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Abstract

We continue the investigation of the physics implications of a class of flat
directions for a prototype quasi-realistic free fermionic string model (CHL5),
building upon the results of the previous paper in which the complete mass
spectrum and effective trilinear couplings of the observable sector were cal-
culated to all orders in the superpotential. We introduce soft supersymmetry
breaking mass parameters into the model, and investigate the gauge symme-
try breaking patterns and the renormalization group analysis for two rep-
resentative flat directions, which leave an additional U(1)′ as well as the
SM gauge group unbroken at the string scale. We study symmetry break-
ing patterns that lead to a phenomenologically acceptable Z − Z ′ hierarchy,
MZ′ ∼ O(1 TeV) and 1012 GeV for electroweak and intermediate scale U(1)

′

symmetry breaking, respectively, and the associated mass spectra after elec-
troweak symmetry breaking. The fermion mass spectrum exhibits unrealistic
features, including massless exotic fermions, but has an interesting d-quark
hierarchy and associated CKM matrix in one case. There are (some) non-
canonical effective µ terms, which lead to a non-minimal Higgs sector with
more than two Higgs doublets involved in the symmetry breaking, and a rich
structure of Higgs particles, charginos, and neutralinos, some of which, how-
ever, are massless or ultralight. In the electroweak scale cases the scale of
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supersymmetry breaking is set by the Z
′
mass, with the sparticle masses in

the several TeV range.
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I. INTRODUCTION

In recent work [1–3], techniques have been developed which set the stage for the “top-
down” analysis of a class of quasi-realistic string models. Models in this class have N = 1
supersymmetry, the SM gauge group as a part of the gauge structure, and candidate fields
for the three generations of quarks and leptons as well as two electroweak Higgs doublets.
Such quasi-realistic models have been constructed in weakly coupled heterotic superstring
theory in a variety of constructions [4–9]; in particular, we consider a class of free fermionic
models [6–9].

In general, these quasi-realistic free fermionic models have an extended gauge group (in-
cluding a non-Abelian “hidden” sector gauge group and a number of additional U(1)’s),
and a large number of fields in addition to the MSSM fields, which include a number of
non-Abelian singlets, fields which transform under the hidden sector gauge group, and SM
exotics. These models also have the important property that the superpotential is calcu-
lable, in principle to all orders in the nonrenormalizable terms. The trilinear terms in the
superpotential have large Yukawa couplings of O(g), where g is the gauge coupling at the
string scale. In contrast to general field-theoretic models, additional string (worldsheet)
symmetries can forbid terms allowed by gauge invariance 1.

These models generically possess an “anomalous” U(1) at the level of the effective theory.
The presence of the anomalous U(1) leads to the generation of a Fayet-Iliopoulos (FI) term
at genus one; this term triggers scalar fields to acquire string-scale VEV’s along D and F
flat directions, leading to a “restabilization” of the string vacuum. Thus, as the necessary
first step in the analysis, we developed techniques [1] to classify the D flat directions which
can be proven to be F flat to all orders of a general perturbative heterotic superstring model
with an anomalous U(1). For the sake of simplicity, we chose to consider flat directions
formed of non-Abelian singlets only, and selected the singlet fields with zero hypercharge to
preserve the SM gauge group. We applied our method to a prototype string model, Model
5 of [9] (CHL5), in [1], and more recently to a number of free fermionic string models in [2].

The next step in the analysis of this class of models is to analyze the effective theory
along such flat directions. In general, the rank of the gauge group is reduced, and effective
couplings are induced by the coupling of the fields in the flat direction to the rest of the
fields in the model. The effective mass terms generated in this way will give some of the
fields superheavy masses, so that they decouple from the theory at the string scale. In
addition to the trilinear couplings of the original superpotential, effective trilinear terms are
generated from higher-dimensional terms for the remaining light fields; such couplings can
have important implications for the phenomenology of the model 2.

1For a review of the phenomenology of string models, see [10] and references therein.

2The analysis of effective nonrenormalizable terms is deferred to further study. In this case
complications arise due to the fact that the fourth order (nonrenormalizable) terms present in the
original superpotential could be competitive in strength [11] with the trilinear ones, as well as
generated in a number of other ways, such as via the decoupling of heavy states [12], a nonminimal
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In a recent work [3] we studied in detail the physics implications of the effective theory
after vacuum restabilization for a prototype model: Model 5 of [9] (CHL5). The mass
spectrum and the effective trilinear terms (in the observable sector) were calculated exactly
at the string tree level and to all orders in the vacuum expectation value of the fields in the
flat directions for all of the flat directions classified in [1]. However, we presented the detailed
analysis for two representative flat directions, which encompass the general features of this
class of flat directions. These two flat directions are part of a subset of flat directions of
the model which break the maximal number of U(1)’s, leaving an additional non-anomalous
U(1)′ as well as the SM gauge group unbroken at the string scale (as well as the hidden
sector gauge groups). Importantly, the string worldsheet symmetries forbid many of the
gauge-allowed terms in the effective theory, which has a number of implications for the
phenomenology of the model.

The calculation of the mass spectrum revealed that along with the MSSM fields, there
remain a large number of massless exotic superfields at the string scale, due to the absence of
the corresponding effective mass terms in the superpotential. These fields include additional
electroweak doublets and electrically charged singlets, leading to a larger number of fields
in the observable sector in this model than in the MSSM.

While the scalar fields can acquire masses from the supersymmetry breaking, their
fermionic superpartners can remain light compared with the electroweak scale. We also
found that many of the massless exotic fields do not couple directly to the observable sector
fields at the order of the effective trilinear superpotential, such that they do not participate in
the radiative electroweak and U(1)′ gauge symmetry breaking. Therefore, there is no mech-
anism for these exotic fields to acquire masses. The additional massless particle content has
an impact on gauge coupling unification, and renders the hidden sector gauge groups non-
asymptotically free (such that there is no possibility of dynamical supersymmetry breaking
in this sector due to strong coupling dynamics).

The presence of massless exotics seems to be generic and thus it is a serious obstacle
for deriving phenomenologically acceptable physics from these models. Nevertheless, they
have enough realistic features that it is worthwhile to study in detail the implications of
the effective trilinear terms of the superpotential. These terms have a number of concrete
implications for the observable sector physics. In particular, the effective third order su-
perpotential does not have a canonical µ term (involving the standard electroweak Higgs
doublets) in either example, but instead non-canonical µ terms involving some of the ad-
ditional Higgs doublets. Such non-canonical terms suffice for the electroweak symmetry
breaking. However, in these examples, there are not enough such terms to involve all of the
Higgs doublets, resulting in massless charginos, neutralinos and an unwanted global U(1).
We found that when imposing the requirement that there are three lepton doublets in the
model, R- parity is not conserved due to the presence of L- violating terms which leads to
possible lightest supersymmetric particle (LSP) decay in both of the examples. The second
representative flat direction also has B- violating terms (with implications for proton decay),

Kähler potential, and the corrections to the Kähler potential due to the large VEV’s. In the
following we will not include such effects and assume a minimal Kähler potential.
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as well as couplings which yield textures in the quark and lepton sectors.
The purpose of this paper is to take the phenomenological analysis of these models to

the next stage: to determine the low energy implications of these string vacua for the gauge
symmetry breaking patterns and the analysis of the low energy mass spectra. Specifically,
we investigate in detail the nature of the electroweak and U(1)′ gauge symmetry breaking
patterns and the accompanying mass spectrum. Again, we choose to carry out this analysis
for these two representative flat directions.

Such an analysis can only be performed after supersymmetry breaking has been incorpo-
rated. Since the origin of the supersymmetry breaking in string theory is not well understood,
no quantitative, phenomenologically viable derivation of a supersmmetry breaking pattern is
available. Thus we take a modest approach and parameterize the supersymmetry breaking
by introducing soft supersymmetry breaking mass terms at the string scale. We can then
proceed with the study of the renormalization group evolution of all the parameters in the
observable sector and the study of their implications for the low-energy physics.

Although the mass spectrum and the effective trilinear superpotential for the represen-
tative flat directions of the CHL5 model are not realistic due to the additional massless
exotics and the nature of the effective trilinear couplings (for details see [3]), we choose to
focus on the light fields which participate in the gauge symmetry breaking, with the goal
of obtaining scenarios with a realistic Z − Z ′ hierarchy. As shown in [14], in this class of
models the breaking scale of the U(1)′ can be either at the electroweak (TeV) scale, or at an
intermediate scale, depending on the U(1)′ charges and trilinear couplings of the massless
SM singlet fields. In the first representative flat direction, the massless particle content at
the string scale does not allow for the intermediate scale U(1)′ breaking scenario, and hence
the breaking is at the electroweak scale. However, both scenarios are possible for the second
representative flat direction.

In this paper, we demonstrate these symmetry breaking scenarios explicitly for each of
the two representative flat directions. Numerical results are presented for specific (typical)
choices of the soft supersymmetry breaking terms at the string scale, which in turn yield
a realistic Z − Z ′ hierarchy. We calculate the low energy spectrum explicitly with the
emphasis on the study of the Higgs mass spectrum and contrast its features with those of
both the MSSM, and the “bottom-up” analysis of the string models with an additional U(1)′

studied in [15,18]. (For the first flat direction the complete mass spectrum, including that
of the supersymmetric partners, is presented. For the second flat direction we specifically
address the texture in the (bottom) quark sector.) Due to the fact that the number of
Higgs fields participating in the symmetry breaking pattern is larger than that assumed in
[15], the presence of some (but not all possible) non-canonical µ terms implies additional
massless charginos, neutralinos, and Higgs bosons as well as new patterns in the massive
Higgs spectrum.

The paper is structured as follows. In Section II, we summarize the features of the CHL5
model and define the two specific flat directions. In Section III, we present the mass spectrum
and the effective trilinear superpotential couplings for the first flat direction of the CHL5
model. We demonstrate the possibility of realistic electroweak symmetry breaking scenarios
of the SM gauge group along with the additional U(1)′. In Section IV we demonstrate
the U(1)′ symmetry breaking scenarios at both the electroweak and intermediate scales for
the second representative flat direction. Finally, in Section V we present the summary and
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conclusions.

II. PRELIMINARIES

The starting point of the analysis is the effective theory along the two representative
flat directions of the CHL5 model [9]. In previous work, we have presented techniques for
classifying the flat directions [1] and demonstrated the calculation of the effective couplings
along these “restabilized vacua” of the model [3]. For the sake of completeness, we summarize
the method and the results here, and refer the reader to [1,3] for the details.

A. Method

In the class of quasi-realistic string models considered, there is an anomalous U(1) gener-
ically present as part of the gauge structure, for which the anomalies are cancelled by the
four-dimensional version of the Green Schwarz mechanism. This standard anomaly cancel-
lation mechanism leads to the generation of a nonzero Fayet-Iliopoulos (FI) contribution ξ
to the D term of U(1)A, with

ξ =
g2

stringM
2
P

192π2
TrQA , (1)

in which gstring is related to the gauge coupling g by the relation gstring = g/
√

2 [20] (g
is normalized according to the standard (GUT) conventions, i.e., TrTaTb = δab/2 for the
generators of the fundamental representation of SU(N)) and MP = MP l/

√
8π is the reduced

Planck mass, with MP l ∼ 1.2× 1019 GeV. This term would appear to break supersymmetry
in the original string vacuum. However, it triggers certain scalar fields to acquire VEV’s of
O(MString) along D and F flat directions, leading to a supersymmetric “restabilized” string
vacuum.

Therefore, the classification of the flat directions is the necessary first step in the analysis
of the string model. In [1], we presented techniques to classify a subset of D flat directions
which can be proven to be F flat to all orders in the superpotential. For the sake of simplicity
and to preserve the SM gauge group at the string scale, we chose to analyze flat directions
formed from non-Abelian singlet fields with zero hypercharge. In general, the FI term sets
the scale of the VEV’s in the flat direction, although in some cases some of the VEV’s are
undetermined (but bounded from above).

The next stage of the analysis is to determine the effective theory along such flat direc-
tions [3]. In general, the rank of the gauge group will be reduced (i.e., several U(1)’s will
be broken). Effective couplings can be generated from higher-dimensional operators in the
superpotential after replacing the fields in the flat direction by their VEV’s. In particular,
for a given flat direction P , effective mass terms for the fields Ψi, Ψj (Ψi,j /∈ {Φk ∈ P}) may
be generated via

W ∼ ΨiΨj (Πi∈PΦi) . (2)
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In addition to these mass terms arising from F terms, the fields in the flat direction with
VEV’s set by the FI term will acquire masses from D terms via the superHiggs mechanism.
The fields with such effective mass terms will acquire string-scale masses and decouple from
the theory.

In addition to the trilinear couplings of the original superpotential, effective renormaliz-
able interactions for the light fields may also be generated via

W ∼ ΨiΨjΨk (Πi∈PΦi) . (3)

The existence of such terms was determined first by identifying the gauge invariant effective
bilinear and trilinear terms, then subsequently verifying that such gauge invariant terms
survive the string selection rules.

The coupling strengths of the effective trilinear terms generated in this way will generally
be suppressed compared to the large Yukawa couplings of the original superpotential, which
have coupling strengths O(g) (with the typical value given by

√
2gstring = g ∼ 0.8 for

the models considered, as is discussed in section III). In general, the coefficients of the
superpotential terms of order K + 3 are given by

αK+3

MK
Pl

= gstring

√ 8

π

K CKIK
MK

Pl

, (4)

where CK is a coefficient of O(1) which includes different renormalization factors in the
operator product expansion (OPE) of the string vertex operators (including the target space
gauge group Clebsch-Gordan coefficients), and IK is a world-sheet integral. I1,2 for certain
typical couplings, have been computed numerically by several authors, with the typical result
I1 ∼ 70, I2 ∼ 400 [21]. The coupling strengths of the effective trilinear terms depend on these
coefficients and the values of the VEV’s involved, which are set by the (model-dependent)
FI term. In this way, these couplings can naturally provide a hierarchy, with implications
for generating fermion textures in the quark and lepton sectors.

B. Results: Model CHL5

The model we have chosen as a prototype model to analyze is Model 5 of [9]. Prior to
vacuum restabilization, the model has the gauge group

{SU(3)C × SU(2)L}obs × {SU(4)2 × SU(2)2}hid × U(1)A × U(1)6, (5)

and a particle content that includes the following chiral superfields in addition to the MSSM
fields:

6(1, 2, 1, 1) + (3, 1, 1, 1) + (3̄, 1, 1, 1) +

4(1, 2, 1, 2) + 2(1, 1, 4, 1) + 10(1, 1, 4̄, 1) +

8(1, 1, 1, 2) + 5(1, 1, 4, 2) + (1, 1, 4̄, 2) +

8(1, 1, 6, 1) + 3(1, 1, 1, 3) + 42(1, 1, 1, 1) , (6)
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where the representation under (SU(3)C , SU(2)L, SU(4)2, SU(2)2) is indicated. We refer
the reader to [9,1,3] for the complete list of fields with their U(1) charges.

The SM hypercharge is determined as a linear combination of the six non-anomalous
U(1)’s, subject to the conditions that the MSSM fields have the appropriate quantum num-
bers, and that the remaining fields can be grouped into mirror pairs under U(1)Y (in the
attempt to avoid the presence of strictly massless colored or charged fermion fields in the the-
ory). In this model, these criteria lead to a unique definition of U(1)Y [9,3], with Kač-Moody
level kY = 11

3
(to be compared with the MSSM value of kY = 5

3
).

We presented a complete list of the D flat directions which can be proven to be F flat to
all orders in the superpotential in [1], and written more explicitly in Table II in [3]. In [3],
we analyzed the P1P2P3 subset of the flat directions, which includes the two representative
directions P ′

1P
′
2P

′
3 and P2P3|F . The maximum number of U(1)’s is broken in these flat

directions, which leave an additional U(1)′ as well as U(1)Y unbroken [1]. The unbroken
U(1)′ has kY ′ = 4167/250 ' 16.67. The complete list of fields with their U(1)Y and U(1)′

charges is presented in Tables Ia-Ic.
The VEV’s of the fields in the most general P1P2P3 flat direction are of the form

|ϕ27|2 = 2x2, |ϕ28 (29)|2 = x2 − |ψ1|2,
|ϕ30|2 = |ψ1|2, |ϕ4 (5)|2 = |ψ2|2,
|ϕ2 (3)|2 = |ψ1|2 − |ψ2|2, |ϕ12 (13)|2 = |ψ1|2 − |ψ2|2,
|ϕ10 (11)|2 = |ψ2|2,

(7)

with

x =

√
|ξ|
8

= 0.013MPl, (8)

and |ψ1,2| are free VEV’s of the moduli space, subject to the restrictions that x2 ≥ |ψ1|2 ≥
|ψ2|2.

The first representative flat direction P ′
1P

′
2P

′
3 has VEV’s given by the general case (7),

with no further restrictions on |ψ1,2|. However, the second representative flat direction
P2P3|F corresponds to the case in which constraints must be imposed on the free VEV’s in
such a way that the contributions from different F terms cancel and |ϕ28 (29)|2 = 0; these
constraints are x2 = |ψ1|2 = 2|ψ2|2, and π phase difference between the combination of
VEV’s ϕ4 (5)ϕ10 (11) and ϕ2 (3)ϕ12 (13) [1].

For each of these flat directions, we computed the effective mass terms and determined
the mass eigenstates in [3]. In addition to the fields which become massive from these
couplings, it can be shown that of the fields in each flat direction, five of the associated
chiral superfields become massive due to the superHiggs mechanism. In the P ′

1P
′
2P

′
3 flat

direction, two of the chiral superfields remain massless (moduli), but they do not couple to
the rest of the fields at the level of the effective trilinear terms. In the P2P3|F flat direction,
the remaining complex field gets a mass of order [Yukawa] × [field VEV] due to cancellations
of F term contributions and forms, along with its superpartner, a massive chiral superfield.
In this case, the fields with zero VEV’s which couple linearly in these terms also acquire
masses of the same order.

The effective trilinear couplings along each of the representative flat directions were
also determined in [3]. In this model, the numerical analysis (see also [11]) of the string

8



amplitudes yields, along with the x as the typical VEV of the fields along the flat direction,
the effective Yukawa coupling at the fourth order ∼ 0.8, while the fifth order terms have
strengths ∼ 0.1 (using the typical values of I1 ∼ 70 and I2 ∼ 400 [21].) Therefore, in this
model the effective trilinear couplings arising from fourth order terms are competitive in
strength to the elementary trilinear terms, while the higher order contributions are indeed
suppressed [11]. Of course, the precise values for each term will depend on the particular
fields involved. In addition, the coupling strengths can depend on the undetermined VEV’s
in the P ′

1P
′
2P

′
3 flat direction.

III. P ′
1P

′
2P

′
3 FLAT DIRECTION

A. Effective Superpotential

The P ′
1P

′
2P

′
3 direction involves the set of fields {ϕ2, ϕ5, ϕ10, ϕ13, ϕ27, ϕ29, ϕ30}. The VEV’s

correspond to the most general case given in (7), such that they depend on two free (but
bounded) parameters.

It is straightforward to determine the mass eigenstates, which were calculated in [3]. In
Table II we list the surviving massless states. These states include both the usual MSSM
states and related exotic (non-chiral under SU(2)L) states, such as a fourth (SU(2)L sin-
glet) down-type quark, extra fields with the same quantum numbers as the lepton singlet
superfields, and extra Higgs doublets. There are other massless states with exotic quantum
numbers (including fractional electric charge), and states which are non-Abelian represen-
tations under both the hidden and observable sector gauge groups and thus directly mix
the two sectors. As previously discussed, there are two additional massless states (moduli)
associated with fields which appear in the flat direction but which do not have fixed VEV’s
(but do not couple to other fields at the level of an effective trilinear term) and are not listed
in Table II.

The effective trilinear couplings involving the observable sector fields assume the form [3]:

W3 = gQcu
c
ch̄c + gQcd

c
bhc +

α
(4)
4

MP l

√
1− λ2

1Qcd
c
dha +

g√
2
ecahahc +

g√
2
ecfhdhc

+

√
2α

(1)
5 x2

M2
P l

λ2e
c
hheha +

√
2α

(2)
5 x2

M2
P l

√
λ2

1 − λ2
2 e

c
eheha + gh̄ch

′
bϕ

′
20, (9)

in which

λ2 ≡ |ψ2|
x

≤ λ1 ≡ |ψ1|
x

≤ 1, (10)

are free parameters and ϕ′
20 = 1√

1+r2
(ϕ20−rϕ22), with r ≡ [α

(1)
4 λ2

2+α
(2)
4 (λ2

1−λ2
2)]x/(

√
2gMP l).

The superpotential implies generic features independent of the details of the soft super-
symmetry breaking, which have been analysed in [3]: (i) With the identification of the fields
h̄c and hc with the standard electroweak Higgs doublets, the Yukawa couplings indicate t−b
and τ −µ Yukawa unification with equal string scale Yukawa couplings g and g/

√
2, respec-

tively; (ii) there is no elementary or effective canonical µ-term; (iii) there is a possibility
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of lepton- number violating couplings and thus no stable LSP. In particular, we identify
the fields {he, ha, hd} as the lepton doublets, and hence the couplings Qcd

c
dha and ece,hhahe

violate lepton number. The fields h′b and ϕ
′
20 can play the role of additional Higgs fields. h̄a

has the quantum numbers of a Higgs doublet, but does not enter W3, and hence there is no
mechanism for it to develop a VEV.

B. Symmetry Breaking Patterns

To address the gauge symmetry breaking scenarios for this model, we introduce soft
supersymmetry breaking mass parameters , and run the RGE’s from the string scale to
the electroweak scale. While the qualitative features of the analysis are independent of the
details of the soft breaking, we choose to illustrate the analysis with a specific example with
a realistic Z − Z ′ hierarchy.

We wish to investigate the U(1)′ symmetry breaking scenarios discussed in [14,15,18,16],
which indicate that in the class of string models considered, the U(1)′ symmetry breaking is
either at the electroweak (TeV) scale, or at an intermediate scale (if the symmetry breaking
takes place along a D flat direction). An inspection of the massless spectrum in Table
Ic indicates that the singlet field ϕ25 is required for a D flat direction (and hence the
intermediate scale U(1)′ symmetry breaking scenario); however, this field acquires a string-
scale mass for this direction, and decouples from the theory. We conclude that in this case,
an intermediate scale breaking scenario is not possible, and hence the breaking of the U(1)′

is necessarily at the electroweak scale.
Though hidden sector non-abelian fields are not directly or indirectly coupled to the

observable sector non-abelian fields at the trilinear order in the superpotential, the U(1)′

could be radiatively broken along with some of the hidden non-Abelian groups, and in such
cases the breaking of the hidden sector is connected with the SU(2) × U(1)Y symmetry
breaking in the observable sector through U(1)

′
.

As discussed in [14,15,18], several scenarios exist which can lead to the possibility of a
realistic Z − Z ′ hierarchy. The scenario in which only the two MSSM Higgs fields hc, h̄c
acquire VEV’s breaks both U(1)Y and U(1)′, but leads to a light Z ′ with MZ′ ∼ O(MZ),
which is already excluded by experiments.

To have a realistic Z − Z ′ hierarchy, we require that a SM singlet field that is charged
under the U(1)′ acquires a VEV. However, since the canonical µ term that couples both
hc and h̄c to a SM singlet is absent, and instead there is a non-canonical µ term h̄ch

′
bϕ

′
20,

the minimization of the potential requires that the additional Higgs doublet h′b acquires a
non-zero VEV. Therefore, we consider the most general case in which h′b and ϕ′

20 ≡ s acquire
VEV’s in addition to h̄c and hc. After adding the required soft supersymmetry breaking
terms, the potential is given by

V = VF + VD + Vsoft, (11)

with

VF = Γ2
s|s|2(|h̄c|2 + |h′b|2) + Γ2

s|h̄c · h′b|2, (12)
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VD =
G2

8
(|h̄c|2 − |hc|2 − |h′b|2)2 +

g2
2

2
[|h̄∗ch′b|2 + |h̄∗chc|2 + |h∗ch′b|2]

− g2
2

2
|h′b|2|hc|2 +

g′21
2

(Q1|hc|2 +Q2|h̄c|2 +Q3|h′b|2 +Qs|s|2)2, (13)

Vsoft = m2
h̄c
|h̄c|2 +m2

hc
|hc|2 +m2

h′
b
|h′b|2 +m2

s|s|2
− (AΓsh̄c · h′bs + h.c.), (14)

in which Γs is the coefficient for the coupling h̄ch
′
bϕ

′
20, G

2 = g2
Y + g2

2 (with g2
Y = 3

11
g2
1), and

hc =

(
h0
c

h−c

)
, h̄c =

(
h̄+
c

h̄0
c

)
, h′b =

(
h′0b
h′−b

)
. (15)

The U(1)′ charges of {hc, h̄c, h′b, s} are denoted by Q1, Q2, Q3, and Qs, respectively. We
can take AΓs real and positive without loss of generality by an appropriate choice of the
global phases of the fields. By a suitable gauge rotation we also take 〈h̄0

c〉 and 〈s〉 real and
positive, which implies that 〈h′0b 〉 is real and positive at the minimum. However, the phase
of the hc field is not determined, due to the absence of an effective µ term involving hc in
(11). This additional global U(1) symmetry leads to the presence of a Goldstone boson in
the massless spectrum, as discussed below. For notational simplicity, we define

√
2〈h0

c〉 ≡ v1,√
2〈h̄0

c〉 ≡ v2,
√

2〈h′0b 〉 ≡ v3, and
√

2〈s〉 ≡ s.
The Z − Z ′ mass matrix is given by

(M2)Z−Z′ =

(
M2

Z ∆2

∆2 M2
Z′

)
, (16)

where

M2
Z =

1

4
G2(v2

1 + v2
2 + v2

3), (17)

M2
Z′ = g′21(v

2
1Q

2
1 + v2

2Q
2
2 + v2

3Q
2
3 + s2Q2

S), (18)

∆2 =
1

2
g′1G(v2

1Q1 + v2
3Q3 − v2

2Q2); (19)

with mass eigenvalues

M2
Z1,Z2

=
1

2

[
M2

Z +M2
Z′ ∓

√
(M2

Z −M2
Z′)2 + 4∆4

]
. (20)

The Z − Z ′ mixing angle αZ−Z′ is given by

αZ−Z′ =
1

2
arctan

(
2∆2

M2
Z′ −M2

Z

)
, (21)

which is constrained to be less than a few times 10−3.
The only possibility [3] for a realistic hierarchy is for the symmetry breaking to be

characterized by a large (O(TeV)) value for the SM singlet VEV s, with the SU(2)L×U(1)Y
breaking at a lower scale due to accidental cancellations.
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We now proceed with the analysis of the renormalization group equations.

(i) Running of the Gauge Couplings:

As discussed in [3], we determine the gauge coupling constant g = 0.80 at the string
scale by assuming αs = 0.12 (experimental value) at the electroweak scale, and evolving g3

to the string scale. We find that g = 0.80 is slightly higher than that of the MSSM, due
to the presence of one additional vectorlike exotic quark pair. The electroweak scale values
of the other gauge couplings are determined by their (1-loop) RGE’s, taking g = 0.8 at the
string scale as an input. The running of the gauge couplings is presented in Figure 1, and
the β functions are listed in Table III, including the Kač-Moody levels for the U(1) gauge
factors (kY = 11/3, k

′
= 16.67) and k = 2 for the hidden sector non-Abelian groups.

The low energy values of the gauge couplings are not correct due to the exotic matter
and non-standard kY . Surprisingly, sin2 θW ∼ 0.16 is not too different from the experimental
value 0.23, and g2 = 0.48 is to be compared to the experimental value 0.65. As a result of
a large number of massless non-Abelian fields in the hidden sector, the hidden sector gauge
couplings are not asymptotically free. Therefore, dynamical supersymmetry breaking due
to strong coupling dynamics in the hidden sector is not possible in this model.

(ii) Running of the Yukawa Couplings:

The values of the Yukawa couplings at the string scale after vacuum restabilization are
indicated in (9). There are two free parameters λ1 and λ2 satisfying the constraints (10). To
minimize the effects of the lepton number violating effective Yukawa coupling Qcd

c
dha, we

choose λ1 = 0.9 at the string scale. The dependence of λ2 is all from higher order effective
terms, which are numerically supressed and less important. For the sake of definiteness, we
take λ2 = 0.4. As discussed in section II, we choose the typical values for I1,2 such that
α4x
MPl

∼ 0.8, α5x2

M2
Pl
∼ 0.1, and an estimation for I3 such thatα6x3

M3
Pl
∼ 0.01. With the choice of

g = 0.8 at the string scale, the initial values of Yukawa couplings are listed in Table IV.
In Fig. 2 we present the evolution of the Yukawa couplings with the scale. We denote the
Yukawa couplings of the quark doublets by ΓQi, the couplings of the lepton doublets by
Γli, the coupling of the two Higgs doublets and the singlet by Γs (the numbering follows
the order of the terms in (9)). Additional Yukawa couplings of non-abelian singlet fields to
hidden sector fields, not displayed in (9), are listed in eqn. (20) of [3] . Their effects are
included in the calculation of the running Yukawas and soft parameters.

The low energy values of the Yukawa couplings can be read off from Table IV. The values
of ΓQ1 ∼ 0.96 and ΓQ2 ∼ 0.93 indicate that the t−b degeneracy is mainly broken by tanβ at
the electroweak scale. The result Γl1 ∼ 0.30, Γl2 ∼ 0.36 indicates that the τ − µ degeneracy
is only slightly broken at low energy, and mb/mτ ∼ 2.6. The value of the Yukawa coupling
h̄ch

′
bϕ

′
20, which plays a significant role in the gauge symmetry breaking (in this scenario for

which all three fields have non-zero VEV’s), is given by Γs(MZ) ∼ 0.22.

(iii) Running of the Soft Mass Parameters:

12
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We choose to normalize the soft breaking scale by ensuring the correct value of MZ

(before mixing with Z ′), rather than using v or MW ; since in this modle the gauge couplings
g2 and g1 at MZ have values different from their experimentally observed ones, it implies that
v and MW will also differ from their experimentally measured values. With the (incorrect)
values g2(MZ) ∼ 0.48, g1(MZ) ∼ 0.41 for this model, v ∼ 348 GeV and MW ∼ 82.8 GeV (to
be compared with the experimental values 246 GeV and 80.3 GeV, respectively).

We find that with universal boundary conditions for the soft supersymmetry breaking
mass terms at the string scale, the realistic scenario described above cannot be achieved.
In particular, the mass-square of the appropriate singlet field ϕ′

20 does not run to negative
values, so ϕ20′ does not acquire a VEV. However, for mild tuning of the boundary conditions
it is possible to obtain scenarios in which the Z ′ mass is large enough and the mixing angle
sufficiently suppressed to satisfy phenomenological bounds.

We present the initial conditions and low energy values for the soft breaking parameters
for an example of such a scenario in Table IV, with MZ′ = 735 GeV, and θZ−Z′ = 0.005.
The running scalar mass-squares corresponding to these initial conditions and to the gauge
and Yukawa couplings in Figure 1 and Figure 2 are displayed in Figure 3.

We see that the mass-squares of hc and ϕ
′
20 are driven negative at low energy, while

the h̄c and hb′ mass-squares remain positive. Minimization of the potential requires all four
of these fields to acquire VEV’s, which take the values 〈h0

c〉 = 90 GeV, 〈h̄0
c〉 = 163 GeV,

〈h′0b 〉 = 161 GeV, and 〈ϕ′
20〉 = 3560 GeV.

The small values of the doublet VEV’s compared to 〈ϕ′
20〉 involve a degree of fine-tuning.

From Table IV it is apparent that the typical scale of all soft parameters, and therefore
of the VEV’s and Z and Z

′
masses is several TeV. The much smaller values of 〈h̄0

c〉 and
〈h′0b 〉 come about because the point 〈h̄0

c〉 = 〈h′0b 〉 = 0 of the potential is a saddle point, with
large positive curvature in one direction, and a small negative curvature (caused by a near
cancellation between the large positive m2

h̄c
and m2

h′
b

terms with the slightly larger negative

A term), in the other direction. The small 〈h0
c〉 is due to the small negative m2

hc
and the

absence of a trilinear term involving hc.

C. Mass Spectrum

We now address the mass spectrum of the model associated with this particular low-
energy solution. The large singlet VEV scenario was explored for models with two Higgs
doublets and a singlet connected by a canonical µ term in [15]. In the present model, there
are three Higgs doublets and one singlet involved in the symmetry breaking, and one of the
doublets (hc) does not have trilinear couplings to the singlet, so that it enters the potential
only through D terms. We find that while the pattern of the masses obtained generally
follows the pattern obtained in [15], there are additional features in the mass spectrum of
the charginos, neutralinos, and Higgs scalars.

(1) Fermion Masses:

With the identification of Qc as the quark doublet of the third family, mt = 156 GeV,
and mb = 83 GeV, where mb is evaluated at MZ . The low value for mt, despite the high
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value of v = 348 GeV is because of the low value of
√

2〈h̄0
c〉/v ∼ 0.66. Clearly, 〈h0

c〉 is much
too large for this example 3 as is reflected in the unacceptably large value for mb. That is,
the t− b unification is not acceptable in the example because it would require a large ratio
of 〈h̄0

c〉/〈h0
c〉. If we identify ha, hd as the lepton doublets of the third and second families,

mτ = 32 GeV, and mµ = 27 GeV, where the difference is due to the ech,eheha terms in W3.

The ratio mb/mτ is larger than in the usual b − τ unification because of the ratio 1 : 1/
√

2
of the Yukawa couplings at the string scale, and is probably inconsistent with experiment
[22]. Of course, the high value for mµ is unphysical.

There is no mechanism to generate significant u, d, c, s, and e− masses for this direction.

(2) Squarks/Sleptons:

The squark and slepton masses take the values mt̃ L = 2540 GeV, mt̃ R = 2900 GeV;
mb̃ L = 2600 GeV, mb̃ R = 2780 GeV; mτ̃ L = 2760 GeV, mτ̃ R = 3650 GeV; mµ̃ L = 2790
GeV, mµ̃ R = 3670 GeV. The large values are needed to ensure a large MZ′ in this model.
The numerical values actually refer to the mass eigenstates, which are mixtures of the L and
R states. However, the L − R mixing terms are small compared to the diagonal terms for
this example, so the mixing effects are small. The other squark and slepton masses depend
on initial values for the soft supersymmetry breaking mass parameters that approximately
decouple from the symmetry breaking pattern, and are not presented.

(3) Charginos:

The positively charged gauginos and higgsinos are {W̃+, ˜̄hc,
˜̄ha}, and the negatively

charged gauginos and higgsinos are {W̃−, h̃c, h̃′b}. The mass matrix is given by

Mχ̃± =


M2

1√
2
g2v1

1√
2
g2v3

1√
2
g2v1 0 Γs

s√
2

0 0 0

 . (22)

There is one massless chargino, and the other two are massive, with masses mχ̃±1
= 591 GeV,

and mχ̃±2
= 826 GeV.

The massless state involves h̄a (and a linear combination of the negative states), and is
due to the absence of h̄a couplings in the superpotential. In particular, there is no non-
canonical µ term h̄ahcϕ in this flat direction; the only gauge-allowed term of this type
(h̄ahcϕ25) was in fact in the original trilinear superpotential, but ϕ25 has acquired a string-
scale mass and decoupled from the low-energy theory. Therefore, there is no mechanism for

3Smaller and more realistic values for mb and mτ could have been obtained by further adjustment
of parameters to yield a smaller 〈h0

c〉. This would violate our strategy of presenting a typical model
with a realistic Z−Z

′
hierarchy without further adjustment. Smaller 〈h0

c〉 would also have resulted
in still smaller masses for the lightest charged and scalar Higgs particles.
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h̄a to acquire a VEV.

(4) Neutralinos:

The neutralino sector consists of {B̃′, B̃, W̃3,
˜̄h

0

c , h̃
0
c , h̃

′0
b , ϕ̃

′
20,

˜̄h
0

a}. In this basis (neglecting
˜̄h

0

a, which has no couplings), the neutralino mass matrix is given by

Mχ̃0 =



M ′
1 0 0 g′1Q2v2 g′1Q1v1 g′1Q3v3 g′1QSs

0 M1 0
1

2
gY v2 −1

2
gY v1 −1

2
gY v3 0

0 0 M2 −1

2
g2v2

1

2
g2v1

1

2
g2v3 0

g′1Q2v2
1

2
gY v2 −1

2
g2v2 0 0 − 1√

2
Γss − 1√

2
Γsv3

g′1Q1v1 −1

2
gY v1

1

2
g2v1 0 0 0 0

g′1Q3v3 −1

2
gY v3

1

2
g2v3 − 1√

2
Γss 0 0 − 1√

2
Γsv2

g′1QSs 0 0 − 1√
2
Γsv3 0 − 1√

2
Γsv2 0



. (23)

The mass eigenvalues are: m0
χ̃1

= 963 GeV, m0
χ̃2

= 825 GeV, m0
χ̃3

= 801 GeV, m0
χ̃4

= 592
GeV, m0

χ̃5
= 562 GeV, m0

χ̃6
= 440 GeV, m0

χ̃7
= 2 GeV, and m0

χ̃8
= 0.

χ̃0
8 corresponds to ˜̄h

0

a, which (as previously mentioned) does not enter the superpotential.
The hierarchy of the non-zero masses can be understood in the large singlet VEV scenario
Γ2
s〈ϕ′

20〉2 �M2
i ,M

2
Z (in which Mi denotes the gaugino masses), which yields the pattern:

χ̃1,2 = (˜̄h
0

c ± h̃
′0
b )/

√
2, with masses ∼ Γs〈ϕ′

20〉; χ̃3,4 = (B̃′ ± ϕ̃
′
20)/

√
2, with masses ∼M ′

Z ;
χ̃5,6 = B̃′, W̃ 0, with masses ∼ |M1|, |M2|;
χ̃7 = h̃0

c , with mass ∼ 0.

(5) Exotics:

In addition to the massless quarks, leptons, chargino, and neutralino discussed above,
there are a number of exotic states, including the SU(2)L singlet down-type quark, four
SU(2)L singlets with unit charge (the e and extra ec states), and a number of SM singlet
(ϕ) states. There are additional exotics associated with the hidden sector. The scalar com-
ponents of these exotics are expected to acquire TeV-scale masses by soft supersymmetry
breaking. However, there is no mechanism for this direction to give the fermions a significant
mass. In particular, fermion masses associated with higher-dimensional operators would be
suppressed by powers of the ratio of the TeV scale to the string scale, and are therefore
negligible. (Such operators could be a viable mechanism for other flat directions that allow
an intermediate scale, however.) Another possible mechanism would be to invoke a non-
minimal Kähler potential. However, that is beyond the scope of the present analysis.
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(6) Higgs Sector:

The non-minimal Higgs sector of three complex doublets and one complex singlet required
for this scenario leads to additional Higgs bosons compared to the MSSM. In this scenario,
four of the fourteen degrees of freedom are eaten to become the longitudinal components of
the W±, Z, and Z ′; in addition, there is a global U(1) symmetry present in (11) associated
with the phase of hc which is broken, leading to a massless Goldstone boson in the spectrum.
It would acquire a small mass at loop level due to couplings in the full theory which do not
respect the global U(1).

The spectrum of the physical Higgs bosons after symmetry breaking consists of two pairs
of charged Higgs bosons H±

1,2, four neutral CP even Higgs scalars (h0
i , i = 1, 2, 3, 4), and one

CP odd Higgs A0.
In the basis {h̄0 i

c ≡ √
2Imh̄0

c , h
0 i
c , h

′0 i
b , si}), the CP odd (tree-level) mass matrix is given

by

M2
A0 =

AΓs√
2



sv3

v2
0 s v3

0 0 0 0

s 0
sv2

v3
v2

v3 0 v2
v2v3

s
.


(24)

There are one massive and three massless eigenstates. Two of the massless eigenstates are the
Goldstone bosons which are absorbed to become the longitudinal components of the Z and
the Z ′. The third massless state is the Goldstone boson corresponding to the breakdown of
the global U(1) symmetry present in (11), due to the absence of trilinear couplings involving
hc. The physical CP odd Higgs has

m2
A0 =

AΓs√
2

(
sv2

v3
+
sv3

v2
+
v2v3

s
), (25)

which takes the value mA0 = 1650 GeV in this particular case.
The mass matrix of the charged Higgses in the basis {h−c , h̄+∗

c , h
′−
b } takes the form

M2
H± =


g22
4
(v2

2 − v2
3)

g22
4
v1v2

g22
4
v1v3

g22
4
v1v2 AΓs

sv3√
2v2

+
g22
4
(v2

1 + v2
3)− Γ2

s
v23
2

g22
4
v2v3 − Γ2

s
v2v3

2
+ AΓs

s√
2

g22
4
v1v3

g22
4
v3v2 − Γ2

s
v2v3

2
+ AΓs

s√
2

AΓs
sv2√
2v3

+
g22
4
(v2

2 − v2
1)− Γ2

s
v22
2

 (26)

There is one massless state, which is the Goldstone boson absorbed by W± after the
SU(2) symmetry is spontaneously broken; the two physical charged Higgses are mH±

1
= 10

GeV; mH±
2

= 1650 GeV. The extra light mass of H±
1 is due to an accidental cancellation

between v2 and v3 for the specific example considered; in general, it is ∼ O(MZ).
The masses for the four neutral scalars can be obtained by diagonalizing the mass matrix

(in the basis {h̄0 r
c , h

0 r
c , h

′0 r
b , sr})
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M2
h0 =



κ2
2v

2
2 + AΓss

v3√
2v2

κ12v1v2 κ23v2v3 −AΓs
s√
2

κ2sv2s−AΓs
v3√
2

κ12v1v2 κ2
1v

2
1 κ13v1v3 κ1sv1s

κ23v2v3 − AΓs
s√
2
κ13v1v3 κ2

3v
2
3 + AΓss

v2√
2v3

κ3sv3s−AΓs
v2√
2

κ2sv2s− AΓs
v3√
2

κ1sv1s κ3sv3s− AΓs
v2√
2

κ2
ss

2 + AΓsv3
v2√
2s


, (27)

with κ2
i = G2/4+g′21Q

2
i , κ1j=2,3 = g′21Q1Qj−G2/4, κ1s = g′21Q1QS, κ23 = Γ2

s+g
′2
1Q1Qj−G2/4,

κjs = Γ2
s + g′21QjQS, and κ2

s = g′21Q
2
S.

In the numerical solution obtained, the values of the masses of the four scalars are
mh0

1
= 33 GeV; mh0

2
= 47 GeV; mh0

3
= 736 GeV; mh0

4
= 1650 GeV.

In general supersymmetric models, one of the physical Higgs bosons has a mass controlled
by the electroweak scale from the breaking of SU(2)L × U(1)Y , while the others may have
masses at the scale of the soft SUSY breaking. In this model, an additional global U(1)
symmetry is broken when hc acquires a non-zero VEV, and the mass of the scalar Higgs
associated with this direction is mainly determined by the U(1) breaking scale. This scale is
therefore comparable to the electroweak scale, which indicates that in the decoupling limit
not only one but two Higgs scalars will be light. In this particular example, the VEV of
hc happens to be small compared with that of the other two Higgs doublets, and hence
the lightest Higgs is mainly associated with hc. Thus, the lightest Higgs mass satisfies the
(tree-level) bound

m2
h0
1
≤ G2

4
v2

1 + g2
1′Q

2
1v

2
1 = (35 GeV)2, (28)

obtained from analyzing the potential in the field direction that breaks the global U(1)
symmetry (i.e., the field direction hc) [23]. In the large s limit, the mass saturates this
bound.

It is also possible to place a bound on the second-lightest neutral Higgs scalar [23]

m2
h0
2
≤ m2

h0
1
+ v2

v22+v23
[(
G2v21

4
+ g2

1′Q
2
1v

2
1 −m2

h0
1
)

1
2

+ ( G
2

4v2
(v2

2 − v2
1 − v2

3)
2 +

g2
1′
v2

(Q1v
2
1 +Q2v

2
2 +Q3v

2
3)

2

+ 2Γ2
s

v2
v2
2v

2
3 −m2

h0
1
)

1
2 ]2 = (85 GeV)2.

(29)

A suitable rotation in field space demonstrates that the second-lightest Higgs (h0
2) is basically

the real part of the Higgs doublet that is involved in the SU(2) breaking, while the other two
Higgs doublets do not participate. One of the two rotated doublets (h0

4, H
±
2 , A0) consists

of the heaviest scalar, pseudoscalar, and charged Higgs, and is composed mainly of h̄c and
h′b, with mass roughly given by m0

A (naturally expected to be large in this limit). The other
doublet (h0

1, H
±
1 , massless pseudoscalar) is basically hc, and hence the associated fields are

light due to the absence of couplings to the singlet. The second-heaviest neutral Higgs (h0
3)

has mass governed by MZ′ , and is primarily the singlet.
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IV. P2P3|F FLAT DIRECTION

A. Effective Superpotential

The fields involved in the P2P3|F direction are {ϕ2, ϕ4, ϕ10, ϕ12, ϕ27, ϕ30}, with VEV’s

|〈ϕ27〉|2 = 2x2; |〈ϕ30〉|2 = 2|〈ϕ2〉|2 = 2|〈ϕ4〉|2 = 2|〈ϕ10〉|2 = 2|〈ϕ12〉|2 = x2 , (30)

where x = 0.013MP l, and 〈ϕ10〉 and 〈ϕ4〉 have opposite signs.
The massless states are presented in Table V. The effective trilinear couplings for the

observable sector states are given by

W3 = gQcu
c
ch̄c + gQcd

c
bhc +

α
(3)
5 x2

√
2M2

P l

Qad
c
dhg +

α
(4)
5 x2

√
2M2

P l

Qbd
c
dhg +

α
(5)
5 x2

√
2M2

P l

Qbd
c
bhb

+
α

(6)
5 x2

√
2M2

P l

Qad
c
bhb +

√
(α

(1)
4 )2 + (α

(1′)
4 )2x√

2MP l

uc
′
b d

c
cd
c
d +

g√
2
ecahahc +

g√
2
ecfhdhc

+

√
(α

(2)
4 )2 + (α

(2′)
4 )2x√

2MP l

ec
′
e hghb +

α
(7)
5 x2

2M2
P l

ecbhgha +
α

(8)
5 x2

2M2
P l

ecihgha +
g√
2
h̄ahcϕ25 + gh̄chbϕ20

+ gh̄dhbϕ28 + gh̄chgϕ21 + gh̄dhgϕ29 +
α

(3)
4

√
2x

MP l
ϕ25ϕ21ϕ29 +

α
(3′)
4

√
2x

MP l
ϕ25ϕ20ϕ28 , (31)

in which

uc
′
b = MPl√

(α
(1)
4 〈ϕ4〉)2+(α

(1′)
4 〈ϕ12〉)2

(
α

(1)
4

MPl
〈ϕ4〉ucb +

α
(1′)
4

MPl
〈ϕ12〉uca);

ec
′
e = MPl√

(α
(2)
4 〈ϕ12〉)2+(α

(2′)
4 〈ϕ4〉)2

(
α

(2)
4

MPl
〈ϕ12〉ece +

α
(2′)
4

MPl
〈ϕ4〉ech).

(32)

The superpotential (31) displays the same unrealistic t− b and τ −µ unification, absence
of the canonical effective µ term (though non-canonical µ terms are present), and L- violating
couplings as in the previous case.

However, there are new features (see [3] for a detailed discussion). In particular, there are
B- number violating couplings in the superpotential, with implications for possible proton
decay processes and N − N̄ -oscillations. There is also a texture in the down-quark sector,
with a possibly realistic ms/mb ratio due to the contribution of the original fifth order
operators, and potentially realistic values of the 1 − 3 and 2 − 3 elements of the CKM
matrix.

An inspection of Table V shows that there are, in fact, a larger number of massless
states in the observable sector than in the P ′

1P
′
2P

′
3 flat direction. Once again, there is some

ambiguity in how to identify the three MSSM lepton doublets (each possible set from the
list of massless states leads to L- violating couplings). However, in this case there is an
additional pair of fields (h̄d, hg) which can play the role of Higgs doublets.

In addition, ϕ25 remains massless at the string scale in this model. Therefore, there is a
possibility that the U(1)′ breaking may occur along a D flat direction, and hence takes place
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at an intermediate scale. This scenario requires that the mass-square of the field relevant
along the flat direction is driven negative at a scale much higher than the electroweak scale.
We investigate this possibility in Section IV.C, and show that it is possible with mild tuning
of the soft supersymmetry breaking parameters at the string scale. On the other hand, if
this condition is not satisfied, the U(1)

′
symmetry breaking is naturally at the electroweak

scale, coupled to the breaking of SU(2)L×U(1)Y ; we examine this possibility in the following
subsection.

As in the previous model, we adopt the strategy that the initial boundary conditions for
the hidden sector fields are adjusted to keep their mass-squares positive at the observable
sector symmetry breaking scale. (In this case, the hidden sector is more involved since the
singlet field ϕ21 couples both to the hidden sector fields and the Higgs doublets (eqn.(27) in
[3]).)

B. Electroweak Scale Symmetry Breaking

To highlight the unique features of the P2P3|F case as compared with the previous ex-
ample, we choose to study scenarios which allow for the maximum amount of texture in
the quark sector; i.e., scenarios in which the Higgs doublets h̄c, hc, hg and hb, as well as
the singlet fields ϕ20 and ϕ21, all aquire non-zero VEV’s 4. We again restrict ourselves to
scenarios which lead to experimentally allowed Z

′
masses and Z − Z

′
mixing angles.

With these assumptions, an inspection of the resulting scalar potential reveals that not
all of the phases of the fields which acquire VEV’s can be eliminated by suitable rotations.
By redefining the phases of the fields, the Yukawa coupling and the A-parameter associated
with the coupling h̄chbϕ20 can be taken to be real and positive. In the most general case,
〈h̄0

c〉 and 〈ϕ20〉 can be chosen to be real and positive by SU(2)L×U(1)Y and U(1)
′
rotations,

respectively. Similarly, 〈h0
c〉 and 〈ϕ21〉 can be taken to be real and positive using global U(1)

symmetries of the scalar potential. Therefore, there are in general three phases that will
remain non-zero at the minimum of the potential: φb, φg and φA2, which are the phases
of 〈hb〉, 〈hg〉, and the A-parameter associated with the coupling h̄chgϕ21. We will take the
A-parameter to be real and positive (i.e., we ignore possible explicit CP violation associated
with the soft supersymmetry breaking). φb and φg may be non-zero at the minimum of the
potential, leading to spontaneous CP -violation and the associated difficulties of cosmologi-
cal domain walls. However, φb and φg vanish at the minimum for the particular numerical

4It is also possible that h̄a, h̄d, and the singlet fields ϕ25, ϕ28, and ϕ29 acquire non-zero VEV’s,
due to the presence of the non-canonical effective µ terms involving these fields, if the singlet
fields involved develop negative mass-squares at the electroweak scale. With the non-canonical µ

terms h̄ahcϕ25, h̄dhbϕ28 and h̄dhgϕ29 taking active roles in the symmetry breaking, the massless
charginos and neutralinos (associated with the Higgs doublets that do not have VEV’s) as well as
the massless CP odd Higgs scalars (associated with the Higgs doublets that do not have effective
µ terms), can be eliminated. However, this implies that the minimum of the potential has a very
complicated structure, which may result in a larger amount of fine-tuning. We do not investigate
such complicated scenarios in this paper.
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c
d coupling, Γsss1,2 refer to the last two terms in (31).

example that we consider.

(i) Running of the Gauge Couplings and Yukawa Couplings:

We adopt the same strategy for the running of the gauge couplings as the previous model.
The β functions for the gauge groups are presented in Table III. At the electroweak scale,
one obtains g1 = 0.40 (which includes the factor kY = 11/3) and g2 = 0.46 (k2 = 1), yielding
sin2 θW = 0.17.

This model displays a rich set of Yukawa couplings for the observable sector. The initial
values of the coupling constants are fixed by string calculations. In Figure 4, we show the
variation of the coupling constants with the scale.

In addition to the large Yukawa couplings of h̄c and hc to the top and bottom quarks
(which take the values ΓQ1 = 0.98 and ΓQ2 = 0.93 at the electroweak scale), the effective
Yukawa couplings from the fifth order (which involve the other two quark families) have
the non-trivial values ΓQ3 = ΓQ4 = 0.17 and ΓQ5 = ΓQ6 = 0.22. With the assumption that
hg and hb have non-zero VEV’s, these couplings naturally provide a hierarchy of the quark
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masses and mixings in the down-type quark sector.
The τ − µ unification is slightly broken, since Γl1 = 0.34 and Γl2 = 0.35 at the elec-

troweak scale. The Yukawa couplings of the non-canonical µ terms are non-trivial as well,
with the typical values of a few times 0.1 at low energy. Hence, these couplings can be
actively involved in the symmetry breaking, as will be manifest in our numerical example.

(ii) Running of the Soft Mass Parameters:

The mass-squares of hg and hb tend to remain positive, as their couplings to quarks arise
from fifth order terms in the original superpotential and are therefore suppressed. However,
the coupling h̄chgϕ21 may force hg to acquire a non-zero VEV. Similarly, hb may acquire
a VEV due to the h̄chbϕ20 coupling. There are then two distinct electroweak symmetry
breaking patterns, one in which hb has a non-zero VEV (i.e., hb is naturally identified as
a Higgs field), and one in which hb has zero VEV (hb could also be identified as a lepton
doublet).

With universal soft mass-squared parameters at the string scale, the soft mass-squared
parameters of h̄c and hc are driven to negative values, while the mass-squares of all the
other fields remain positive. This scenario results in a light Z

′
and large Z − Z

′
mixing

angle at the electroweak scale, which is excluded by experiments. We therefore have to
consider non-universal boundary conditions for a realistic solution, in which hg, hb, ϕ20, and
ϕ21 also acquire VEV’s. As in the previous example, the effects of the Yukawa coupling
involving hidden sector fields (eqn. (27) of [3]) are included in the running Yukawas and
soft parameters.

One numerical example we found involves a set of tuned initial conditions which do not
deviate substantially from universality. In Table VI, we present the numerical values of
the parameters for this example, in which the VEV’s of the fields are 〈h̄0

c〉 = 223 GeV,
〈h0

c〉 = 124 GeV, 〈h0
b〉 = 17.3 GeV, 〈h0

g〉 = 24.8 GeV, 〈ϕ20〉 = 24.8 GeV, 〈ϕ21〉 = 4950 GeV.
In this particular example with A2 real and positive, φb = φg = 0 at the true minimum of
the potential, and hence there is no spontaneous CP violation. For these values, MZ′ = 1.00
TeV and αZ−Z′ = 0.004.

We now consider the quark masses and mixings in this model. The mass matrix for the
down-type quarks is [3]

M =

 0 ΓQ3〈h0
g〉 ΓQ6〈h0

b〉
0 ΓQ4〈h0

g〉 ΓQ5〈h0
b〉

0 0 ΓQ2〈h0
c〉

 =

 0 4.16 3.76
0 4.16 3.76
0 0 115

 , (33)

after the electroweak scale symmetry breaking. The masses of the down-type quarks are
md = 0 GeV, ms = 6 GeV, and mb = 116 GeV, where d, s and b stand for the down,
strange, and bottom quarks, respectively. These are running masses evaluated at MZ . Just
as in the example in section III for the P

′
1P

′
2P

′
3 direction, the scale for ms and mb (as

well as for mτ and mµ) is much too high. Again, we have made no attempt to further
adjust the parameters to obtain a lower 〈h0

c〉. However, the hierarchy of the relative masses,
(md : ms : mb) ∼ (0 : 1 : 20) is quite encouraging. This hierarchy, as well as the form of the
CKM matrix, can be understood from the analytic discussion in [3]. The CKM matrix,
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obtained from diagonalizing MM †, since there is no contribution from the up-quark sector,
is given by

UCKM =

 0.71 0.71 0.033
−0.71 0.71 0.033

0 −0.046 1.00

 . (34)

The maximal mixing between the first two families is not realistic. It results from the
comparable magnitude of the α

(i)
5 coefficients. (A more realistic Cabibbo-like mixing would

occur for α
(3)
5 /α

(4)
5 ∼ 0.2.) The value |UCKM

23 | ∼ 0.033 and |UCKM
32 | ∼ 0.046 are close to the

experimental values (∼ 0.04). However, UCKM
31 = 0 due to the form of M , and the 1 − 3

element is too large by roughly an order of magnitude.
We do not present the Higgs, chargino, or neutralino spectra for this example, as they

do not exhibit any qualitatively new features compared to the P
′
1P

′
2P

′
3 direction.

C. Intermediate Scale Symmetry Breaking

We now investigate the possibility that the U(1)′ is broken at an intermediate scale,
along a D flat direction. This is possible in this model because the field ϕ25, which has a
U(1)′ charge opposite in sign to the rest of the singlets (with nonzero U(1)′ charges), remains
massless at the string scale. The viability of this scenario requires that the D flat direction
is also F flat at the trilinear order [16]; otherwise, the F terms lead to quartic couplings
in the scalar potential which force the VEV’s to be at the electroweak scale 5. In addition,
we require the absence of renormalizable couplings of the fields in the D flat direction to
the Higgs doublet (h̄c) which couples to the top quark, so that there is top quark Yukawa
coupling in the low energy theory.

With these criteria in mind, an inspection of Table V and (31) demonstrates that from
the list of singlet fields (ϕ18 − ϕ22) that have U(1)′ charges equal and opposite to ϕ25, the
trilinear couplings of ϕ20 and ϕ21 (to h̄c) do not allow for a realistic implementation of the
intermediate scale symmetry breaking. However, the fields {ϕ18, ϕ19, ϕ22} (which do not
have effective trilinear couplings) can be involved in viable intermediate scale scenarios.

To achieve the U(1)′ breaking, the effective mass-square m2
ϕ25

+m2
ϕ18/19/22

must be driven

negative at a scale higher than the electroweak scale. With non-universal boundary con-
ditions, the mass-square of ϕ25 can be driven negative, while keeping the mass-squares
of ϕ20 and ϕ21 positive. The mass-squares of ϕ18,19,22 do not run, due to the absence of
Yukawa couplings involving these fields. Therefore, we can choose initial values of these
mass-squares such that m2

ϕ25
+ m2

ϕ18/19/22
is driven negative at an intermediate scale (while

keeping m2
ϕ25

+ m2
ϕ20/21

positive). These conditions ensure that the minimum occur along

5In principle, it is possible that total singlets can acquire intermediate scale VEV’s, because the
absence of D terms leads to a similar situation as the case that arises for a D flat direction. In this
model, the relevant singlets ϕ28,29 also couple to ϕ25, which provide effective F terms that push
the VEV’s to the electroweak scale, and hence this scenario is not viable [3].
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the D flat direction involving ϕ25 and ϕ18/19/22. A range of intermediate scales µRAD, at
which m2

ϕ25
+ m2

ϕ18/19/22
crosses zero, can be obtained by adjusting the initial values of the

parameters. In Figure 5 we display the scale variation of the mass-squares with initial val-
ues that lead to µRAD ∼ 1012 GeV. This example requires nonuniversal initial values, with
m2
ϕ20,21

larger by factors of around 2 to 9 than the others.
In the intermediate scale symmetry breaking scenario [16], the potential can be stabilized

by radiative corrections, or by nonrenormalizable self-couplings of the singlet fields in the
flat direction; i.e., terms of the form (ϕ25ϕ18/19/22)

n/M2n−3. Such nonrenormalizable self-
couplings have a number of sources. For example, they can be present in the original
superpotential or induced by vacuum restabilization from higher-dimensional operators. In
addition, these terms can arise from the decoupling of the heavy fields [12], as well as from
a nonminimal Kähler potential (either from the original couplings from the effective string
theory or could be induced either after vacuum restabilization or due to decoupling effects).

Within our assumption of a minimal Kähler potential, we have checked to determine if
these nonrenormalizable self-couplings are in fact present and found that these couplings do
not survive the string selection rules [3]. To determine if such terms can be induced at the
leading order in the superpotential from decoupling [12], it is necessary to check that there
are no trilinear terms in the effective superpotential that involve two powers of the fields
in the intermediate scale flat direction and one power of a heavy field. In this case, gauge
invariance restricts these terms to be of the type ϕ25ϕ18/19/22ϕ, in which ϕ is a heavy gauge
singlet under U(1)Y and U(1)′ (ϕ can be one of the fields in the P2P3|F flat direction). We
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find that in this example there are no such terms. Therefore, the symmetry breaking is
purely radiative in origin, and the VEV’s are very close to the scale µRAD.

The next step is to investigate the electroweak symmetry breaking after the intermediate
scale U(1)′ breaking. The electroweak symmetry breaking has different features than in the
previous case. For example, the field hc, which played an important role in the electroweak
symmetry breaking due to its Yukawa couplings to the bottom quark and the µ and τ leptons,
acquires an intermediate scale mass and decouples from the theory, which seems to leave
these MSSM fields massless. However, it may be possible that effective mass for the exotics
and effective Yukawa couplings for the MSSM fields are generated from nonrenormalizable
operators involving the fields in the intermediate scale [16]. Similarly, effective µ terms may
be generated by NRO’s. In principle, the determination of the complete set of such NRO’s is
a necessary first step in the analysis, since the renormalization group equations are affected
when the fields with intermediate scale masses decouple. The determination of the complete
set of such operators and the subsequent electroweak symmetry breaking patterns is beyond
the scope of this paper (but is the subject of a future investigation).

V. CONCLUSIONS

This paper is the culmination of the program that sets out to derive the phenomenological
implications of a class of quasi-realistic string models. We have determined the observable
sector gauge symmetry breaking patterns and the mass spectrum for a class of represen-
tative string-scale flat directions of a prototype model by merging the top-down approach
(employing the string results for the effective superpotential couplings) and the bottom-up
approach (adding the soft supersymmetry breaking mass parameters by hand).

The set of top-down inputs builds on the results of our previous work: (i) the classification
of the D flat directions of the model that cancel the anomalous D term and can be proven
to be F flat to all orders [1], and (ii) the determination of the effective theory along such
flat directions. In particular, we have utilized the results of [3], in which the complete mass
spectrum and effective trilinear couplings of the observable sector were presented for two
representative flat directions of Model 5 of [9] (CHL5), which leave an additional U(1)′ as
well as the SM gauge group unbroken. The first representative flat direction has a minimal
number of couplings of the observable sector fields, while the second flat direction has a
richer structure of couplings, with implications for fermion textures.

The mass spectrum and couplings of these effective theories are not realistic, as expected.
We found that in general there are a number of superfields which remain massless at the
string scale, and that while the scalars acquire masses from the soft supersymmetry breaking
terms, within our assumptions there is no mechanism for some of the fermions to acquire
masses. The gauge coupling unification is not realistic (although better than expected
due to the amount of additional matter superfields and the higher Kač-Moody level in the
model), and the hidden sector gauge groups are not asymptotically free, thus disallowing an
implementation of dynamical supersymmetry breaking scenarios. In addition, the effective
trilinear couplings have a number of nonstandard features which were examined in detail
in [3], such as the absence of a canonical effective µ term, presence of baryon and lepton
number violating couplings, as well as (potentially realistic) hierarchies of fermion masses.

27



Since the purpose of this program is to explore the general features of this class of quasi-
realistic models systematically, and not to search for a specific, fully realistic model (an
unlikely possibility), we continue the analysis by investigating the gauge symmetry breaking
patterns and the low energy spectrum for the representative examples. However, this study
requires the implementation of supersymmetry breaking, which we parameterize by soft
supersymmetry breaking masses put in by hand at the string scale, due to the absence of
a satisfactory scenario for supersymmetry breaking in string theory. This introduces free
parameters in the effective theory, and thus the unique predictive power of a particular string
vacuum is lost. In particular, the concrete results for the low energy spectrum depend on
the initial conditions for the soft masses at the string scale.

We chose to analyze scenarios which lead to a realistic Z − Z ′ hierarchy; as argued on
general grounds in [14,15,18], the breaking scale of the U(1)′ is at the electroweak scale, or
at an intermediate scale (if the symmetry breaking occurs along a D flat direction). For
each representative flat direction we determine the low energy spectrum explicitly for a
typical choice of initial conditions that yield a realistic Z −Z ′ hierarchy. The emphasis was
on the study of the Higgs sector, in order to contrast its features with that encountered
in both the MSSM and string motivated models with an additional U(1)′ [15,18]. In the
symmetry breaking scenarios for these two representative examples, the novel feature is that
the number of Higgs fields that participate in the symmetry breaking is larger than that
assumed in [15] (there are at least three Higgs doublets and one SM singlet participating
in the symmetry breaking process). In addition, the presence of some and absence of other
non-canonical µ terms implies new patterns in the low energy mass spectrum.

For the first representative flat direction, the symmetry breaking scale of the U(1)′ is
at the electroweak scale, because all of the U(1)′ charged singlets that remain massless at
the string scale have charges of the same sign. To obtain a realistic Z − Z ′ hierarchy, we
found it is necessary to have a nonminimal Higgs sector, with three Higgs doublets and one
singlet (which has a large VEV). This scenario can be obtained with mildly nonuniversal
soft supersymmetry breaking mass parameters at the string scale. We present the complete
mass spectrum, including that of the supersymmetric partners, for a typical choice of initial
conditions. The resulting mass spectrum at the electroweak scale includes massless and
ultralight charginos, neutralinos, and Higgs bosons, due to the absence of enough canonical
or non-canonical effective µ terms. In particular, the absence of an effective µ term involving
one of the Higgs doublets provides an additional global U(1) symmetry in the scalar potential
that is spontaneously broken, resulting in a Goldstone boson present in the low energy
spectrum. In addition, the mass of lightest neutral Higgs boson is controlled by the scale of
the breakdown of this global symmetry, and thus obeys a different bound than the traditional
bound in the MSSM.

For the second representative flat direction, the U(1)′ breaking can be either at the
electroweak scale or at an intermediate scale. Once again, the electroweak scale scenario
requires an extended Higgs sector to obtain a Z ′ that is consistent with experiment. In
addition, to study the fermion texture in the down-quark sector of this model, additional
Higgs doublets are needed to acquire VEV’s. In contrast to the previous model, there may be
CP-violating phases in the Higgs sector of the model, though these are absent for the specific
example considered. The electroweak scale symmetry breaking scenario is achievable with
mildly nonuniversal boundary conditions. There is a fairly realistic d : s : b mass hierarchy,

28



although the absolute scale is much too high. The corresponding CKM matrix has small
mixings of the first two families with the third, but an unrealistic maximal mixing between
the first and second generations.

The intermediate scale symmetry breaking scenario can be achieved with mild nonuni-
versality of the soft supersymmetry breaking mass parameters, at a range of intermediate
scales. It is purely radiative in origin, because of the absence of the relevant nonrenorm-
alizable terms (and trilinear terms involving the heavy fields) in the superpotential. We
plan to address the electroweak symmetry breaking in this scenario after decoupling the
heavy fields, which requires a detailed analysis of a class of nonrenormalizable operators, in
a future paper.

Although the analysis of the low energy implications for the representative examples
studied in the paper reveals a number of additional unacceptable phenomenological conse-
quences, it nevertheless demonstrates new features of the gauge symmetry breaking patterns,
in particular that associated with the Higgs sector of the theory. The type of non-minimal
extensions of the Higgs sector and their specific couplings, which we encountered in the
analysis of the specific string models should be of general interest in the phenomenological
investigation of models beyond the MSSM, and thus deserves further study.
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(SU(3)C , SU(2)L, 6QY 100QY ′

SU(4)2, SU(2)2)

(3,2,1,1): Qa 1 68
Qb 1 68
Qc 1 −71

(3̄,1,1,1): uca −4 6
ucb −4 6
ucc −4 −133
dca 2 −3
dcb 2 136
dcc 2 −3
dcd 2 −3

(1,2,1,1): h̄a 3 −74
h̄b 3 65
h̄c 3 204
h̄d 3 65
ha −3 74
hb −3 −65
hc −3 −65
hd −3 −65
he −3 −204
hf −3 −65
hg −3 −65

(3,1,1,1): Da −2 −136

Table Ia: List of non-Abelian non-singlet observable sector fields in the model with their
charges under hypercharge and U(1)′.
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(SU(3)C , SU(2)L, 6QY 100QY ′

SU(4)2, SU(2)2)

(1,2,1,2): D1−4 0 0
(1,1,4,1): F1,2 −3 −65
(1,1,4̄,1): F̄1,2 3 65

F̄3−6 3 65
F̄7,8 −3 −65
F̄9,10 −3 −65

(1,1,1,2): H1,2 3 65
H3,4 3 204
H5,7 −3 −65
H6,8 −3 74

(1,1,4,2): E1,2 0 −139
E3 0 0
E4,5 0 0

(1,1,4̄,2): Ē1 0 0
(1,1,6,1): S1 0 0

S2 0 0
S3 0 0
S4 0 0
S5 0 0
S6,7 0 139
S8 0 0

(1,1,1,3): T1 0 0
T2 0 139
T3 0 0

Table Ib: List of non-Abelian non-singlet hidden sector fields in the model with their charges
under hypercharge and U(1)′.
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6QY 100QY ′ 6QY 100QY ′

eca,c 6 −9 ecb 6 −9
ecd,g 6 130 ece 6 130
ecf 6 130 ech 6 130
eci 6 −9 ea,b 6 −130
ec 6 −130 ed,e −6 9
ef −6 −269

6QY 100QY ′ 6QY 100QY ′

ϕ1 0 0 ϕ2,3 0 0
ϕ4,5 0 0 ϕ6,7 0 0
ϕ8,9 0 0 ϕ10,11 0 0
ϕ12,13 0 0 ϕ14,15 0 0
ϕ16 0 0 ϕ17 0 0
ϕ18,19 0 −139 ϕ20,21 0 −139
ϕ22 0 −139 ϕ23 0 0
ϕ24 0 0 ϕ25 0 139
ϕ26 0 0 ϕ27 0 0
ϕ28,29 0 0 ϕ30 0 0

Table Ic: List of non-Abelian singlet fields in the model with their charges under hypercharge
and U(1)′.
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Massless Fields

Qa,Qb,Qc

uca,u
c
b,u

c
c

dca,d
c
b,d

c
c,d

c
d,Da

h̄a,h̄c
ha,hc,hd,he

h′b = 1√
N1

[−α
(1)
4 |ψ2|2+α

(2)
4 (|ψ1|2−|ψ2|2)

MPl
hf +

√
2gxhb]

eca, e
c
b, e

c
c, e

c
e, e

c
f , e

c
h, e

c
i

ec, ed, ee, ef
ϕ3, ϕ11, ϕ18, ϕ19, ϕ20, ϕ22, ϕ24, ϕ28

ϕ′
12 = 1

|ψ1|(−
√
|ψ1|2 − |ψ2|2ϕ12 + |ψ2|ϕ4)

D1, D2, D3, D4

F̄3, F̄4, F̄5, F̄6, F̄7, F̄8, F̄9, F̄10

H1, H2, H3, H4, H5, H6, H7, H8

E1, E2, E3, E4, E5, Ē1

S2, S4, S6, S7, S8

S ′
1 = 1

|ψ1|(−
√
|ψ1|2 − |ψ2|2S3 + |ψ2|S1)

T1, T2, T3

Table II: List of massless states (excluding the two moduli) for the P ′
1P

′
2P

′
3 flat direction [3],

where N1 ≡ 2g2x2 +(α
(1)
4 |ψ2|2/MP l)

2 with the VEV parameters x, ψ1 and ψ2 defined in eqs.
(7).

Effective β β1 β2 β3 β1′ β11′ β2hid β4hid

P
′
1P

′
2P

′
3 Flat Direction 10.0 6.0 −2.0 10.2 4.8 10.0 2.0

P2P3|F Flat Direction 10.3 7.0 −2.0 10.6 5.0 10.0 3.0

Table III: Effective beta-functions for the two representative flat directions, defined as
βi ≡ β0

i /ki, where β0
i and ki are the beta-function and the Kač-Moody level for a par-

ticular gauge group factor, respectively. The subscripts 1, 2, 3, 1′, 2hid, 4hid refer to
U(1)Y , SU(2)L, SU(3)C , U(1)′, SU(2)2, SU(4)2 gauge group factors and 11′ refers to
the U(1)Y and U(1)′ kinetic mixing. The Kač-Moody levels are k1 = 11/3, k2 = k3 = 1,
k1′ ' 16.67, and k2hid = k4hid = 2.
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MZ MString MZ MString

g1 0.41 0.80 M1 444 1695
g2 0.48 0.80 M2 619 1695
g3 1.23 0.80 M3 4040 1695
g′1 0.43 0.80 M ′

1 392 1695
ΓQ1 0.96 0.80 AQ1 3664 8682
ΓQ2 0.93 0.80 AQ2 4070 9000
γQ3 0.27 0.08 AQ3 5018 1837
Γl1 0.30 0.56 Al1 −946 4703
Γl2 0.36 0.56 Al2 −707 4532
Γl3 0.06 0.05 Al3 4613 4425
Γl4 0.11 0.13 Al4 4590 4481
Γs 0.22 0.80 A 1695 12544
m2
Qc

(2706)2 (2450)2 m2
dd

(4693)2 (2125)2

m2
uc

(2649)2 (2418)2 m2
dc

(2734)2 (2486)2

m2
h̄c

(1008)2 (5622)2 m2
h′

b
(826)2 (2595)2

m2
ϕ20′ −(518)2 (6890)2 m2

ϕ22′ (3031)2 (11540)2

m2
ha

(3626)2 (3982)2 m2
hc

−(224)2 (5633)2

m2
hd

(3666)2 (4100)2 m2
he

(4274)2 (4246)2

m2
ea

(2770)2 (3564)2 m2
ef

(2780)2 (3958)2

m2
ee

(4195)2 (4254)2 m2
eh

(4259)2 (4236)2

Table IV: P ′
1P

′
2P

′
3 flat direction: values of the parameters at MString andMZ , withMZ′ = 735

GeV and αZ−Z′ = 0.005. All mass parameters are given in GeV. Other soft supersymmetry
breaking mass parameters approximately decouple, and are not presented.
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Massless Fields

Qa,Qb,Qc

uca,u
c
b,u

c
c

dca,d
c
b,d

c
c,d

c
d,Da

h̄a,h̄c, h̄d
ha,hb,hc,hd,he, hg

eca, e
c
b, e

c
c, e

c
e, e

c
f , e

c
h, e

c
i

ec, ed, ee, ef
ϕ5, ϕ6, ϕ13, ϕ14, ϕ18, ϕ19, ϕ20, ϕ21, ϕ22, ϕ23, ϕ24, ϕ25, ϕ28, ϕ29

ϕ11′ = (ϕ3 − ϕ11)/
√

2,

ϕ17′ = ( gx
2
ϕ17 +

α
(2)
5

M2
Pl

x3

2
ϕ16)/

√
N2

ϕ26′ = (−gx
2
ϕ26 − α

(1)
5

M2
Pl

x3

2
ϕ1)/

√
N1

D1, D2, D3, D4

F̄3, F̄4, F̄5, F̄6, F̄7, F̄8, F̄9, F̄10

H1, H2, H3, H4, H5, H6, H7, H8

E1, E2, E3, E4, E5, Ē1

S1, S2, S3, S4, S5, S6, S7, S8

T1, T2, T3

Table V: List of massless states for the P2P3|F flat direction, where N1/2 ≡ g2x2/4 +

(α
(1/2)
5 x3/2M2

P l)
2.
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MZ MString MZ MString

g1 0.40 0.80 M1 251 1000
g2 0.46 0.80 M2 330 1000
g3 1.23 0.80 M3 2380 1000
g′1 0.42 0.80 M ′

1 225 1000
ΓQ1 0.98 0.80 AQ1 828 702
ΓQ2 0.93 0.80 AQ2 2120 1227
ΓQ3 0.17 0.07 AQ2 3290 1510
ΓQ4 0.17 0.07 AQ2 3290 1510
ΓQ5 0.22 0.07 AQ2 4570 1308
ΓQ6 0.22 0.07 AQ2 4570 1308
Γudd 1.29 0.82 Audd 2910 3239
Γl1 0.34 0.56 Al1 −240 1234
Γl2 0.35 0.56 Al2 −197 1234
Γl3 0.58 0.82 Al3 419 1659
Γl4 0.05 0.05 Al4 807 1351
Γl5 0.05 0.05 Al4 807 1351
Γs1 0.46 0.56 As1 893 1381
Γs2 0.16 0.80 A1 350 3336
Γs3 0.49 0.80 As3 394 1357
Γs4 0.16 0.80 A2 3500 6789
Γs5 0.54 0.80 As5 361 1351
Γsss1 0.24 1.17 Asss1 -938 1477
Γsss2 0.26 1.17 Asss2 -763 1671
m2
Qc

(1890)2 (2252)2 m2
Qb

(3110)2 (1934)2

m2
Qa

(3110)2 (1934)2 m2
uc

(2010)2 (2352)2

m2
u
′
b

(1460)2 (4382)2 m2
db

(1500)2 (2172)2

m2
dd

(4370)2 (6155)2 m2
dc

(1460)2 (4382)2

m2
h̄c

(531)2 (4624)2 m2
h̄d

(1040)2 (4549)2

m2
h̄a

(1250)2 (1817)2 m2
ha

(1390)2 (1828)2

m2
hc

−(311)2 (4177)2 m2
hd

(1400)2 (1833)2

m2
hg

(4950)2 (7639)2 m2
hb

−(299)2 (4939)2

m2
ea

(1920)2 (2590)2 m2
ef

(1890)2 (2590)2

m2
eb

(1750)2 (1764)2 m2
e′e

(1500)2 (5314)2

m2
ei

(1750)2 (1764)2 m2
ϕ20

−(715)2 (5177)2

m2
ϕ21

−(718)2 (6328)2 m2
ϕ25

(1630)2 (4337)2

m2
ϕ28

(4470)2 (5982)2 m2
ϕ29

(2210)2 (6398)2

Table VI: P2P3|F flat direction: values of the parameters (for the observable sector) at
MString and MZ , with MZ′ = 1008 GeV and αZ−Z′ = 0.004. All mass parameters are given
in GeV.
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