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Abstract

We performed the detailed NLO analysis of the combined CCFR xF3 and F2 struc-
ture functions data and extracted the value of αs, parameters of distributions and
higher-twist (HT) terms using the direct solution of the DGLAP equation. The value
of αs(MZ) = 0.1222± 0.0048(exp)± 0.0040(theor) was obtained. The result has larger
central value and errors, than the original result of the CCFR collaboration, in view of
the incorporation into the fits of the HT terms as the free model independent param-
eters. The x-shapes of the HT contributions to xF3 and F2 are in agreement with the
results of other model-independent extractions and are in qualitative agreement with
the predictions of the infrared renormalon model. We also argue that the low x CCFR
data might have the defects, since their inclusion into the fits led to the following low
x-behaviour of the gluon distribution xG(x, 9 GeV 2) ∼ x0.092±0.0073, in contradiction
with the results of its extraction from low x HERA data.
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1. The study of the possibility to separate power suppressed terms (namely higher-
twist (HT) effects) from the perturbation theory logarithmic corrections in the analysis of
scaling violation of the deep-inelastic scattering (DIS) processes has a rather long history
(see e.g. Refs. [1, 2, 3] and Ref.[4] for the review). In the recent years the interest to this
problem was renewed, mainly due to the consideration of the possibility to model HT terms in
different processes using the infrared-renormalon (IRR) technique (see e.g. Refs.[5]-[10],[11]
and especially Ref.[12] for the review).

On the other hand the experimentalists are improving the precision of their data and
are achieving, sometimes, percent level of accuracy. For example the data on xF3 and F2

from the most precise νN DIS experiment, performed at Tevatron by CCFR collaboration,
recently appeared [13, 14]. The CCFR data on xF3 were analysed in Ref.[15] in the LO
and and with inclusion of the NLO and approximate next-to-next-to-leading order (NNLO)
corrections. For the latest,the NNLO QCD corrections to the coefficient function [16] were
taken into account. The NNLO corrections to the anomalous dimensions of a limited set
of even non-singlet moments [17] were also taken into account. The NNLO corrections to
the anomalous dimensions of odd moments, which are not still explicitly calculated, were
obtained using smooth interpolation procedure proposed in Ref.[18] and improved in Ref.[19].
The aim of the work of Ref.[15] was to make an attempt of the first NNLO determination of
αs(MZ) from DIS and to extract the HT terms from the data on xF3 within the framework
of the IRR-model [7] and also by the model-independent way, similarly to the analysis of
the combined SLAC/BCDMS data [20], performed in the NLO approximation. Theoretical
uncertainties of this analysis were further estimated in Refs.[21, 22] at the N3LO using the
method of Padé approximants. It was found in Refs. [15, 21, 22] that the inclusion of the
NNLO corrections leads to the decrease of the HT contribution value, so that at the NNLO
its x-shape lies closer to zero.

In these analyses only statistical errors of data were taken into account. However, the
systematic errors of the CCFR experiment are not small [14] and may even dominate in the
determination of some parameters. In this paper we filled in this gap and performed the
NLO analysis of the CCFR data with the help of QCD DGLAP evolution code, developed in
Ref.[23]. (Remind, that the analyses of Refs.[15, 21, 22] were performed with the help of the
Jacobi polynomial variant [24, 25, 26] of the DGLAP equation [27]). In addition, we included
in our analysis the CCFR data on the singlet structure function F2. It should be stressed
that the code [23] was tested using the procedure proposed in Ref.[28] and demonstrated
the accuracy at the level of O(0.1%) in the kinematic region covered by the analysed data.
It was already applied for the nonsinglet DGLAP analysis of the combined SLAC/BCDMS
SLAC data on F2 [29].

2. Our fits were made in the NLO approximation within the MS factorization and
renormalization schemes. The Q2 dependence of the strong coupling constant αs was defined
from the following equation
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where β0 = 11− (2/3)nf and β1 = 102− (38/3)nf . Note, that the explicit solution of Eq.(1)
can be expressed through the Lambert function [30]. However, we did not use in our work
this explicit representation and solved Eq.(1) numerically. The effective number of flavours
nf was chosen to be nf = 4 for Q2 less than the definite scale M2

5 and increased to nf = 5
at larger values of Q2 keeping the continuity of αs [31]. The value of the effective matching
scale M5 was varied from M5 = mb to M5 = 6.5mb. The last choice was advocated in Ref.[32]
on the basis of the DIS sum rules consideration. The dependence of the results of the fits on
the choice of the matching point gives one of the sources of theoretical uncertainties inherent
to our analysis.

The leading twist term xF LT
3 (x, Q) was obtained by direct integration of the DGLAP

equation [27]
dxqNS

d lnQ
=

αs(Q)

π

∫ 1

x
dzP NS

qq (z)
x

z
qNS(x/z, Q), (3)

where P NS
qq (x) denotes the NLO splitting function, taken from Ref.[34]. The function xF3 is

determined by the subsequent convolution with the NLO coefficient function C3,q(x) :

xF LT
3 (x, Q) =

∫ 1

x
dzC3,q(z)

x

z
qNS(x/z, Q). (4)

The boundary condition at the reference scale Q2
0 = 5 GeV 2 was chosen in the form analogous

to the ones, used in Refs.[14, 15]

xqNS(x, Q0) = ηNSxbNS (1− x)cNS (1 + γx)
3

ANS
, (5)

where

ANS =
∫ 1

0
xbNS−1(1− x)cNS(1 + γx)dx, (6)

and ηNS is the measure of the deviation of the Gross-Llewellyn Smith integral [35] from its
quark-parton value 3. The expression for the xF3, which includes the HT contribution, looks
as follows:

xF HT
3 (x, Q) = xF LT,TMC

3 (x, Q) +
H3(x)

Q2
, (7)

where F LT,TMC
3 (x, Q) is F LT

3 (x, Q) with the target mass correction [36] applied.
At the first stage of this work, in order to perform the cross-checks of the code against

the results of Refs.[14, 15], we fitted the data on xF3 in the kinematical region Q2 > 5 GeV 2,
W 2 > 10 GeV 2, x < 0.7 (the number of data points is NDP=86). We made three fits with
various ways of taking into account the HT effects. The first fit with no HT, i.e. H3(x) = 0,
was done to compare our results with the ones of Table 1 of Ref.[15], obtained using different
method [24, 25, 26] and different computer code. The second fit with the HT chosen as
one-half of the IRR model predictions [7], i.e.

H3(x) = A′
2

∫ 1

x
dzCIRR

2 (z)
x

z
F LT

3 (x/z, Q), (8)

where

CIRR
2 (z) = − 4

(1 − z)+
+ 2(2 + z + 2z2)− 5δ(1− z)− δ′(1− z) (9)

and A′
2 = −0.1 GeV 2, advocated for the first time in Ref.[8]. The aim of this fit was to

compare its outcomes with the results of Table 7.9 of Ref.[14], where the computer code,
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Table 1: The results of the fits to data on xF3 with statistical errors only I) without HT-terms,
II) with HT accounted as one-half of the IRR model predictions, III) with model independent

HT-contributions. H
(0),(2),(4),(6),(8)
3 are the values of H3(x) at x = 0., 0.2, 0.4, 0.6, 0.8.

I II III
χ2/NDP 88.5/86 81.9/86 70.3/86

b 0.789± 0.024 0.786± 0.024 0.805± 0.067
c 4.02± 0.11 4.00± 0.11 4.24± 0.21
γ 0.29± 0.30 0.26± 0.30 0.61± 0.71

ηNS 0.927± 0.014 0.949± 0.014 0.927± 0.030
αs(MZ) 0.1193± 0.0025 0.1219± 0.0024 0.1216± 0.0066

H
(0)
3 – – 0.18± 0.19

H
(2)
3 – – −0.26± 0.12

H
(4)
3 – – −0.21± 0.31

H
(6)
3 – – 0.11± 0.26

H
(8)
3 – – 0.90± 0.47

written by Duke and Owens [33] was used. In the third fit we used the model independent
HT-expression, i.e. H3(x) parametrized at x = 0., 0.2, 0.4, 0.6, 0.8 with linear interpolation
between these points. It was performed to compare our results with the ones presented in
Table 3 of Ref. [15].

All results of these our fits are presented in Table 1. We observed a good agreement of our
results on αs with the both referenced papers. However, in the case of the values of x-shape
parameters we found the certain discrepancy with the results of Ref.[15]. For example, the
value of γ, as presented in column I of Table 1, is γ = 0.26± 0.30, meanwhile the analogous
parameter in Ref.[15] is γ = 1.96 ± 0.36. At the same time our x-shape parameters are in
agreement with the ones, extracted in Ref.[14] within errors. In addition, we made the fit,
releasing parameter A

′
2 and obtained the value of A

′
2 = −0.12± 0.05 in agreement with the

results of Ref.[15].
3. The next step of our analysis was to take into account the point-to-point correlations

of the data due to systematic errors which, as we mentioned above, can be crucial for the
estimation of full experimental errors of the parameters (see in particular [29], where the
value αs(MZ) = 0.1180 ± 0.0017 (stat + syst) was obtained as the result of the combined
fits of the SLAC/BCDMS data with HT included). The systematic errors were taken into
account analogously to the earlier works [23, 29]. The total number of the independent
systematic errors sources for the analysed data is 18 and all of them were convoluted into
the general correlation matrix, which was used for the construction of the minimized χ2. The
results of the fits to xF3 data with the model independent HT and with the systematic errors
taken into account are presented in the first column of Table 2. One can see that the account
of systematic errors leads to the significant increase of the experimental uncertainties of the
extracted HT contributions (compare the first column of Table 2 with the third column of
Table 1). In addition, the central values of the HT parameters moved. However, even in
this case there is definite agreement with the results of HT-behaviour of Ref.[15], obtained
in NLO. Moreover, these results do not contradict to the IRR-model prediction of Ref.[7],
since releasing A

′
2 we obtained A

′
2 = −0.10± 0.09.

Trying to minimize the errors of the parameters we added to the analysis the CCFR data
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Table 2: The results of the fits with the account of systematic errors and model independent
HT-effects. H

(0),(2),(4),(6),(8)
2,3 are the values of H2(x) and H3(x) x = 0., 0.2, 0.4, 0.6, 0.8. I)

xF3 with the cut Q2 > 5 GeV 2, Q2
0 = 5 GeV 2 II) xF3&F2 with the cut Q2 > 5 GeV 2,

Q2
0 = 9 GeV 2 III) xF3&F2 with the cut Q2 > 1 GeV 2, Q2

0 = 9 GeV 2.
I II III

χ2/NDP 55.7/86 154.9/172 204.2/220
bNS 0.797± 0.076 0.800± 0.016 0.782± 0.014
cNS 4.24± 0.21 4.060± 0.068 4.131± 0.056
γ 0.75± 0.79 0. 0.

ηNS 0.945± 0.043 0.922± 0.027 0.920± 0.025
αs(MZ) 0.1269± 0.0065 0.1248± 0.0048 0.1131± 0.0045

ηS – 0.1785± 0.0077 0.1796± 0.0065
bS – 0. −0.034± 0.023
cS – 8.37± 0.21 8.00± 0.29
bG – 0. 0.092± 0.073
cG – 7.5± 2.6 11.50± 0.90
ηG – 0.69± 0.35 1.08± 0.19

H
(0)
2 – −0.23± 0.56 0.09± 0.11

H
(2)
2 – −0.28± 0.18 −0.239± 0.094

H
(4)
2 – −0.14± 0.18 0.17± 0.13

H
(6)
2 – −0.03± 0.13 0.204± 0.097

H
(8)
2 – 0.21± 0.18 0.14± 0.18

H
(0)
3 0.28± 0.21 0.34± 0.11 0.115± 0.031

H
(2)
3 −0.22± 0.19 −0.24± 0.16 −0.16± 0.16

H
(4)
3 −0.42± 0.35 −0.22± 0.22 0.28± 0.19

H
(6)
3 −0.09± 0.28 −0.05± 0.17 0.19± 0.15

H
(8)
3 1.21± 0.50 0.89± 0.44 0.88± 0.44
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Figure 1: The high-twist contribution to F2.

for the structure function F2. To perform the QCD evolution of F2 one is to involve into the
analysis the singlet and gluon distributions:

F LT
2 (x, Q) =

∫ 1

x
dz

[
C2,q(z)

x

z
(qNS(x/z, Q) + qPS(x/z, Q)) + C2,G(z)

x

z
G(x/z, Q)

]
, (10)

The distributions qPS(x, Q) and G(x, Q) were obtained by integrating the system

dxqPS

d lnQ
=

αs(Q)

π

∫ 1

x
dz

[
P PS

qq (z)
x

z
qPS(x/z, Q) + PqG(z)

x

z
G(x/z, Q)

]
(11)

dxG

d lnQ
=

αs(Q)

π

∫ 1

x
dz

[
PGq(z)

x

z
qPS(x/z, Q) + PGG(z)

x

z
G(x/z, Q)

]
(12)

with the boundary conditions

xqPS(x, Q0) = ηSxbS(1− x)cS/AS, (13)

xG(x, Q0) = ηGxbG(1− x)cG/AG, (14)

where

AS =
∫ 1

0
xbS(1− x)cSdx, (15)

AG =
1− < xQ(x) >∫ 1
0 xbG(1− x)cGdx

. (16)

and < xQ(x) > is the total momentum carried by quarks.
In order to provide the straightforward way for the comparison of our results with the

analysis of Ref.[23], the initial reference scale Q2
0=9 GeV 2 was chosen. In addition to the

point-to-point correlation of the data due to systematic errors, the statistical correlations
between F2 and xF3 were also taken into account. Performing the trial fits we convinced
that adding the factor (1 + γx) to the reference expressions for the the gluon and singlet
distributions do not improve the quality of the fit. Also we fixed parameters γNS, bS and bG
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Figure 2: The high-twist contribution to xF3.

at zero because this increased the value of χ2 by few units only while χ2/NDP remained
less than unity. The HT contribution to F2 was accounted analogously to xF3 as:

F HT
2 (x, Q) = F LT,TMC

2 (x, Q) +
H2(x)

Q2

where H2(x) was parametrized in the model independent form. The results of the fits of the
parameters H2(x) and H3(x) are presented in the second column of Table 2 and are depicted
in Fig.1 and Fig.2. One can note, that, comparing with the fit to xF3 data only, the HT
parameters errors are decreasing. Within the errors, the parameters, which describe the
boundary distributions, are compatible with the outcomes of the similar fits from Ref.[14].
The coefficients of H3(x) are in agreement with the NLO results of Ref.[15] and the behaviour
of H2(x) qualitatively reproduce the HT contribution to F2, obtained from the combined fits
of the SLAC/BCDMS data on F2, performed in Refs.[20, 29].

When the matching scale M5 was changed from mb to 6.5mb, the value of αs(MZ) shifted
down by 0.0052 and then we ascribe to αs(MZ) the theoretical error of 0.0026 due to uncer-
tainty of b-quark threshold matching. This uncertainty is in agreement with the results of
the NLO Jacobi-polynomial fits of the CCFR data obtained within so-called spline MS pre-
scription [37]. One more source of the theoretical uncertainty, which is due to the truncation
of higher QCD orders, was evaluated following the way, proposed in Ref. [20]. In accor-
dance with their procedure one can introduce renormalization scale kR into QCD evolution
equations in the way, illustrated on the example of NS evolution:

dxqNS

d lnQ
=

αs(kRQ)

π

∫ 1

x
dz

{
P NS,(0)

qq (z)+

+
αs(kRQ)

2π

[
P NS,(1)

qq (z) + β0P
NS,(0)
qq (z) ln(kR)

]}x

z
qNS(x/z, Q), (17)

where P NS,(0) and P NS,(1) denote the LO and the NLO parts of the splitting function P NS.
The dependence of the results on kR would signal an incomplete account of the perturbation
theory effects. The shift of αs(MZ) resulting from the reasonable variation of kR leads
to an additional error of over 0.003 due to the renormalization scale uncertainty. Taking
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Q2
0 = 20 GeV 2 as the initial scale, we have checked that our results are rather stable to the

variation of the factorization point.
The NLO value we fare presenting as the main result is thus

αs(MZ) = 0.1222± 0.0048(stat + syst)± 0.0040(thresh + ren.scale) (18)

It differs a bit from the NLO value αs(MZ) = 0.119 ± 0.002(stat + syst) ± 0.004(theory),
obtained in the CCFR analysis [13]. The increase of the experimental errors is due to the
fact that while CCFR group used model-dependent form of the HT contributions, we are
considering them as the additional free parameters and are extracting them from the fits.

In order to try to decrease further the errors, we repeated the fits of the combined xF3

and F2 data, using the less stringent cut Q2 > 1 GeV 2. The obtained results are presented in
the third column of Table 2. In these fits the parameters bs and bG were released since their
values turned out to be statistically different from zero. We found, that the values of αs and
bG are correlated (the correlation coefficient is equal to –0.65). When we fixed bG = 0, the
value αs(MZ) = 0.1172± 0.0029 was obtained, and when we kept bG as the free parameter,
we obtained low value of αs(MZ) = 0.1131±0.0045. The analogous effect of correlations was
observed for the fit with the cut Q2 > 5 GeV 2, although with less statistical significance.
It should be underlined, that when we released bG in the fit with the cut Q2 > 1 GeV 2 we
faced another problem: its value turned out to be

bG = 0.092± 0.073, (19)

which is in the evident contradiction with the results, obtained in the analysis of HERA data
(for example the combined analysis of DIS from HERA and CERN-SPS data results in the
value bG = −0.267± 0.043 [23], while in the framework of MRST parametrization the value
bG = −1.08[38] was obtained).This problem might be related to the well-known discrepancy
between CCFR and NMC/BCDMS data at small x.

Conclusion
In conclusion, we would like to stress that in order to perform similar analysis at the

NNLO level it is necessary to calculate the yet unknown Altarelli-Parisi kernels to the corre-
sponding DGLAP equations. Therefore, we are unable to obtain the results, similar to the
NNLO ones of Refs.[15, 22]. We hope that future progress of theoretical calculations will
allow us to generalize our results to the NNLO approximation.
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[25] J. Chýla and J. Ramez, Z. Phys. C31 (1986) 151.

[26] V.G. Krivokhizin et al., Z. Phys. C36 (1987) 51; ibid. C48 (1990) 347.

[27] V.N. Gribov and L.N. Lipatov, Sov. J. Nucl. Phys. 15 (1972) 438;
L.N. Lipatov, Sov. J. Nucl. Phys. 20 (1975) 94;
G. Altarelli and G. Parisi, Nucl. Phys. 126 (1977) 298;
Yu. L. Dokshitzer, JETP (1977) 641.
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