The grey
bands represent the averages over all these measurements. Only statistical errors are
shown.
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Figure 8: The c and b forward–backward asymmetries for the different average cen-
tre–of–mass energies. The SM prediction is also shown (MZ = 91.187 GeV/c2,
mtop = 175.6 GeV/c2, mH = 300 GeV/c2, αs(M

2
Z) = 0.120, α(M2

Z) = 1/128.896).


